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Abstract Two algorithms are outlined, each of which has interesting features for
modeling of spatial variability of rock depth. In this paper, reduced level of rock
at Bangalore, India, is arrived from the 652 boreholes data in the area covering
220 sq·km. Support vector machine (SVM) and relevance vector machine (RVM)
have been utilized to predict the reduced level of rock in the subsurface of Bangalore
and to study the spatial variability of the rock depth. The support vector machine
(SVM) that is firmly based on the theory of statistical learning theory uses regres-
sion technique by introducing ε-insensitive loss function has been adopted. RVM is a
probabilistic model similar to the widespread SVM, but where the training takes place
in a Bayesian framework. Prediction results show the ability of learning machine to
build accurate models for spatial variability of rock depth with strong predictive ca-
pabilities. The paper also highlights the capability of RVM over the SVM model.

Keywords Support vector machine · Relevance vector machine · Rock depth ·
Spatial variability

1 Introduction

Rock depth in a site which is a very useful parameter to the geotechnical earthquake
engineers to find their basic requirement of hard strata and ground motion at rock
level. In most of the geotechnical investigations, knowledge of the hard strata or rock
is essential to decide the type of foundations and design a suitable foundation for
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a structure. In the ground response analysis, peak ground acceleration (PGA) and
response spectrum for the particular site is evaluated at the rock depth levels and
further on at the ground level considering local site effects. This is an essential step
to evaluate site amplification and liquefaction hazards of a site and further to estimate
induced forces on the structures. In ground response analysis, the response of the soil
deposit is determined from the motion at the bed rock level. In all these problems, it is
essential to evaluate the depth of the hard rock from the ground level. Thus, modeling
of spatial variation of rock depth is an imperative task in geotechnical and geological
engineering.

In this study, spatial variability of rock depth in Bangalore is modeled by statis-
tical learning theory (Berger 1985) using a high-dimensional regression technique.
This technique attempts to find a relationship between a training set of input vec-
tors and corresponding outputs, also known as supervised learning (Tipping 2001).
Once training has been done, the goal is to make predictions at unmeasured locations
by incorporating any prior knowledge that may be available. Two types of statis-
tical learning theory have been adopted. The first type uses SVM (Cristianini and
Shawe-Taylor 2000) which is a relatively new type of learning algorithms, originally
introduced by Vapnik and coworkers (Boser et al. 1992; Vapnik 1998). It achieves
good generalization ability by adopting a structural risk minimization (SRM) induc-
tion principle that aims at minimizing a bound on the generalization error of a model
rather than the minimizing the error on the training data only. It also provides a new,
efficient novel approach to improve the generalization performance and can attain
a global minimum. In general, SVM has been used for pattern recognition prob-
lems. Recently, it has been used to solve nonlinear regression estimation and time
series prediction by introducing ε-insensitive loss function (Mukherjee et al. 1997;
Muller et al. 1997; Vapnik 1995; Vapnik et al. 1997). Application of SVM for
geospatial data has been done by different researchers (Kanevski and Maignan 2004;
Kanevski 2008). It is trained with optimization of a convex, quadratic cost function,
which guarantees the uniqueness of the SVM solution. The recently introduced RVM
by Tipping (2001) has been used as second type technique. RVM allows computation
of the prediction taking into account uncertainties of both the parameters and the data.
It provides much sparser regressors without compromising performance, and kernel
bases give a small but worthwhile improvement in performance. A comparative study
has also been done between the developed SVM and RVM model.

2 Subsurface of Bangalore and GIS Model Development

Bangalore covers an area of over 220 square kilometers and ground reduced levels
(GRL) also vary a lot in the city. It varies from 810 m in the northeast part to 940 m in
southwestern part of Bangalore. Ground reduced levels do not vary much in the cen-
tral and northwestern parts of the city. There were more than 400 lakes at one time,
and more than 340 lakes are dried up and have been encroached for development of
residential and industrial layout. The population of the greater Bangalore region is
over 6 million and it is the fifth largest city in India. It is situated on latitude of 1,208′
north and longitude of 77,037′ east. From geology, the subsurface of Bangalore re-
gion covers in Gneiss complexes, which is formed due to several tectonic-thermal
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Fig. 1 Borehole location in Bangalore Map (scale: 1:20000)

events with a large influx of sialic material, are believed to have occurred between
3,400 to 3,000 million years ago giving rise to an extensive group of gray gneisses
designated as the older gneiss complex. These gneisses act as the basement for a
widespread belt of schists. The younger group of gneissic rocks mostly of granodi-
omitic and granitia composition is found in the eastern part of the state, representing
remobilized parts of an older crust with abundant additions of newer granite mate-
rial, for which the name = younger gneiss complex has been given (Radhakrishna
and Vaidyanadhan 1997). The soil is mostly a residual soil from granite gneiss due
to weathering action. In the old tank beds, silty sand/clay is also found as overbur-
den.

A geographic information system (GIS) model (see Fig. 1) of Bangalore with sev-
eral layers on a scale of 1:20000 has been developed with a purpose of carrying out
microzonation of Bangalore. The Bangalore map forms the base layer for GIS. The
map entities have been developed for locating the boreholes to the utmost accuracy
and at each location borelogs have been attached along with geotechnical data of
each layer up to the hard rock. The digitized map has several layers of information.
Some of the important layers considered are the boundaries (outer and administra-
tive), highways, major roads, minor roads, Streets, railroads, water bodies, drains,
ground contours and borehole locations. The locations of boreholes are shown in
Fig. 1 along with ground reduced level with an interval of 10 m (see Fig. 2). Dis-
tribution of collected boreholes in Bangalore is shown in Fig. 3, indicating a very
good distribution of the boreholes in each quadrant of Bangalore from the city cen-
ter. Figure 1 also depicts grids of 1 km × 1 km along with the corporate boundary of
Bangalore and outer boundary circumscribing the ring road. Figure 1 gives a clear
view of the spatial distribution of boreholes in the Bangalore region. An average of
about three boreholes data is available within the grid of 1 km × 1 km.
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Fig. 2 GIS model of borehole locations with respect to contours

Fig. 3 Distribution of boreholes in quadrants for Bangalore

Geotechnical data for 652 boreholes was collated from archives of only two or-
ganizations: Torsteel Research Foundation in India and Indian Institute of Science.
This data was generated for geotechnical investigations carried out for several ma-
jor projects in Bangalore including Bangalore metro project. The data collected is of
very high quality and collected during the years 1995–2003. The data in the model
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is on average to a depth of 30 m below the ground level. Each borelog contains in-
formation about depth, density of the soil, total stress, effective stress, fines content,
and N values, depth of ground water table, and reduced level rock depth (d). In GIS
model, the boreholes are represented as a three-dimensional object spanning below
the map layer. These three-dimensional boreholes are generated with several layers
with a bore location in each layer overlapping one below the other and each layer
representing 0.5 m interval of the subsurface. Each layer of this model is attached
with borelog data at that depth. The data consists of visual soil classification, bore-
hole location, ground water level, date, and time during which test has been carried
out, other physical and engineering properties of soil, and rock depth. As such, when
this model is viewed in a three-dimensional subsurface information on any borehole
at any depth can obtained by clicking at that level. The hard rock has been iden-
tified by visual observation of the cores taken at these locations. Rock depth from
ground level is the difference between the grounds reduced level at borehole loca-
tion and reduced level of the hard rock at the same borehole location. The reduced
level of the hard rock at borehole location is the difference between the ground re-
duced level at borehole location and depth of overburden thickness up to hard rock
for the same borehole. The depth of overburden is estimated from the available borel-
ogs.

3 Support Vector Machine Model

The support vector machine (SVM) based on statistical learning theory has been de-
veloped by Vapnik (1995). It represents a learning paradigm where prediction error
and model complexity are simultaneously minimized. Unlike artificial neural net-
work, the SVM structure is not fixed in advance with a specific number of adjustable
parameters, but can adapt with data. In this study, SVM used regression technique
by introducing ε-insensitive loss function. In support vector regression, the input x

is first mapped into a high dimensional feature space by the use of a kernel function,
and then a linear model is constructed in this feature space. The kernel functions often
used in SVM include linear, polynomial, radial basis function, and sigmoid function.
The linear model f (x;w) in the feature space is given by

f (x;w) =
m∑

j=1

wj × Φj(x) + b, (1)

where the functions {Φj(x)}mj=1 are feature space representations of the input query
x, m is the number of patterns that contains all the information necessary to solve a
given learning task, hereinafter, referred to as support vectors, and wj is the SVM
weights. SVM regression uses a new type of loss function called ε-insensitive (see
Fig. 4) loss function proposed by Vapnik (1998).

Lε

(
y;f (x;w)

) = 0 for
∣∣f (x;w) − y

∣∣ < ε otherwise

Lε

(
y,f (x;w)

) = ∣∣f (x;w) − y
∣∣ − ε. (2)
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Fig. 4 Prespecified accuracy ε

and slack variable ξ in support
vector regression (Scholkopf
1997)

The empirical risk is

Remp(w) = 1

m

m∑

i=1

Le

(
yi, f (xi;w)

)
. (3)

SVM regression performs linear regression in the high dimension feature space using
ε-insensitive loss and, at the same time, tries to reduce model complexity by mini-
mizing ‖w‖2. Thus, SVM regression is formulated as a minimization of the following
functional

Minimize
C

m

m∑

i=1

Le

(
yi, f (xi;w)

) + 1

2
‖w‖2

Subjected to (2),

(4)

where C is referred to as the regularized constant and it determines the trade-off
between the empirical risk and the regularization term. In practice, C is selected by
trial and error. To obtain the estimations of w and b, (4) is transformed to the primal
function given by (5) by introducing the positive slack variables and ξi and ξ∗

i as
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Fig. 5 Architecture of SVM for rock depth prediction

follows

Minimize C

m∑

i=1

(ξi + ξ∗
i ) + 1

2
‖w‖2

Subjected to yi − f (xi;w) ≤ ε + ξi

f (xi;w) − yi ≤ ε + ξ∗
i

ξi , ξ
∗
i ≥ 0, i = 1, . . . ,m.

(5)

This optimization problem can be transformed into a quadratic programming problem
(Vapnik 1998) and its solution is given by

f (x) =
nsv∑

i=1

(αi − α∗
i )K(xi, x)

subjected to 0 ≤ α∗
i ≤ C, 0 ≤ αi ≤ C,

(6)

where nsv is the number of Support Vectors (SV) and the kernel function

K(x,xi) =
m∑

i=1

Φj(x)Φj (xi). (7)

Figure 5 shows a typical architecture of SVM for d prediction.
The main scope of this work is to implement above methodology to study the spa-

tial variability d in the subsurface of Bangalore. For predicting d in a given space, the
two input variables (x, y; where x and y are the coordinates of borehole in Bangalore)
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are used for the SVM model in this study. The only output is d . In SVM analysis, nor-
malization of the data is very important. There are many ways of normalizing data,
but the method used in this analysis is normalizing the data against their maximum
values (Sincero 2003). In carrying out the formulation, the data has been divided into
two sub-sets, such as

(a) A training dataset: This is required to construct the model. In this study, 457 out
of the 652 d values are considered as training dataset.

(b) A testing dataset: This is required to estimate the model performance. In this
study, the remaining 195 data is considered as testing dataset.

The generalization performance of SVM depends on a good setting of parameters:
C, ε, and the kernel type, and corresponding kernel parameters. The selection of the
kernel function and corresponding parameters is very important because they define
the distribution of the training set samples in the high dimensional feature space. To
train the SVM model, the Gaussian kernel function has been used. In training process,
C, ε, and other kernel specific parameters have been chosen by a trial-and-error ap-
proach. The other methods are also available in the literature (Kanevski and Maignan
2004). Different combinations of C and ε values are tried to yield the best perfor-
mance on training data. Using a low value of C could result in fewer penalties to
errors. This allows the minimization of margin with errors, thus higher generaliza-
tion ability. On the other hand, a large C assigns higher penalties to errors so that the
regression is trained to minimize error with lower generalization. If C goes to infi-
nitely large, SVM would not allow the occurrence of any error and result in a complex
model, whereas when C goes to zero; the result would tolerate a large amount of er-
rors and the model would be less complex. In the present study, training and testing
of SVM has been carried out by using MATLAB (MathWork Inc. 1999).

4 Relevance Vector Machine Model

Tipping (2000) proposed the RVM to recast the main ideas behind support vector
machine (SVM) in a Bayesian context, and using mechanisms similar to Gaussian
processes. A brief review of Tipping’s paper is presented here for those unfamiliar
with the work. The RVM model seeks to forecast y for any quarry x according to y =
f (x,w) + εn, where the error term εn = N(0, σ 2) is a zero-mean Gaussian process
and w is a vector of weights. The likelihood of the complete data set can be written
as

p
(
y/w,σ 2) = (

2πσ 2)−N/2 exp

{
− 1

2σ 2
‖y − Φw‖2

}
, (8)

where Φ(xi) = [1,K(xi, x1),K(xi, x2), . . . ,K(xi, xN)]T .
Without imposing the hyperparameters on the weights, w, the maximum likelihood

of (1) will suffer from sever overfitting. Therefore, Tipping (2001) recommended im-
position of some prior constraints, w, by adding a complexity penalty to the likeli-
hood or the error function. An explicit zero-mean Gaussian prior probability distrib-
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ution over the weights, w with diagonal covariance of α is proposed as follows

p(w/α) =
N∏

i=0

N
(
wi/0, α−1

i

)
, (9)

with α a vector of N + 1 hyperparameters. Consequently, using Bayes rule, the pos-
terior over all unknowns could be computed given the defined noninformative prior
distribution

p
(
w,α,σ 2/y

) = p(y/w,α,σ 2)p(w,α,σ )∫
p(y/w,α,σ 2)p(w,α,σ 2) dw dα dσ 2

. (10)

Full analytical solution of this integral (3) is obdurate. Thus, decomposition of the
posterior according to p(w,α,σ 2/y) = p(w/y,α,σ 2)p(α,σ 2/y) is used to facilitate
the solution (Tipping 2001). The posterior distribution over the weights is thus given
by

p
(
w/y,α,σ 2) = p(y/w,σ 2)p(w/α)

p(y/α,σ 2)

= (2π)−(N+1)/2|Σ |−1/2 exp

{
−1

2
(w − μ)T

−1∑
(w − μ)

}
, (11)

where Σ and μ are posterior covariance and mean, respectively, with A = diag(α0,

α1, . . . , αN). Therefore, learning becomes a search for the hyperparameter posterior
most probable, i.e., the maximization of p(α,σ 2/y) ∝ p(y/α,σ 2)p(α)p(σ 2) with
respect to α and σ 2. For uniform hyperpriors over α and σ 2, one needs only maximize
the term p(y/α,σ 2)

p
(
y/α,σ 2) =

∫
p
(
y/w,σ 2)p(w/α)dw

=
(

(2π)
−N

2
√|σ 2 + ΦA−1ΦT |

)
exp

{
−1

2
yT

(
σ 2 + ΦA−1ΦT

)−1
y

}
. (12)

Maximization of this quantity is known as the type II maximum likelihood method
(Berger 1985; Wahba 1985) or the evidence for hyperparameter—(MacKay 1992).
Hyperparameter estimation is carried out in iterative formulae, e.g., gradient descent
on the objective function (Tipping 2001). The outcome of this optimization is that
many elements of α go to infinity such that w will have only a few nonzero weights
that will be considered as relevant vectors. The relevance vector can be viewed as
counterparts to support vectors in SVM. Therefore, the resulting model enjoys the
properties of SVM.

The plausibility of the above proposed models is evaluated using d in the subsur-
face of Bangalore. In RVM model, the same training dataset, testing dataset, kernel,
and normalization technique have been used as used in SVM model. The kernel size
value has been chosen by trial and error approach for RVM. In the present study,
training and testing of RVM has been carried out by using MATLAB (MathWork
Inc. 1999).
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Fig. 6 Performance of SVM
model for training dataset using
Gaussian kernel

Fig. 7 Performance of SVM
model for testing dataset using
Gaussian kernel

5 Results and Discussion

The coefficient of correlations (R) is the main criteria that are used to evaluate the
performance of the SVM and RVM models developed in this work. Different combi-
nations of C and ε values are tried to yield the best performance on training data for
SVM model. The design value of C, ε and width of Gaussian kernel (σ ) is 100, 0.001
and 0.09 respectively. Figure 6 shows the performance of the SVM model for training
dataset using Gaussian kernel. In order to evaluate the capabilities of the SVM model,
the model is tested with new d values that are not part of the training dataset. Figure 7
shows the performance of the SVM model for testing dataset using Gaussian kernel.
The number of support vector is 390.

For RVM model, the design value of σ is 0.15. Figure 8 illustrates the performance
of the training dataset using Gaussian kernel, and the results are almost identical to
the original data. In order to evaluate the capabilities of the RVM model, the model
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Fig. 8 Performance of RVM
model for training dataset using
Gaussian kernel

Fig. 9 Performance of RVM
model for testing dataset using
Gaussian kernel

is tested with new d data that are not part of the training dataset. Figure 9 shows
the performance of the RVM model for testing dataset using Gaussian kernel. The
number of relevance vectors is 130. The performance of RVM model is slightly better
than SVM model.

There is a noticeable difference between SVM and RVM in the number of vec-
tors employed in the machine structure. RVM uses lesser relevance vector than the
support vectors in SVM. Generally, good performance in the testing phase is consid-
ered to be evidence of an algorithm’s practical plausibility and provides an evaluation
of the model’s predictive abilities. Both SVM and RVM have better performance in
the training phase than in the testing phase. The loss of performance with respect to
the testing set addresses a machine’s susceptibility to overtraining. There is a very
marginal reduction in performance on the testing dataset (i.e., there is a difference
between machine performance on training and testing) for the SVM as well as RVM
model. This relatively small decline of performance of the SVM and RVM model
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Fig. 10 Spatial variability rock
depth using SVM model

Fig. 11 Spatial variability rock
depth using RVM model

Fig. 12 Support vector and relevance vector in Bangalore City

indicates its ability to avoid overtraining, and hence it can be expected to generalize
better. SVM and RVM provide functional formulations that produce a high degree
of generalization without resorting to the use of a large number of parameters (i.e.,
degrees of freedom). The SVM formulation leads to a sparse model dependent only
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on a subset of training examples and their associated kernel functions (Vapnik 1995).
SVM suffers the necessity to manually tune some parameters and from the selection
of kernel function parameters which also must satisfy Mercer’s condition (Vapnik
1995; Tipping 2001). The results proved that RVM is remarkable in producing an
excellent generalization level while maintaining the sparsest structure. For example,
whereas the RVM model employs 28.44% of the training dataset as relevance vec-
tors; the SVM model utilized 85.33% of the training dataset as support vectors. It is
worth mentioning here that the support vectors in the SVM model represent decision
boundaries, while the RVM relevance vectors represent prototypical examples (Li et
al. 2002). The prototypical examples exhibit the essential features of the information
content of the data, and thus are able to transform the input data into the specified
targets. Figures 10 and 11 shows the spatial variability of reduced level of rock in
Bangalore by SVM and RVM model, respectively. Figure 12 shows the support vec-
tor and relevance vector in Bangalore city.

6 Conclusion

The machine learning induction techniques examined here have shown the ability
to build accurate models with high predictive capabilities for modeling of spatial
variability of reduced levels of rock in the subsurface of Bangalore. On the basis of
the evidence of this experimental research, learning machines appear to be highly
effective. The results of the analyses presented here show distinct performances of
each machine in a supervised-learning task.

In the development of the machine models discussed here, significant effort is re-
quired to build the machine architecture. However, once developed and trained, the
transpired models performed the simulations in a small fraction of the time required
by the physically based model. SVM suffers from as many difficulties as RVM in
finding the optimum solution when the size of the dataset and/or the dimension of
the input vector is large. When SVM is applied for solving large-size problems, the
computation time is prohibitively high. Both SVM and RVM exploit only the set of
observations that contains all the information necessary for defining the final deci-
sion surface. In summary, this paper has surveyed two learning machines that could
be viewed as powerful alternative approaches to a physically based model for the
modeling of spatial variability of reduced level of rock.
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