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Abstract Looking at kriging problems with huge numbers of estimation points and
measurements, computational power and storage capacities often pose heavy limi-
tations to the maximum manageable problem size. In the past, a list of FFT-based
algorithms for matrix operations have been developed. They allow extremely fast
convolution, superposition and inversion of covariance matrices under certain condi-
tions. If adequately used in kriging problems, these algorithms lead to drastic speedup
and reductions in storage requirements without changing the kriging estimator. How-
ever, they require second-order stationary covariance functions, estimation on regular
grids, and the measurements must also form a regular grid. In this study, we show
how to alleviate these rather heavy and many times unrealistic restrictions. Station-
arity can be generalized to intrinsicity and beyond, if decomposing kriging problems
into the sum of a stationary problem and a formally decoupled regression task. We
use universal kriging, because it covers arbitrary forms of unknown drift and all cases
of generalized covariance functions. Even more general, we use an extension to un-
certain rather than unknown drift coefficients. The sampling locations may now be
irregular, but must form a subset of the estimation grid. Finally, we present asymptot-
ically exact but fast approximations to the estimation variance and point out applica-
tion to conditional simulation, cokriging and sequential kriging. The drastic gain in
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computational and storage efficiency is demonstrated in test cases. Especially high-
resolution and data-rich fields such as rainfall interpolation from radar measurements
or seismic or other geophysical inversion can benefit from these improvements.

Keywords Fast Fourier transform · Efficient geostatistical estimation · Spectral
methods · Superfast Toeplitz solver

1 Introduction

Spatially distributed quantities such as rainfall intensities, contaminant concentra-
tions, or hydraulic conductivities are frequently interpolated between scattered mea-
surements by kriging. Large data sets and finely resolved estimation grids (Wesson
and Pegram 2004) can easily exceeds storage capacities and computational power of
desktop computers. Our goal is to make kriging low on memory and computational
costs, in order to evaluate vast kriging problems without reverting to supercomput-
ers. In most forms of kriging, the three computationally most demanding tasks are:
obtaining the kriging weights from an m × m system of equations with the auto-
covariance matrix of m measurements, obtaining the estimate from superposition of
the kriging weights with the cross-covariance between measurements and unknowns,
and repeating this procedure m times to obtain the estimation variance. If the covari-
ance function is second-order stationary and the n points of estimation form a regu-
lar and equispaced grid, the auto-covariance matrix of the unknowns has symmetric
Toeplitz structure. In this case, only its first column has to be stored, reducing stor-
age from n2 to n matrix elements (Zimmerman 1989). FFT-based algorithms allow
to evaluate the product of Toeplitz matrices with vectors (identical to discrete convo-
lution) quickly in O(n logn) operations (van Loan 1992), while standard evaluation
requires O(n2) operations.

The present study will generalize the applicability of FFT-based methods from sta-
tionary to intrinsic cases, i.e., to universal kriging (Kitanidis 1997) extended towards
Bayesian geostatistics (Kitanidis 1986). Universal kriging covers arbitrary forms
of unknown drift: polynomial and other trend functions, zonation models, external
drifts, and any other set of explanatory regression variables. It also covers all cases
described by generalized covariance functions (Kitanidis 1993). For estimation on
fine grids, we choose the dual formulation (function estimate form in Kitanidis 1996,
1997). Coming from cokriging-like cases (Nowak and Cirpka 2004), extended univer-
sal kriging for uncertain prior knowledge on the drift coefficients. We will adopt this
extension because it is most general in treating the drift. A specific case of Bayesian
geostatistics (Kitanidis 1986) accounts for the uncertainty in the definition of the
mean value. It is closely related to the Bayesian kriging idea by Omre (1987), which
allows to include qualified guesses and expert knowledge into the kriging procedure
without introducing artificial data points. The key for FFT-based methods in intrin-
sic problems is a decomposition of universal kriging into a stationary problem and
a coupled regression problem. In the end, we merely evaluate the stationary parts
via FFT, leaving the kriging estimate itself untouched and free of approximations.
Splitting off a stationary part from intrinsic problems bears much resemblance to the
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global neighborhood kriging technique by Davis and Grivet (1984). In contrast to the
current study, however, they did not use the dual formulation. Therefore, they could
not draw on the power of superposition via FFT. Since FFT-PCG solvers had not
been invented at that time, they were limited to much smaller data sets than those tar-
geted here. Their alternative solver for banded covariance matrices required a regular
grid and a defined range of the covariance function. Finally, they did not generalize
towards prior knowledge on the drift coefficients.

Many of our ideas extend the work of Pegram (2004). For the case of simple and
ordinary kriging (known and unknown constant mean, respectively), he traced the
superposition in task (2) back to convolution and executed it via FFT. This reduces
computational costs from O(mn) to O(n logn) and is a great advantage for medium
and large numbers of measurements (m > log2 n). Contrary to the methods suggested
in the current study, his method does not allow for arbitrary intrinsic cases. A more
fundamental problem is to solving the kriging system of equations. Nearest neighbor-
hood kriging avoids large systems by only considering measurements within a certain
radius around each point of estimation. This requires setting up and solving as many
as n individual systems, which may be very time consuming (Davis and Grivet 1984;
Kitanidis 1997), and implicitly assumes a moving-average type of mean. The largest
drawbacks of working with neighborhoods are spurious discontinuities in the esti-
mate (Davis and Culhane 1984; Davis and Grivet 1984) and the inability to account
for boundary conditions. A more sophisticated reduction of the kriging system is se-
quential kriging (Vargas-Guzmán and Yeh 1999). Splitting the data into convenient
subsets, this approach is quite promising if the main problem is the size m of the data
set. Unfortunately, in the current form, it occupies memory of O(n2) for intermediate
conditional covariance matrices, impossible for large n. We reduce this to O(mn) and
show how to use FFT-based methods for the sequential case.

If the measurements form a regular grid, the universal kriging system contains
a symmetric and positive-definite Toeplitz matrix. Solving such systems has been
studied extensively in the signal processing community (Gallivan et al. 1996; Kailath
and Sayed 1999; Van Barel et al. 2001). The iterative Toeplitz solver that we find the
most promising within the kriging context is the FFT-based Preconditioned Conjugate
Gradient (FFT-PCG) method with circulant preconditioners (Chan and Ng 1996). It
solves the kriging system with computational effort of O(m logm) instead of O(m3).
If the measurements are irregularly spaced, the Toeplitz structure within the kriging
system is lost, and the existing FFT-PCG is not applicable. Pegram (2004) solves the
m × m kriging equations using FFT-based iterative constrained deconvolution (ICD)
in O(n logn) while storing O(n) elements instead of O(m2), a crucial advantage
for large data sets. ICD allows the measurements to be irregularly scattered if they
lie on the regular grid estimation. We will upgrade this by combining it with the
FFT-PCG algorithm. Also, Pegram (2004) neglects correlation among the data when
estimating the global mean parameter, and we will avoid this approximation. The
remaining problem is that both tasks need to be performed m times in order to obtain
the estimation variance. We show how to improve this by approximations in several
levels of trade-off versus accuracy. These approximations are asymptotically exact
for certain special cases. Again, one of our suggestions is an improved version of an
approximation already used by Pegram (2004), assuming measurements to be almost
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uncorrelated. Finally, we demonstrate how these methods allow for handling huge
kriging problems even on ordinary desktop computers in a series of performance
tests. Application to related problems such as generating conditional realizations,
sequential kriging and cokriging is pointed out. Ensembles of conditional realizations
can be used to evaluate the estimation variance in case none of our approximations
apply.

2 Extended Universal Kriging

The following briefly summarizes universal kriging, extended to prior knowledge on
the drift coefficients by Nowak and Cirpka (2004). The extension helps to address the
drift in a most generalized fashion. The choice of universal kriging is the key step for
transferring FFT-based methods to intrinsic cases.

Let s be an n × 1 multi-Gaussian vector of unknowns (also called target point
values in regression-like problems). It has expectation E[s|β] = Xβ and second-
order stationary covariance Cov[s|β] = Qss. X denotes the [n × p] matrix of discrete
drift functions with its [p × 1] vector β of drift coefficients. Both Qss and X must
be known a priori and constitute the geostatistical model assumption. By adequate
choice of X, all intrinsic cases can be addressed and decomposed into a second-order
stationary part plus a regression-like drift problem (Kitanidis 1997, p. 125 ff.). In the
extended case, β is again Gaussian with prior mean β∗ and covariance Qββ instead
of being entirely unknown. The special case of unknown drift is recovered by setting
Q−1

ββ = 0. The covariance of s for uncertain β is Gss = Qss + XQββXT . For poly-
nomial trends with unknown coefficients, Gss is known as generalized covariance
(Kitanidis 1993). Consider further Y an m× 1 vector of measurements (control point
values in regression-like problems). The corresponding cross- and auto-covariance
matrices are denoted by Qsy and Qyy, respectively, sized n × m and m × m. If mea-
surements are subject to error, an error covariance matrix R is added to Qyy, typically
a scalar matrix (i.e., a diagonal matrix with a constant term on the diagonal) when as-
suming homoscedasticity. In this notation, the kriging estimate ŝ is given by

ŝ =
[

Qys
XT

]T [
ξ

β̂

]
. (1)

The m × 1 vector of kriging weights ξ (reciprocal data in Pegram 2004 and the
p × 1 vector of trend coefficients β̂ are taken from the solution of the following
kriging system, Nowak and Cirpka 2004)

[
Qyy x
xT −Q−1

ββ

][
ξ

β̂

]
=

[
Y

−Q−1
βββ∗

]
, (2)

where the drift functions X evaluated at the locations of measurements are denoted
by the smaller m × p matrix x. The associated estimation variance σ̂ is the n × 1
vector on the diagonal of the conditional covariance matrix

Qss|y = Qss −
[

Qys
XT

]T [
Qyy x
xT −Q−1

ββ

]−1 [
Qys
XT

]
. (3)



Math Geosci (2009) 41: 509–533 513

The conditional distribution of β is again Gaussian with mean E[β|s] = β̂ from (2)
and covariance Qββ|s from (15). Equations (1) and (2) constitute a best linear unbi-
ased estimator and were originally derived from Bayesian principles. Qss can be seen
as the covariance matrix of regression error, and Qss|y as that of the kriging error. The
expensive tasks mentioned in the introduction are solving (2) to obtain the kriging
weights, performing the superposition Qsyξ in (1) to evaluate the estimate, and eval-
uating m + p equivalents to task one and two to obtain the estimation variance from
the diagonal of (3).

The latter fact is easily demonstrated by a small but insightful rearrangement of (3)

Qss|y = Qss −
([

Qys
XT

]T [
Qyy x
xT −Q−1

ββ

]−1

Im+p

︸ ︷︷ ︸
�

)

︸ ︷︷ ︸
S

[
Qys
XT

]
. (4)

Here, we inserted the (m + p) × (m + p) identity matrix Im+p without changing
the equation. With analogy to (2), � can be seen as a set of (m + p) kriging weight
vectors [ξ i;βi] obtained from the (m + p) unit vectors ei that constitute I(m+p). By
analogy to (1), this makes the matrix S a set of (m + p) kriging estimates si , each
corresponding to a unit data vector ei .

3 Interface to FFT-based Methods

The targeted FFT-based methods handle Qss and Qyy extremely efficiently in terms
both of storage and computational effort, if Qss is stationary. Handling intrinsic sit-
uations while assuring stationary Qss has been discussed above. Now we will relate
as many terms as possible to Qss and decouple the regression-like drift terms from
the stationary terms in each individual step. To install a formal notational framework,
consider a m × n sampling matrix H defined as

Hi,j =
{

1 if xi = xj ,

0 otherwise,
(5)

where xi are the coordinates of the ith measurement location and xj the coordinates
of the j th estimation point. H resembles the constraint operator used by Pegram
(2004) or the missing data indicator in Fuentes (2007). These two studies, however,
target a regular grid of data with a few missing values. In quasi-linear geostatistical
estimation techniques with similarity to cokriging, H has widely been used as sensi-
tivity matrix (Kitanidis and Vomvoris 1983; Kitanidis 1995). In fact, the definitions
of H as indicator, discrete sampling array or sensitivity matrix are identical in our
case.

Written as formal matrix operations for arbitrary vectors a and A (sized m×1 and
n × 1), sampling and its reverse operation, i.e., injection, are
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sampling: am×1 = HAn×1, (6)

injection: An×1 = HT am×1. (7)

In practice, sampling is picking specific values a from the larger vector A. An ex-
ample at hand is that x is formally given by HX, even if it would not be evaluated
this way in practice. Injection is writing a into a larger vector of initial zeros A at
the sampling positions. When interpreting H as a sensitivity matrix for linear error
propagation (Schweppe 1973), the following identities hold

Qys = HQss, (8)

Qsy = QssHT , (9)

Qyy = HQssHT + R, (10)

which express all appearing covariances via Qss. This notation is common practice in
linearized geostatistical inversion. Note that the appearance of Qss in the above equa-
tions is only necessary in derivations. In practice, the sampling/injection operation
will be applied to vectors, whenever a vector occurs next to H in equations. When
H appears next to Qss, this requires to simply evaluate a certain column of Qss. As
explained in the following sections, all columns of Qss are always derived from its
first column.

3.1 Evaluating the Estimator

It is well-known that the term Qsyξ in (1) is a superposition of ξ with the covariance
function. Within the current notation

Qsyξ = QssHT ξ = Qss
(
HT ξ

)
︸ ︷︷ ︸

�

. (11)

If first injecting the m × 1 vector ξ into an n × 1 vector �, the remaining matrix–
vector product Qss� resembles a convolution of � and qss,e (Pegram 2004) and is
readily evaluated via FFT in O (n logn) operations instead of O (mn). The computa-
tional advantage even for small data sets will be demonstrated later on.

If Qyy is itself a Toeplitz matrix because the measurement locations form a regular
grid, (8) is not required, but FFT-based techniques can be applied to Qyy directly. For
irregularly scattered data, however, (8) provides the basis for the ICD algorithm used
by Pegram (2004), and for the much faster FFT-based PCG for irregularly spaced
data which we will introduce later on.

Assuming for the moment that solving a system with Qyy is fast, it still needs
to be decoupled from the remaining blocks in (2). First, we introduce two auxiliary
variables

y = Qyy
−1Y, (12)

z = Qyy
−1x. (13)
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Note that this is identical to the decoupling used by Davis and Grivet (1984) for
similar purposes. Then, we partition the inverse of the kriging matrix in (2) as follows
(Kitanidis 1996; Nowak and Cirpka 2004),

[
Qyy HX

XT HT −Q−1
ββ

]−1

=
[

Pyy Pyβ

Pβy Pββ

]
, (14)

express the sub-matrices P according to Schweppe (1973), and immediately simplify
using our auxiliary quantities

Pββ = −(
xT z + Q−1

ββ

)−1 = −Qββ|s, (15)

Pβy = PT
yβ = −PββzT , (16)

Pyy = Qyy
−1 + zPββzT . (17)

This yields a partitioned form of the coefficient vector, similar to the form used by
Nowak and Cirpka (2004)

β̂ = −Pββ

(
zT Y + Q−1

βββ∗)
, (18)

ξ = y − zβ̂. (19)

This formulation decouples the stationary problem (19) from the previously coupled
regression task (18).

In this decoupled form, the entire estimator requires to

1. Compute y and z ((12) and (13)) using the most appropriate solver.
2. Evaluate the partitioned solution vector (18).
3. Evaluate the estimate (1), using superposition via FFT (11).

Step 1 requires 1 + p solutions of a system with coefficient matrix Qyy. Computa-
tional costs will be as low as O(m logm) or O(n logn), depending on whether the
measurements lie on a regular grid or not. Step 2 involves only smaller operations
of O(mp) and O(p3) to treat the rank-p perturbations in the structure of the kriging
matrix. Step 3 requires one superposition via FFT and a simple n × p product, with
computational costs as low as O(n logn + np).

3.2 Evaluating the Estimation Variance

An n × n dyadic matrix with rank m is defined by the matrix product ABT , where A
and B are n × m matrices. Its diagonal can be efficiently evaluated using

diag
(
A(n×m)BT

(n×m)

) =
m∑

i=1

(ai ◦ bi ), (20)

where ai and bi are the ith columns of A and B, respectively, and [] ◦ [] denotes the
element-wise vector product. Since (4) contains such a dyadic product, our suggestion
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to efficiently evaluate the estimation variance σ̂ 2 is

σ̂ 2 = diag(Qss|y) = σ 2 −
m+p∑
i=1

si ◦ [Qsy X ]i (21)

with the following steps:

1. Initialize σ̂ 2 = σ 2, where σ 2 = σ 2I and σ 2 is the field variance of s that populates
the diagonal of Qss.

2. Evaluate the (m + p) unit estimators si by using the (m + p) unit vectors ei as
data vector for kriging.

3. Perform the Hadamard product of each unit estimator si with the ith column of
[Qsy, X] and subtract from σ̂ 2.

In total, this constitutes an effort of (m + p) kriging estimators, (m + p) Hadamard
products and summation of (m + p) vectors, each sized n × 1, resulting in asymp-
totic complexity of O(mn log2 n + m2 log2 m) or O(2mn log2 n) for p � m, again
depending on whether the measurements lie on a regular grid or not.

4 A Review and Extension of FFT-based Algorithms

In this section, we summarize an existing collection of FFT-based methods to perform
matrix operations for Toeplitz matrices at speed, and extend it by an FFT-based solver
for irregular-grid data. For finely resolved kriging problems in larger domains, the
unknowns s are typically discretized on a regular and equispaced grid. Equispaced
discretization and second order stationarity are sufficient to make Qss a symmetric
Toeplitz matrix. In the d-dimensional case, the structure is called symmetric level-
d block-Toeplitz (Golub and van Loan 1996). Within Toeplitz matrices, the entries
along each diagonal have the same value. For level-d block-Toeplitz matrices, the
same pattern applies to nested block structures. In the following, symmetric level-d
block-structure is always included implicitly.

Regardless of the dimensionality d , the first column qss of the Toeplitz matrix Qss
contains all values that ever appear, reducing storage from n2 to n elements (Zim-
merman 1989). Many efficient algorithms have been found that work on qss only
(Kailath and Sayed 1995). An important property is that a Toeplitz-vector product is
a discrete convolution of the vector with the first row (or column in the symmetric
case) of the matrix. Any Toeplitz matrix Qss can be embedded in a larger circulant
matrix Qss,e , again with extension to level-d block structures. Circulant matrices are
Toeplitz matrices with a periodic sequence forming the first row qss,e . They arise, for
example, as covariance matrices in periodic domains. The diagonalization theorem
states that their eigenvalues are the Fourier transform of qss,e (Varga 1954; Barnett
1990, pp. 350–354), paving the way for a plethora of powerful FFT-based methods.
These methods become applicable to Toeplitz matrices when first embedding qss in
a larger vector qss,e for the circulant counterpart, performing the required operations
with the FFT of qss,e , and then extracting (i.e., the reverse of embedding) the result.
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4.1 Embedding and Extraction

The easiest embedding technique is to append the second through the last but one
elements of qss to the end of qss in reverse order. For the d-dimensional case,
this procedure has to be performed on the entire nested block structure. Intu-
itively spoken, complement a finite-domain covariance function to a larger periodic-
domain covariance function with perfect correlation over the period length, as il-
lustrated by Kozintsev (1999) and by Nowak et al. (2003). Specific applications
may allow or require smaller or larger embedding sizes, with details provided
by Newsam and Dietrich (1994), Dietrich and Newsam (1997) and Nowak et al.
(2003). In brief, FFT-based matrix decomposition requires positive definite circu-
lants, FFT-based PCG solvers require non-negativity, and convolution via FFT is
flexible.

Cirpka and Nowak (2004) use a matrix notation for embedding and extraction,
based on the ne × n mapping matrix M

M =
[

In×n

0(ne−n)×n

]
. (22)

Embedding an n × 1 vector x is denoted by xe = Mx, and extracting from an ne × 1
vector xe is denoted by x = MT xe. Extracting a Toeplitz matrix from the embedding
circulant is denoted by

Qss = MT Qss,eM. (23)

In practice, these operations are achieved via zero-padding or disregarding excess
elements in adjacent vectors, and multiplication with Qss,e is a simple convolution
that only requires the first row or column qss,e to be stored. Throughout the remaining
paper, the subscript e denotes embedded vectors and matrices.

4.2 Convolution and Superposition via FFT

Consider a an arbitrary n × 1 vector, Qss a n × n Toeplitz matrix, qss,e the first
column of the embedding circulant matrix, and let F [·] and F −1[·] denote the Fourier
transform and its inverse, respectively. Then, according to van Loan (1992), in the
current notation

Qssa = MT Qss,eMa = MT F −1[F [qss,e] ◦ F [Ma]]. (24)

The Fourier transform is evaluated by the FFT or the FFTW, its extension to arbi-
trary vector length (Cooley and Tukey 1965; Frigo and Johnson 1998). This reduces
computational complexity from O(n2) to O(n logn), and storage requirements from
O(n2) to O(n).

Equation (11) traces superposition back to convolution. Combining with (24)

Qsyξ = MT F −1[F [qss,e] ◦ F
[(

MHT
)
ξ
]]

. (25)

Here, injection (HT )and embedding (M) form one joint operation (MHT ). Stor-
age requirements are O(n) instead of O(nm). At a computational complexity of
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O(n logn), this scheme is obviously faster than direct superposition for m > logn.
Later performance analysis will show a break-even point at very small data sets.

4.3 FFT-based PCG Solver for Toeplitz Systems

Equations (2) and (3) require to solve systems with the m × m matrix Qyy. For
regular-grid data, Qyy is Toeplitz just like Qss, and we suggest the FFT-based Pre-
conditioned Conjugate Gradient (FFT-PCG) solver described below. Other Toeplitz
solvers, less compatible with the current FFT-based framework but almost equal
in speed, include look-ahead Schur algorithms and algorithms based on gener-
alized displacement structures (Gallivan et al. 1996; Kailath and Sayed 1999;
Van Barel et al. 2001). The preconditioned conjugate gradient (PCG) method (Shew-
chuk 1994) is an iterative solver for linear systems Ax = b. Its convergence depends
on the number of distinct eigenvalues of A. Given a preconditioner V that clusters the
eigenvalues of V−1A around unity, the PCG method converges in only a few steps. In
the FFT-PCG algorithm, A = Qyy is Toeplitz and V is circulant (Chan and Ng 1996).
By virtue of the diagonalization theorem, applying the circulant preconditioner V is
a deconvolution via FFT (Good 1950; Rino 1970). Since all matrix operations are ac-
complished via FFT, the FFT-PCG takes O(n log2 n) overall operations while storing
O(2n) matrix elements. Chan and Ng (1996) compare different circulant precon-
ditioners. We suggest and use an enlarged version of the preconditioner by Strang
(1986) that uses V = Qyy,e already used for the superposition task, cutting storage to
O(n). The resulting algorithm is provided in the Appendix as special case.

4.4 Regularization of Poorly Conditioned Kriging Systems

The poor condition number of covariance matrices sampled on fine grids has been
investigated in depth by Ababou et al. (1994). Poor conditions lead to numerical
artifacts in the kriging estimate. Dietrich and Newsam (1989) argue that the measure-
ment error matrix R regularizes Qyy by amplifying the diagonal, but that it will in-
duce a loss of information if merely added for regularization. Their idea is essentially
identical to Tikhonov regularization or ridge regression. Wesson and Pegram (2004)
successfully used a singular value decomposition of Qyy to suppress numerical arti-
facts. Similar problems arise in the choice of preconditioners in iterative solvers. For
poor-conditioned Toeplitz systems, the preconditioner V itself is poorly conditioned,
leading to divergence or numerical artifacts. Trapp (1973) discussed generalized in-
verses of circulants which could replace V−1, but we encountered poor convergence
with this idea in preliminary studies. Nowak (2005) added a regularization term to
the diagonal of V (Appendix), obtaining reliable and fast convergence. Because only
the preconditioner is modified, the original system remains unaffected, and no loss
of information occurs. We suggest to use this form of regularization whenever neces-
sary.

4.5 Extended FFT-PCG for Irregular Grids

For irregularly scattered data, Qyy has no specific structure. For this case, Pegram
(2004) solved (2) by Iterative Constrained Deconvolution (ICD). ICD resembles a
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Steepest Descent (SD) algorithm with ξ i+1 = ξ i +α(Y − Qyyξ i ) and a heuristic step
size coefficient α. Qyyξ i is expressed by sampling/injection

Qyyξ i = H
[
Qss

(
HT ξ i

)]
(26)

in which QssHT ξ is evaluated by superposition via FFT. Basically, this relates Qyy
to the Toeplitz matrix Qss via (8), and then links it to the embedding circulant Qss,e

Qyy = (
HMT

)
(Qss,e + Re)

(
MHT

)
, (27)

where Re is a diagonal matrix of homoscedastic measurement error, fitting in size
with Qss,e . Again, only the first column of (Qss,e + Re) needs to be stored and
processed.

We seized this idea and placed it within the FFT-PCG framework. This leads to
a new FFT-PCG solver for irregularly spaced data (Appendix). Later performance
analysis will prove it to be much more efficient than ICD. In contrast to the spectral
technique by Fuentes (2007) to approximate the likelihood of irregularly spaced data
sets, our extended FFT-PCG solver is exact.

5 Efficient Approximations to the Estimation Variance

Equation (4) demonstrated that the exact estimation variance requires (m + p) evalu-
ations of the Kriging estimator, making it a strong limitation on the side of computa-
tional costs. In this section, we provide several asymptotically exact approximations
to alleviate this restriction. If none of these approximation seems adequate, the esti-
mation variance may be evaluated from conditional simulation, as will be discussed
in a later section. For the following analysis, we again decouple the stationary ran-
dom part and the regression in (3) by inserting (12) to (17), then apply (20) and obtain
after some rearrangement

σ̂ 2 = σ 2 −
m∑

i=1

[
QsyQyy

−1]
i
◦ Qsy,i −

p∑
i=1

[QsyzPββ ]i ◦ [Qsyz]i

+ 2
p∑

i=1

[QsyzPββ ]i ◦ Xi −
p∑

i=1

[XPββ ]i ◦ Xi . (28)

The first term originates from kriging with known mean, and involves m simple krig-
ing unit estimators similar to those defined in (4). Hence, it has well-known proper-
ties. The following approximations will focus on the asymptotic behavior of this first
term under specific conditions. All other terms relate to the uncertainty in estimating
the drift coefficients and have negligible computational complexity over that of the
first term. Therefore, we will not simplify them any further. Evaluating the n×p ma-
trix ζ = Qsyz requires p superpositions via FFT of O(n log2 n) each. The remaining
steps are O(np2) to evaluate ζPββ and 3p Hadamard products.
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5.1 Single-Point Approximation

Pegram (2004) suggested a single-point approximation to the estimation variance,
restricted to zero measurement error and to either simple or ordinary kriging. Corre-
lation between measurements is neglected to reduce the computational complexity by
one order in m. In the current study, the context with (28) allows transfer to universal
kriging, and we allow for non-zero R = σ 2

errI:

1. For vanishing correlation among the measurements, Qyy approaches a scalar ma-
trix Qyy ≈ (σ 2 + σ 2

err)I. Then

m∑
i=1

[
QsyQyy

−1]
i
◦ Qsy,i ≈ 1

σ 2 + σ 2
err

m∑
i=1

Qsy,i ◦ Qsy,i . (29)

2. After decoupling the regression terms, the estimation variance of simple kriging
is supposed to equal σ 2

err at the measurement locations for vanishing mutual cor-
relation. If the correlation among measurements is too large for the above simpli-
fication, this condition may still be enforced by requiring the first term to equal
σ 2 − σ 2

err at the locations of measurements. This is achieved by solving the sub-
sidiary kriging problem

m∑
i=1

[
QsyQyy

−1]
i
◦ Qsy,i ≈ Q∗

sy(Q
∗
yy)

−1um

(
σ 2 − σ 2

err

)
, (30)

where um is a m × 1 vector of ones used as data vector in the subsidiary problem,
Qss

∗ = σ−2Qss ◦ Qss, Q∗
sy = Qss

∗HT , and Qyy
∗ = HQss

∗HT .

5.2 Infinite Regular Grid Approximation

If the grid of measurements is regular and equispaced and its extent is much larger
than the range of correlation, the number of mutually correlated measurements is
mostly constant, and only differs within a thin boundary area. The inner section of
the measurement behaves statistically stationary. One may neglect these boundary
effects and apply the correlation pattern of one single representative measurement
point in the center of the domain to all others by shifting

QsyQyy
−1 ≈ shiftm[Qsyξ r ]. (31)

The term inside the square brackets is a n × 1 zero-mean unit estimator sr evaluated
for a unit measurement vector er as defined below (4), with ξ r being the known-mean
reciprocal data for er . The unit data vector er = ei is chosen such that the measure-
ment location xi is a representative one in the inner section of the domain. Shiftm[·]
denotes an n×m matrix obtained from concatenating this representative unit estima-
tor (RUE) si for m times to obtain a n × m matrix from individual n × 1 columns,
each time shifted to the respective measurement location xi , i = 1, . . . ,m. The shift-
ing operation is the same one would perform on an integral kernel in superposition.
The RUE needs to be larger than the actual domain so that it covers the entire domain
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wherever it is shifted to. The enlarged sr is obtained by evaluating Qsyξ c via (25) and
omitting the final extraction step denoted by M. Since measurements in the interior
convey less independent information than those at the boundaries, this approximation
yields a conservative upper bound of the estimation variance. It is exact for the case
of an infinite (or periodic) grid of measurements. The remaining complexity is again
reduced by one order in m.

5.3 Hybrid Regular Grid Approximation

In the above approximation, the largest errors occur along the boundaries of the mea-
surement grid. The corresponding unit estimators si may be evaluated separately in
their exact form, whereas the bulk inner part of the unit estimators are approximated
by shifting the RUE. A user-defined break criterion for the observed difference be-
tween RUE and exact unit estimator can be used to determine the affected boundary
zone.

5.4 Infinite Regular Grid Average

Another simplifying option is to consider the spatial average of the estimation vari-
ance. This is acceptable for relatively fine and regular measurement grids. Although
a seemingly crude approximation, its high relevance lies in equivalence to the A-
criterion of optimal design (Pukelsheim 2006; Müller 2007). It is achieved by av-
eraging the diagonal of Qss|y. A related semi-analytical solution for the averaged
conditional covariance of ordinary kriging has been developed by Cirpka and Nowak
(2003). We will translate the formalism into a current, more general context. Due to
averaging, the diagonals diag(·) in (20) and (21) become traces Tr(·) divided by n.
Traces are invariant with respect to cyclic permutations, so that the averaged equiva-
lent of (28) is

σ̂ 2 = σ 2 − 1

n
Tr

(
Qyy

−1QysQsy
) − 1

n
Tr

(
PββzT QysQsyz

)

+ 2

n
Tr

(
PββXT Qsyz

) − 1

n
Tr

(
PββXT X

)
. (32)

In this form, all traces but the first have boiled down to traces of p × p matrices.
If we again evaluate ζ = Qsyz via FFT, these small matrices are obtained from 3p

scalar products and are computationally cheap. For small numbers of measurements,
the first trace is best evaluated as

1

n
Tr

(
Qyy

−1QysQsy
) = 1

n

m∑
i=1

[
MHT yi

]T Qss,eMMT Qss,e
[
MhT

i

]
, (33)

where yi is the solution of Qyyyi = ei and hi is the ith row of H, the square brackets
indicate the optimal sequence of injections and embeddings, and a total of two con-
volutions with intermediate deletion of excessive elements (MMT ) is necessary for
each i. This procedure may quickly explode in computational effort for larger m. If
the measurement grid is sufficiently large or even periodic, we may approximate the
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terms for all i by one representative one with a unit measurement ei in the center of
the domain and multiply the result by m. This is equivalent to approximation of all
matrices as circulants, where trace of the resulting circulant is quite trivially given by
m times the first element (Davis 1979).

6 Performance Tests

In this section, we demonstrate the performance of the described FFT-based methods
in comparison to standard methods. Our performance analysis was carried out on a
contemporary desktop computer (i386, 2.8 GHz Intel Xeon dual-core, 2 GB RAM,
Suse Linux 9.2) purchased in 2004. All methods were implemented in MATLAB
(Release 2006b). MATLAB includes a standard implementation of the FFTW (Frigo
and Johnson 1998) and the Basic Linear Algebra Subprograms (BLAS). As all sig-
nificant operations are performed by these libraries, the performance compares to an
implementation in C or C++. For solving dense systems conventionally, we use the
MATLAB built-in (C/C++) Gaussian elimination. In order to keep the FFTW al-
gorithm efficient for arbitrary domain sizes, we implemented a small algorithm that
chooses embedding sizes with prime factors of 2, 3, 5, and 7 only. The required rela-
tive error norm for all iterative solvers is set to 10−10.

In all performance tests, we used random measurement data and varied both the
number n of estimation points and the number m of measurements. We assumed
an uncertain constant mean value, so that the number p of trend coefficients is one
and X is a n × 1 vector of ones. The individual test series are composed of n = 2k ,
k = 2, . . . ,24 estimation points and ratios between n and the number m of estima-
tion points given by n/m = 2�, � = 2, . . . ,14. All computations above 105s (approx.
1 day) were stopped and their CPU times estimated by extrapolation of fitted com-
plexity models.

6.1 Individual Operations

Before demonstrating the overall performance of kriging evaluated with FFT-based
algorithms, we provide a summary of performance tests for the individual FFT-based
algorithms that have been published elsewhere, e.g., in Nowak et al. (2003) and
Nowak (2005), plus tests for our extended FFT-PCG solver for irregular-grid data.
Convolution via FFT ((24), solid line in Fig. 1) is faster than conventional evalua-
tion of Qssx (bold dash-dotted line) by three orders of magnitude over large ranges
of problem size n. For conventional evaluation, n2 elements need to be stored, lead-
ing to very early memory overflow (X-marks). A reduction in storage to O(n) may
also be achieved when only storing the integral kernel represented by qss,e which is
then shifted and successively added n times. This technique remedies the memory
problem, but remains at a computational complexity of O(n2), represented by the
straight-line extension of the standard method.

Superposition via FFT is compared to conventional superposition for different val-
ues of n/m (also Fig. 1). In spite of its overhead and independence of m, the FFT-
based algorithm is faster than the standard method in the entire explored range. The
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Fig. 1 Convolution/Superposition: CPU time (left) and storage requirements (right) for conventional dis-
crete superposition versus superposition via FFT for different problem sizes n and numbers of super-
imposed terms m. Lines: fitted complexity models. X-Circles: memory overflow. Solid line: superposi-
tion/convolution via FFT (same for both tasks). Dashed lines: superposition via brute-force matrix product
at different ratios n/m. Dash-dotted line: convolution via matrix product (n = m). Lines exceeding point
of memory overflow: superposition/convolution via successive addition of shifted kernel function. Lower
line ends: minimum of m = 1 superimposed term

largest speedup of nearly three orders of magnitude is achieved for high numbers of
m relative to n.

For regular grids of measurements, comparing standard Gaussian elimination ver-
sus solution of Toeplitz systems by FFT-PCG (Fig. 2) shows a break-even point at
m ≈ 300. Still below m = 1000, FFT-PCG is faster by more than an order of mag-
nitude. At m = 10000, the standard solver experienced memory overflow, whereas
FFT-PCG worked up to m = 1.6 × 107 at CPU times below ten minutes.

Exceeding the analyses published elsewhere, we also implemented other iterative
solvers that can use FFT-based convolution to handle the Toeplitz matrix (also Fig. 2).
The ICD algorithm by Pegram (2004) can outrun steepest descent (e.g., Press et al.
1992) if the empirical α is chosen well. The largest individual speedup is achieved by
preconditioning, which requires more effort per iteration step but drastically reduces
the number of iterations. The conjugation of gradients increases the effort per step
once more, but the net effect of even fewer iteration steps prevails.

Testing our new extension of FFT-PCG to irregular grids for different problem
size m and sizes of the finer regular grid n reveals that using the finer underlying
grid can introduce a substantial overhead (Fig. 3). Therefore, the standard solver
is faster than the FFT-PCG in the majority of cases. This affects the methods if a
high spatial accuracy of measurement locations on the finer grid is desired, but is
insignificant if used to fill in missing data on a grid which is otherwise regular (e.g.,
Wesson and Pegram 2004). The overwhelming advantage of our extended FFT-PCG
are the reduced storage requirements in solving much larger systems of equations.
On our reference computer, the limiting size of the underlying regular grid was n =
1.6 × 107. Our extended FFT-PCG solver outperforms the ICD algorithm by a factor
of roughly 10.
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Fig. 2 Solvers for regular measurement grids: CPU time (left) and storage requirements (right) of dif-
ferent solution techniques for Toeplitz systems for different problem sizes m. Lines: fitted complexity
models. X-Circles: memory overflow. FFT-PCG: FFT-based PCG solver. FFT-PSD: FFT-based Precon-
ditioned Steepest Descent. FFT-ICD: Iterative Constrained Deconvolution. FFT-SD: FFT-based Steepest
Descent. STD-GE: Standard Gaussian Elimination

Fig. 3 Extension to irregular measurement grids: CPU time (left) and storage requirements (right) of dif-
ferent solution techniques for nearly Toeplitz systems for different problem sizes m and different sizes n

of the embedding Toeplitz matrix. Lines: fitted complexity models. X-Circles: memory overflow. PCG#:
FFT-based PCG solver with # times larger regular grid. ICD#: FFT-based Iterative Constrained Deconvo-
lution with # times larger regular grid. GE: Standard Gaussian Elimination

6.2 Kriging with Conventional Solver

Our base case for comparison is ordinary kriging with uncertain mean on a regu-
lar estimation grid with irregularly scattered measurements (Fig. 4, solid lines). The
standard implementation includes Gaussian elimination for solving (2), conventional
superposition via successive summation to evaluate Qsyξ , and the exact estimation
variance. Storage of the kriging matrix (mainly Qyy) with O(m2) is the effective lim-
itation to the admissible problem size (X-marks), so that CPU time never rose above
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Fig. 4 Performance of Kriging with conventional solver: CPU time (left) and storage requirements (right)
for different numbers n of estimation points and different numbers m of measurements. Lines: fitted com-
plexity models. X-Circles: memory overflow. Solid lines: using conventional solver and conventional su-
perposition. Dashed lines: using conventional solver and superposition via FFT

one day. The one-point approximation of the estimation variance (not shown here)
would have reduced CPU times by a factor of roughly m. When plugging in superpo-
sition via FFT, the asymptotic order of complexity is still dominated by the solution
of the Kriging system, but speedup factors of up to 50 occur for large m (small n/m

in Fig. 4, dashed lines). Superposition by successive summation, as used in the base
case, has storage requirements for Qsy of only O(n). Therefore, the storage require-
ments still coincide with the base case. For the brute-force approach of superposition,
with storage requirements of O(nm), limitations by memory would have been much
more severe.

6.3 Kriging with FFT-based Solvers

Using the FFT-PCG solver instead of Gaussian elimination, combined with super-
position via FFT radically cancels the restriction by storage requirements related to
O(m2) (Fig. 5, solid lines). Now, only the grid of estimation limits the admissible
problem size to n = 1.6 × 107 on our machine. For small m, it is more efficient to
revert to conventional Gaussian elimination (Fig. 4, dashed lines). Approximations to
the estimation variance can drastically reduce the overall computational effort by an
approximate factor of m (Fig. 5, dashed lines for the one-point approximation), with
speedups of up to five orders of magnitude for large numbers of measurements (small
n/m). The greatest advantage can be made if the measurements are on a regular
grid (Fig. 6, solid lines), because the FFT-PCG solver for regular-grid data outruns
Gaussian elimination for any problem size and permits vast numbers of measure-
ments. The CPU times are smaller by about one order of magnitude over a large
range of problem sizes than for the same number of irregular-grid data. Especially
for large problems, the infinite-grid approximation of the estimation variance (Fig. 6,
dashed lines) is likely to be sufficiently accurate for many purposes, associated with
computational speedup of about 5 orders of magnitude compared to evaluating the
exact estimation variance.
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Fig. 5 Performance of Kriging with FFT-based PCG solver for irregularly scattered measurements: CPU
time (left) and storage requirements (right) for different numbers n of estimation points and different
numbers m of measurements. Lines: fitted complexity models. X-Circles: memory overflow. Solid lines:
exact estimation variance. Dashed lines: one-point approximation

Fig. 6 Performance of Kriging with FFT-based PCG-solver with measurements on regular grids: CPU
time (left) and storage requirements (right) for different numbers n of estimation points and different
numbers m of measurements. Lines: fitted complexity models. X-Circles: memory overflow. Solid lines:
exact estimation variance. Dashed lines: large-grid approximation

7 Extensions to Further Applications

7.1 Generation of Conditional Random Fields

Past studies have presented fast and exact generation of Gaussian random fields via
FFT (Dykaar and Kitanidis 1992; Dietrich and Newsam 1993). The overall computa-
tional effort per realization is as low as O(n log2 n) at storage requirements of, once
again, only O(n). Conditioning to direct or linearly dependent measurements has
been dealt with by Dietrich and Newsam (1996), but the conditioning procedure does
not make use of FFT-based methods, yet. The basic well-known step is to correct
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unconditional realizations to conditional ones through kriging. Without going into
further details, the FFT-based algorithms described in this study can be applied in the
corrective kriging step to improve the computational efficiency of generating condi-
tional realizations. The classical path of Monte Carlo simulation is an alternative to
evaluate the estimation variance. Once all steps towards conditional realizations are
FFT-based, the computational costs are O(n log2 n + m log2 m) per conditional real-
ization. Monte Carlo approximation of the variance converges with a rate of

√
k/2,

so that a number of realizations in the order of k = 1000 is sufficient for most appli-
cations. If none of our approximations apply and m � 1000, Monte Carlo simulation
can be considered a helpful alternative.

7.2 Multivariate Cases

If several types of stationary auto- and cross-covariance functions are used to define
the matrix Qss for multivariate estimation problems, there will be individual blocks
that are each accessible to the FFT-techniques demonstrated in this study. Basically,
this block structure has to be disassembled to obtain individual additive stationary
sub-problems. Then, convolution via FFT is straightforward, and superposition via
FFT and the FFT-PCG solver for regular and irregular data grids follow trivially. If
the individual univariate cases are intrinsic rather than stationary, each case first has
to be decomposed into a stationary part and a coupled regression problem as outlined
in (1) to (21). If the multivariate data depend quasi-linearly on s, one can obtain the
corresponding auto- and cross-covariance matrices again using FFT-based methods
developed by Nowak et al. (2003).

7.3 Sequential Kriging

Sequential Kriging (Vargas-Guzmán and Yeh 1999) considers individual subsets of
data one by one, identical to sequential Bayesian updating. Mutual correlation among
the subsets is accounted for by always using a covariance matrix Qss that is condi-
tional on all previous subsets. For notational convenience and consistency with the
original publication, we use simple kriging here. Initially, set ŝ0 = 0, Qss,0 = Qss and
k = 0. Given a new subset of data Yk+1 with sampling matrix Hk+1 and error matrix
Rk+1, evaluate the matrices

Qsy,k+1 = Qss,kHT
k+1 = Qys,k+1, (34)

Qyy,k+1 = Hk+1Qsy,k+1 + Rk+1 (35)

and update

ŝk+1 = ŝk + Qsy,k+1Q−1
yy,k+1Yk+1, (36)

Qss,k+1 = Qss,k − Qsy,k+1Q−1
yy,k+1Qys,k+1 (37)

= Qss,0 −
k∑

�=1

Qsy,�Q−1
yy,�Qys,�. (38)
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Vargas-Guzmán and Yeh (1999) suggested to explicitly store Qss,k+1 at each step,
which is impossible for large n. The implicit nature of (34) to (37) leads to a quadrat-
ically increasing number of correction terms in (37), of which it is impossible to keep
track. Equation (38) only requires to handle the initial stationary covariance matrix
and individual, explicitly defined terms which can be accumulated and stored dur-
ing the sequential procedure. The full-sized matrix never has to be assembled when
choosing an adequate order of evaluation for (34)

Qsy,k+1 = Qss,0HT
k+1 −

k∑
�=1

Qsy,�Q−1
yy,�

(
Qys,�HT

k+1

)
. (39)

The latter has already been used on conditional covariance matrices by Nowak and
Cirpka (2004) aside from the sequential context. Our suggested modification reduces
storage from O(n2) to O(mn). When using convolution via FFT for the first matrix
product in (39) and choosing subsets so small that the time to invert each Qyy,k is in-
significant, the overall computation never exceeds O(n logn+mn) per updating step.
Applications of sequential kriging and cokriging in geostatistical inverse modeling,
such as the successive linear estimator (Vargas-Guzmán and Yeh 2002), will greatly
benefit from this improvement. Other non-sequential geostatistical inverse modeling
techniques, such as the quasi-linear approach by Kitanidis (1995), have been applied
for up to one million of unknown parameters (Nowak and Cirpka 2006) on a 2004
desktop computer when using FFT-based methods.

8 Summary and Conclusions

In this study, we were able to evaluate the kriging estimator for millions of estimation
points and thousands of measurements in no more than seconds up to a few minutes
on a contemporary desktop computer purchased in 2004 (2.8 GHz processor). To
achieve this, we compiled a toolbox of existing and extended FFT-based methods
that includes FFT-based convolution, FFT-based superposition and FFT-based PCG
solvers. All methods apply to estimation on regular and equispaced grids. The mea-
surements may either lie on regular and equispaced grids or be irregularly scattered,
if they remain a subset of the finer grid of estimation. Originally, these methods were
applicable only to stationary problems such as simple kriging. We decomposed the
equations of universal kriging into a stationary part handled by the above FFT-based
methods, and a decoupled regression-like part. Thanks to this decoupling, all intrinsic
cases and cases with any form of unknown or uncertain drift (arbitrary trend func-
tions, zonation models, external drift or any set of explanatory variables as used in
linear regression, with or without prior knowledge on the coefficients) can now be
addressed by FFT-based methods. This constitutes a major advantage, since few real-
world cases obey stationary models with uniform mean values.

We demonstrated the efficiency of all methods in a series of performance tests on
an ordinary desktop computer. The first eye-catching advantage was that now only
one column of the auto-covariance matrix of unknowns needs to be stored (resem-
bling a stationary covariance function). This makes the storage requirements shrink
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from O(nm) to only O(n), where n is the number of estimation points and m is the
number of measurements. FFT-based superposition has computational costs in the
order of n log2 n instead of mn. This turned out to be highly favorable even for very
small data sets. For regular and equispaced measurement grids, the FFT-based PCG
solver with its complexity of O(m log2 m) outruns standard solvers for dense systems
by orders of magnitude. For irregularly scattered measurements, our extended FFT-
PCG solver is less efficient than the standard solver for low and medium numbers
of measurements. The break-even point is at roughly m = 1000 measurements, de-
pending on the resolution of the finer regular grid. The great advantage, however, is
that the FFT-based solver does not require to store the m × m coefficient matrix, so
it is applicable for arbitrarily high m. Any solver that requires to explicitly store the
dense m × m kriging matrix broke down due to memory restrictions at a maximum
of m = 10,000 on our reference computer. Combining these methods, we could go
as far as 16 million estimation points and the same numbers of measurements on our
2.8 GHz, 4 GB RAM desktop computer. The maximum problem size was solved in
less than a day.

Evaluating the estimation variance is computationally much more demanding. For
the exact estimation variance, an equivalent of m estimation procedures has to be
performed. This is strictly inhibiting for larger data sets, even in spite of the speedup
achieved by FFT-based methods. We alleviated this situation by reviewing, extending
and proposing several fast approximations which are asymptotically exact in specific
cases. These cases include negligible correlation among the measurements and very
large regular grids of measurements. The approximations offer an additional speedup
of up to five orders of magnitude for large m, so that the largest admissible problem
including the estimation variance could still be completed in less than one day. For
regular measurement grids, the same tasks were completed within a few minutes. We
also pointed out how to transfer FFT-based methods to related applications that will
greatly benefit of the results of this study. This includes the generation of conditional
realizations, multivariate estimation problems, and sequential kriging.

We expect further advances in non-uniform FFT algorithms (NUFFT), also called
the generalized FFT (Duijndam and Schonewille 1999; Fessler and Sutton 2003;
Fourmont 2003; Greengard and Lee 2004; Liu and Ngyuen 1998). The kriging con-
text requires NUFFT algorithms that work efficiently in both transform directions,
featuring frequency-space data on a regular grid with real-space data on an irregular
grid. We assume that highly efficient algorithms for these requirements will be readily
available within a few years, further increasing the efficiency for irregularly scattered
measurements. Further improvement of storage efficiency may be achievable with
low-rank representations of covariance matrices, or by hierarchical approximation
(e.g., Börm et al. 2003).
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Appendix: FFT-based PCG for Irregular and Regular Grids

The Conjugate Gradients Method is attributed to Hestenes and Stiefel (1952). The
following is the preconditioned version taken from Shewchuk (1994), combined with
convolution via FFT (e.g., van Loan 1992) and the regularized circulant precondi-
tioner by Nowak (2005).

The eigenvalues of a circulant matrix are given by the Fourier transform of its
first column (e.g., Trapp 1973; Barnett 1990, pp. 350–354). If C is a (level-d) real
circulant matrix with first column c and c̃ = Fd(c) is the (d-dimensional) Fourier
transform of the first column, then the condition c of C is the ratio of the largest
value cmax and the smallest value cmin in c̃. The regularized preconditioner by Nowak
(2005) installs a maximum condition c∗(e.g., 105) of the preconditioner through a
diagonal regularization C∗ = C + ε∗I, where ε is chosen according to

ε∗ = cmax − cminc
∗

c∗ − 1
. (40)

Automatically, the Fourier transform c̃∗ = Fd(c∗) of the first column of C∗ is given
by c̃∗ = c̃ + ε∗.

In the following, ◦ denotes the element-wise (Hadamard) product and ÷ denotes
element-wise division.

Algorithm 1 (Preconditioned Conjugate Gradients with circulant preconditioning for
nearly-Toeplitz system) The linear system Qyyy = Y is to be solved for a real sym-
metric positive-definite m×m matrix Qyy = HQssHT , where H is a sampling matrix
as defined in (5) and Qss is a (level-d) symmetric positive-definite Toeplitz matrix
sized n × n. Qss has a symmetric positive-definite embedding circulant matrix C
with Qss = MT CM, where M is a mapping matrix as defined in (22). c is the first
column of C with (d-dimensional) Fourier transform c̃ = Fd(c). An initial guess y0,
an error tolerance ε < 1 and a maximum allowable condition c∗ are provided. Initial-
ize the algorithm with counter k = 1, error vector r = Y − Qyyy0, the preconditioned
conjugate gradient d ≈ Q−1

yy r, the residual δ1 = rT d, the initial residual δ0 = δ1 and
evaluate ε∗ according to (40). Then

1. Update the trial solution x using

q = HMT F −1
d

[
Fd

[
MHT d

] ◦ c̃
]

(= Qyyd),

α = δk

dT q
,

y = y + αd.

2. Update the error vector and residual

r = r − αq,

s = HMT F −1
d

[
Fd

[
MHT r

] ÷ (
c̃ + ε∗)] (≈ Q−1

yy r
)
,

δk+1 = rT s.
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3. Update the preconditioned conjugate gradient

d = s + δk+1

δk

d.

4. Increase k by 1 and repeat until k > kmax or δk+1 < ε2δ0.

The variables q, α and s are auxiliaries to reduce the computational costs. All
products with M and H are evaluated by simple embedding/extraction and injec-
tion/sampling or using sparse representations of the matrix N = MHT . The FFT-
PCG algorithm requires only one matrix–vector product per iteration step evaluated
via FFT, which has an asymptotic cost estimate of O(n log2 n) and another operation
of O(n log2 n) to apply the preconditioner. The corresponding steps in the initial-
ization are evaluated accordingly, resulting in an overall complexity of O(n log2 n).
Here, the finer regular grid with n nodes is not necessarily as large (as fine) as the
grid of estimation, subject to the desired accuracy of discretizing the locations of the
measurements.

In case the measurements themselves lie on a regular grid, matrix Qyy in the above
algorithm is a Toeplitz matrix itself, substituted for Qss, and H = HT = I may be
omitted in the entire algorithm. In that case, the computational complexity drops to
O(m log2 m).
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