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Abstract The analysis of health data and putative covariates, such as environmen-
tal, socio-economic, behavioral or demographic factors, is a promising application
for geostatistics. However, it presents several methodological challenges that arise
from the fact that data is typically aggregated over irregular spatial supports and con-
sists of a numerator and a denominator (e.g., population size). This paper presents an
overview of recent developments in the field of health geostatistics, with an emphasis
on three main steps in the analysis of areal health data: (1) estimation of the underly-
ing disease risk, (2) detection of areas with significantly higher risk, and (3) analysis
of relationships with putative risk factors. The analysis is illustrated by using age-
adjusted cervix cancer mortality rates recorded from 1970 to 1994 of 118 counties
in four Western USA states. Poisson kriging allows the filtering of noisy mortality
rates computed from small population sizes, enhancing the correlation with two puta-
tive explanatory variables: percentage of habitants living below the federally defined
poverty line, and percentage of Hispanic females. Area-to-point kriging formulation
creates continuous maps of mortality risk, reducing the visual bias associated with
the interpretation of choropleth maps. Stochastic simulation is used to generate real-
izations of cancer mortality maps, which allows one to quantify how uncertainty of
the spatial distribution of health outcomes translates into uncertainty of the location
of clusters of high values or the correlation with covariates. Finally, geographically-
weighted regression highlights the non-stationarity in the explanatory power of co-
variates; the higher mortality values along the coast are better explained by the two
covariates than the lower risk recorded in Utah.
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1 Introduction

Since its early development for the assessment of mineral deposits, geostatistics have
been used in a growing number of disciplines dealing with the analysis of data dis-
tributed in space and/or time. One field that has received little attention in the geosta-
tistical literature is medical geography or spatial epidemiology, which is concerned
with the study of spatial patterns of disease incidence and mortality, and the identi-
fication of potential “causes” such as environmental exposure or socio-demographic
factors (Waller and Gotway 2004). This lack of attention contrasts with the increasing
need for methods to analyze health data following the emergence of new infectious
diseases (e.g., West Nile Virus, bird flu), the higher occurrence of cancer mortality as-
sociated with longer life expectancy, and the burden of a widely polluted environment
on human health.

The first initiative to tailor geostatistical tools to the analysis of disease rates
must be credited to Christian Lajaunie (1991) from the Center of geostatistics in
Fontainebleau, France. He developed an approach that accounts for spatial hetero-
geneity in the population of children to estimate the semivariogram of the “risk of
developing cancer” from the semivariogram of observed mortality rates. Binomial
cokriging was then used to produce a map of the risk of childhood cancer in the West
Midlands of England (Oliver et al. 1993, 1998; Webster et al. 1994). Later, the same
methodology was used in mapping lung cancer mortality across USA (Goovaerts
2005a). In his book, Cressie (1993, pp. 385–402) analyzed the spatial distribution
of the counts of sudden-infant-death-syndromes (SID) for 100 counties of North Car-
olina. He proposed a two-step transform of the data to remove first the mean–variance
dependence of the data and next the heteroscedasticity. Traditional variography was
then applied to the transformed residuals. In contrast, Christakos and Lai (1997) in-
corporated the fuzziness or softness of the data into the computation of the sample
semivariogram and into the kriging equations using the BME (Bayesian Maximum
Entropy) formalism directly. More recently, geostatistics was used for mapping the
number of low birth weight (LBW) babies at the Census tract level, accounting for
county-level LBW data and covariates measured over different spatial supports, such
as a fine grid of ground-level particulate matter concentrations or tract population
(Gotway and Young 2007).

Each individual represents the basic unit of spatial analysis in health research.
However, due to the need to protect patient privacy publicly, available data is often
aggregated to a sufficient extent in order to prevent disclosure or reconstruction of
the patient’s identity. The information available for human health studies thus takes
the form of disease rates, e.g., number of deceased or infected patients per 100,000
habitants, aggregated within areas that can span a wide range of scales, such as cen-
sus units in counties or states. Associations can then be investigated between these
areal data and environmental, socio-economic, behavioral or demographic covari-
ates. Figure 1 shows an example of datasets that could support a study of the impact
of demographic and socio-economic factors on cervix cancer mortality. The top map
shows the spatial distribution of age-adjusted mortality rates recorded from 1970 to
1994 in 118 counties in four Western USA. The corresponding population at risk is
displayed in the middle maps. The population size, which is available for each census
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Fig. 1 Geographical distribution of cervix cancer mortality rates recorded for white females over the
period 1970–1994, and the corresponding population at risk (aggregated within counties or assigned to
25 km2 cells). The scatterplot illustrates a larger variance of rates computed from sparsely populated
counties. The bottom maps show two putative risk factors: the percentage of habitants living below the
federally defined poverty line, and the percentage of Hispanic females

block and assumed uniform within these census units, was aggregated at two levels:
in counties and in 25 km2 cells. The bottom maps show two putative explanatory
variables: the percentage of habitants living below the federally defined poverty line,
and the percentage of Hispanic females. Indeed, Hispanic women tend to have ele-
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vated risk of cervical cancer, while poverty reduces access to health care and to early
detection through the Pap smear test in particular (Friedel et al. 1992). These socio-
demographic data are available at the census block level and are assigned to the nodes
of a 5 km spacing grid for the purpose of this study (same resolution as the population
map).

A visual inspection of the cancer mortality map conveys the impression that rates
are much higher in the center of the study area (Nye and Lincoln Counties), as well
as in one Northern California county (US). This result must, however, be interpreted
with caution, since the population is not uniformly distributed across the study area
and rates computed from sparsely populated counties tend to be less reliable. This
effect is known as “small number problem” and is illustrated by the top scattergram
in Fig. 1. The use of administrative units to report the results (e.g., counties in this
case) can also bias the interpretation; had the two counties with high rates been much
smaller in size, these high values would have likely been perceived as less problem-
atic. Lastly, the mismatch of spatial supports for cancer rates and explanatory vari-
ables prevents their direct use in correlation analysis. Unlike datasets typically ana-
lyzed by geostatisticians, the attributes of interest are measured exhaustively. Thus,
ordinary kriging, the backbone of any geostatistical analysis, seems of little use. Yet,
one can envision at least three main applications of geostatistics for the analysis of
such areal data. First, one can filter the noise caused by the small number problem
using a variant of kriging with non-systematic measurement errors. Second, one can
model the uncertainty attached to the map of filtered rates using stochastic simulation,
and propagation of this uncertainty through subsequent analysis, such as the detec-
tion of aggregate of counties (clusters) with significantly higher or lower rates than
neighbouring counties. Last, one can disaggregate of county-level data to map can-
cer mortality at a resolution compatible with the measurement support of explanatory
variables.

Goovaerts (2005b, 2006a, 2006b) introduced a geostatistical approach to address
all three issues and compared its performances to empirical and Bayesian meth-
ods which have been traditionally used in health science. The filtering method is
based on Poisson kriging and semivariogram estimators developed by Monestiez
et al. (2005, 2006) for mapping the relative abundance of species in the presence
of spatially heterogeneous observation efforts and sparse animal sightings. In addi-
tion, Poisson kriging can be combined with stochastic simulation to generate multiple
realizations of the spatial distribution of disease risk, which allows one to quan-
tify numerically how the uncertainty about the spatial distribution of health out-
comes translates into uncertainty about the location of disease clusters (Goovaerts
2006a), the presence of significant boundaries (Goovaerts 2008b), or the relation-
ship between health outcomes and putative risk factors. A limitation of all these
studies lies in the assumption that the size and shape of geographical units and
the distribution of the population within those units are uniform, which is clearly
not visible in Fig. 1. The last change of support issue was addressed recently
in the geostatistical literature (Gotway and Young 2002, 2005; Kyriakidis 2004;
Goovaerts 2008a). In its general form, kriging can accommodate different spatial sup-
ports for the data and the prediction, while ensuring the coherence of the predictions
so that disaggregated estimates of count data are non-negative (Yoo and Kyriakidis
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2006) and their sum is equal to the original areal count. However, the coherence
property needs to be tailored to the current situation where areal rate data have vari-
ous degrees of reliability depending on the size of the population at risk (Goovaerts
2006b).

Geostatistics represents an attractive alternative to increasingly popular Bayesian
spatial models in that it is easier to implement and less CPU-intensive, since it does
not require lengthy and potentially non-converging iterative estimation procedures,
and it accounts for the size and shape of geographical units, avoiding the limitations
of conditional auto-regressive (CAR) models commonly used in Bayesian algorithms,
while allowing for risk prediction over any spatial support. Goovaerts and Gebreab
(2008) conducted a simulation-based evaluation of performance of geostatistical and
full Bayesian disease-mapping models, using the BYM model (Besag et al. 1991)
as a benchmark for Bayesian methods. They found that the geostatistical approach
yields smaller prediction errors, more precise and accurate probability intervals, and
allows a better discrimination between counties with high and low mortality risks.
The BYM model also generates smoother risk surfaces, leading to a much larger pro-
portion of false negatives than the geostatistical model in particular as the risk thresh-
old rises. The benefit of Poisson kriging increases as the county geography becomes
more heterogeneous and when data beyond the adjacent counties (e.g., 1st order CAR
neighborhood) are used in the estimation. This paper discusses how geostatistics can
benefit three main steps of the analysis of areal health data: estimation of the under-
lying disease risk, detection of areas with significantly higher risk, and analysis of
relationships with putative risk factors. The different concepts are illustrated using
the cervix cancer data in Fig. 1.

2 Estimating Mortality Risks from Observed Rates

2.1 Area-to-Area (ATA) Poisson Kriging

For a given number N of geographical units vα (e.g., counties), denote the observed
mortality rates (areal data) as z(vα) = d(vα)/n(vα), where d(vα) is the number of
recorded mortality cases and n(vα) is the size of the population at risk. The disease
count d(vα) is interpreted as a realization of a random variable D(vα) that follows
a Poisson distribution with one parameter (expected number of counts) that is the
product of the population size n(vα) by the local risk R(vα) (see Goovaerts 2005b
for more details). The noise-filtered mortality rate for a given area vα , called mor-
tality risk, is estimated as a linear combination of the kernel rate z(vα) and the rates
observed in (K − 1) neighboring entities vi

r̂(vα) =
K∑

i=1

λiz(vi). (1)
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The weights λi assigned to the K rates are computed by solving the following system
of linear equations, known as the “Poisson kriging” system

K∑

j=1

λj

[
C̄R(vi, vj ) + δij

m∗

n(vi)

]
+ μ(vα) = C̄R(vi, vα), i = 1, . . . ,K,

K∑

j=1

λj = 1,

(2)

where δij = 1 if i = j and 0 otherwise. m∗ is the population-weighted mean of the
N rates. The “error variance” term, m∗/n(vi), leads to smaller weights for less re-
liable data (e.g., rates measured over smaller populations). In addition to the popu-
lation size, the kriging system accounts for the spatial correlation among geographi-
cal units through the area-to-area covariance terms C̄R(vi, vj ) = Cov{R(vi),R(vj )}
and C̄R(vi, vα). Those covariances are numerically approximated by averaging the
point-support covariance CR(h), computed between any two locations discretizing
the areas vi and vj

C̄R(vi, vj ) = 1
∑Pi

s=1

∑Pj

s′=1 wss′

Pi∑

s=1

Pj∑

s′=1

wss′CR(us − us′), (3)

where Pi and Pj are the number of points used to discretize the two areas vi and
vj , respectively. The weights wss′ are computed as the product of population sizes
assigned to each discretizing point us and us′

wss′ = n(us) × n(us′) with
Pi∑

s=1

n(us) = n(vi) and

Pj∑

s′=1

n(us′) = n(vj ).

In this study, the discretizing points were identified with the nodes of a 5 km grid,
yielding a total of 11 to 2,082 discretizing per county (Fig. 2). The population size,
which is available for each census block, was aggregated within each 25 km2 cell
under the assumption of uniform distribution within these small census units. If the
cell size becomes smaller than the census blocks and land use heterogeneity invali-
dates the assumption of uniform population repartition, a disaggregation procedure
might be necessary and could be conducted using area-to-point interpolation (Liu
et al. 2008).

Save for when spectral methods are used for integration (equation (3)), it is not
computationally efficient to use the same discretizing level for each geographical unit
when they differ by several orders of magnitude, like in the West coast. One solution
is to use flexible discretizing grids that ensure a constant number of discretizing points
within each unit. For example, in TerraSeer’s STIS software (Avruskin et al. 2004)
a given number of discretization points is distributed uniformly within each polygon
according to a stratified random design. The uncertainty of the cancer mortality risk
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Fig. 2 Example of discretization geography used to compute county-to-county covariance terms for
area-to-area kriging

prevailing within the geographical unit vα can be modeled using the conditional cu-
mulative distribution function (ccdf) of the risk variable R(vα). Under the assumption
of normality of the prediction errors, that ccdf is defined as

F
(
vα; r|(K)

) = Prob
{
R(vα) ≤ r

∣∣(K)
} = G

(
r − r̂(vα)

σ̂ (vα)

)
. (4)

G(.) is the cumulative distribution function of the standard normal random variable,
and σ̂ (vα) is the square root of the kriging variance estimated as

σ̂ 2(vα) = C̄R(vα, vα) −
K∑

i=1

λiC̄R(vi, vα) − μ(vα), (5)

where C̄R(vα, vα)is the within-area covariance that is computed according to (3) with
vi = vj = vα . The notation “|(K)” expresses conditioning to the local information,
say, K neighboring observed rates. The function (4) gives the probability that the
unknown risk is no greater than any given threshold r . It is modeled as a Gaussian
distribution with the mean and the variance corresponding to the Poisson kriging
estimate and variance.

2.2 Area-to-Point (ATP) Poisson Kriging

A particular case of ATA kriging is when the prediction support is so small that it can
be assimilated to a point us , leading to the following area-to-point Poisson kriging
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estimator and kriging variance

r̂PK(us) =
K∑

i=1

λi(us)z(vi), (6)

σ̂ 2
PK(us) = CR(0) −

K∑

i=1

λi(us)C̄R(vi,us) − μ(us). (7)

The kriging weights and the Lagrange parameter μ(us) are computed by solving the
following system of linear equations

K∑

j=1

λj (us)

[
C̄R(vi, vj ) + δij

m∗

n(vi)

]
+ μ(us) = C̄R(vi,us), i = 1, . . . ,K,

K∑

j=1

λj (us) = 1.

(8)

The ATP kriging system is similar to the ATA kriging system (2), except for the
right-hand-side term where the area-to-area covariances C̄R(vi, vα) are replaced by
area-to-point covariances C̄R(vi,us) that are approximated as

C̄R(vi,us) = 1
∑Pi

s′=1 ws′s

Pi∑

s′=1

ws′sCR(us′ ,us), (9)

where Pi is the number of points used to discretize the area vi and the weights ws′s
are computed as for expression (3). ATP kriging can be conducted at each node of
a grid covering the study area, resulting in a continuous (isopleth) map of mortality
risk and reducing the visual bias that is typically associated with the interpretation
of choropleth maps. Another interesting property of the ATP kriging estimator is its
coherence. The population-weighted average of the risk values estimated at the Pα

points us discretizing a given entity vα yields the ATA risk estimate for this entity

r̂PK(vα) = 1

n(vα)

Pα∑

s=1

n(us)r̂PK(us). (10)

Constraint (10) is satisfied if the same K areal data are used for the ATP kriging of
the Pα risk values.

2.3 Deconvolution of the Semivariogram of the Risk

Both ATA and ATP kriging require knowledge of the point support covariance of
the risk CR(h), or equivalently the semivariogram γR(h). This function cannot be
estimated directly from the observed rates, since only areal data is available. Thus,
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only the regularized semivariogram of the risk can be estimated as

γ̂Rv(h) = 1

2
∑N(h)

α,β

n(vα)n(vβ)

n(vα)+n(vβ)

N(h)∑

α,β

{
n(vα)n(vβ)

n(vα) + n(vβ)

[
z(vα) − z(vβ)

]2 − m∗
}
, (11)

where N(h) is the number of pairs of areas (vα, vβ) whose population-weighted cen-
troids are separated by the vector h. The different spatial increments [z(vα)− z(vβ)]2

are weighted by a function of their respective population sizes, n(vα)n(vβ)/[n(vα)+
n(vβ)], a term that is inversely proportional to their standard deviations (Monestiez
et al. 2006). More importance is given to the more reliable data pairs (e.g., smaller
standard deviations).

Derivation of a point-support semivariogram from the experimental semivari-
ogram γ̂Rv(h) computed from areal data is called “deconvolution”, an operation that
has been the topic of much research (Journel and Huijbregts 1978; Mockus 1998;
Gotway and Young 2007; Kyriakidis 2004). In this paper, we adopted the itera-
tive procedure introduced for rate data measured over irregular geographical units
(Goovaerts 2006b), whereby one seeks the point-support model that, once regular-
ized, is the closest to the model fitted to areal data. This innovative algorithm starts
with the derivation of an initial deconvolved model γ (0)(h); for example, the model
γRv(h) fitted to the areal data. This initial model is then regularized using the follow-
ing expression

γregul(h) = γ̄ (0)(v, vh) − γ̄
(0)
h (v, v), (12)

where γ̄ (0)(v, vh) is the area-to-area semivariogram value for any two counties sep-
arated by a distance h. It is approximated by the population-weighted average (3),
using γ (0)(h) instead of C(h). The second term, γ̄

(0)
h (v, v), is the within-area semi-

variogram value. Unlike the expression commonly found in the literature, this term
varies as a function of the separation distance since smaller areas tend to be paired
at shorter distances. To account for heterogeneous population density, the distance
between any two counties is estimated as a population-weighted average of distances
between locations discretizing the pair of counties

Dist(vi, vj ) = 1
∑Pi

s=1

∑Pj

s′=1 n(us)n(us′)

Pi∑

s=1

Pj∑

s′=1

n(us)n(us′)‖us − us′‖, (13)

where n(us) is the population size assigned to the discretizing point us . In other
words, what matters is the distance between individuals living in these counties, not
the distance between the centroids of these geographical units. Note that the block-
to-block distances (13) are numerically very close to the Euclidean distances com-
puted between population-weighted centroids (Goovaerts 2006b). The theoretically
regularized model, γregul(h), is compared to the model fitted to experimental values,
γRv(h), and the relative difference between the two curves, denoted D, is used as
an optimization criterion. A new candidate point-support semivariogram γ (1)(h) is
derived by rescaling the initial point-support model γ (0)(h), and then regularizing it
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according to expression (12). Model γ (1)(h) becomes the new optimum if the the-
oretically regularized semivariogram model γ

(1)
regul(h) gets closer to the model fitted

to areal data, that is if D(1) < D(0). Rescaling coefficients are then updated to ac-
count for the difference between γ

(1)
regul(h) and γRv(h), leading to a new candidate

model γ (2)(h) for the next iteration. The procedure stops when the maximum num-
ber of allowed iterations has been tried (e.g., 35 in this paper) or the decrease in
the D statistic becomes negligible from one iteration to the next. The use of lag-
specific rescaling coefficients provides enough flexibility to modify the initial shape
of the point-support semivariogram and makes the deconvolution insensitive to the
initial solution adopted. More details and simulation studies are available (Goovaerts
2006b, 2008a).

2.4 Application to the Cervix Cancer Mortality Data

Figure 3 (top graph, dark gray curve) shows the experimental and model semivari-
ograms of cervix cancer mortality risk computed from areal data using estimator (11)
and the distance measure (13). This model is then deconvolved and, as expected, the
resulting model (light gray curve) has a higher sill, since the punctual process has
a larger variance than its aggregated form. Its regularization using expression (12)
yields a semivariogram model that is close to the one fitted to experimental values,
which validates the consistency of the deconvolution. The deconvolved model was
used to estimate areal risk values at the county level (ATA kriging) and to map the
spatial distribution of risk values within counties (ATP kriging). Both maps are much
smoother than the map of raw rates since the noise due to small population sizes is
filtered. In particular, the high-risk area formed by two central counties in Fig. 1 dis-
appeared, which illustrates how hazardous the interpretation of the map of observed
rates can be. The highest risk (4.081 deaths/100,000 habitants) is predicted for Kern
County, just west of Santa Barbara County. ATP kriging map indicates that the high
risk is not confined to this sole county but potentially might spread over four counties,
which is important information for designing prevention strategies. By construction,
aggregating the ATP kriging estimates within each county using the population den-
sity map of Fig. 1 (right medium graph) yields the ATA kriging map.

The map of ATA kriging variance essentially reflects a higher confidence in the
mortality risk estimated for counties with large populations. However, the distribution
of population can be highly heterogeneous in large counties with contrasted urban
and rural areas. This information is incorporated in the ATP kriging variance map
that shows clearly the location of urban centers, such as Los Angeles, San Francisco,
Salt Lake City, Las Vegas, or Tucson (USA). The variance of point risk estimates is
much larger than the county-level estimates, as expected.

3 Detection of Spatial Clusters and Outliers

Mapping cancer risk is a preliminary step towards further analysis that might high-
light areas where causative exposures change through geographic space, the presence
of local populations with distinct cancer incidences, or the impact of different cancer
control methods.
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Fig. 3 Experimental semivariogram of the risk estimated from county-level rate data, and the results of its
deconvolution (top curve). The regularization of the point support model yields a curve (black dashed line)
that is very close to the experimental one. The model is then used to estimate the cervix cancer mortality
risk (deaths/100,000 habitants) and associated prediction variance at the county level (ATA kriging) or at
the nodes of a 5 km spacing grid (ATP kriging)

3.1 Local Cluster Analysis (LCA)

The local Moran test (Anselin 1995) aims to detect the existence of local clus-
ters or outliers of high or low cancer risk values (Jacquez and Greiling 2003;
Goovaerts 2005c). For each county, the so-called LISA (Local Indicator of Spatial
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Autocorrelation) statistic is computed as

LISA(vα) =
[
z(vα) − m

s

]
×

(
J (vα)∑

j=1

1

J (vα)
×

[
z(vj ) − m

s

])
, (14)

where z(vα) is the mortality rate for the county being tested. This is referred to as
the “kernel” hereafter. z(vj ) are the rates for the J (vα) neighboring counties that
are here defined as units sharing a common border or vertex with the kernel vα (1st
order queen adjacencies). All values are standardized using the mean m and standard
deviation s of the set of risk estimates. Since the standardized values have zero mean,
a negative value for the LISA statistic indicates a negative local auto-correlation and
the presence of spatial outlier where the kernel value is much lower (higher) than
the average of surrounding values. Cluster of low (high) values will lead to positive
values of the LISA statistic. Note that as any local statistics of spatial association, the
value of the LISA statistic (hence the conclusion about the presence of clusters and
outliers) is tied to the neighborhood structure. For example, the use of a 2nd versus a
1st adjacency neighborhood structure could lead to the detection of different outliers
or clusters.

In addition to the sign of the LISA statistic, its magnitude informs on the extent to
which kernel and neighborhood values differ. To test whether this difference is sig-
nificant or not, a Monte Carlo simulation is conducted, which traditionally consists
of sampling randomly and without replacement, the global distribution of rates (e.g.,
sample histogram) and computing the corresponding simulated neighborhood aver-
ages. This operation is repeated many times (e.g., M = 999 draws) and these simu-
lated values are multiplied by the kernel value to produce a set of M simulated values
of the LISA statistic for the entity vα . This set represents a numerical approxima-
tion of the probability distribution of the LISA statistic at vα , under the assumption
of spatial independence. The observed statistic (equation (14)) is compared to the
probability distribution, enabling the computation of the probability of not rejecting
the null hypothesis of spatial independence. The so-called p-value is compared to
the significance level chosen by the user and representing the probability of rejecting
the null hypothesis when it is true (Type I error). Every county where the p-value is
lower than the significance level is classified as a significant spatial outlier (HL: high
value surrounded by low values, and LH: low value surrounded by high values), or
a cluster (HH: high value surrounded by high values, and LL: low value surrounded
by low values). If the p-value exceeds the significance level, the county is declared
non-significant (NS).

Figure 4A shows the results of the LCA of the observed cervix cancer mortality
rates. Only two counties are declared significant HL outliers, a result that must be
interpreted with caution given their small population sizes. Indeed, these two counties
become non-significant when the analysis is conducted on the map of kriged risks
(Fig. 4B). Accounting for population size in the analysis reveals a cluster of low risk
values in Utah, which likely reflects cultural or religious influence on sexual practices
resulting in reduced transmission of human papilloma virus. Yet, the smoothing effect
of kriging tends to enhances spatial autocorrelation in the risk map, with the risk of
inflating artificially cluster sizes. For example, the one-county HH cluster detected in
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Fig. 4 Results of the local cluster analysis conducted on cervix cancer mortality rates and estimated
risks (A, B). See legend description in text. (C, D) Two realizations of the spatial distribution of cervix
cancer risk. (E) Most likely (ML) classification inferred from 500 realizations. The intensity of the shading
increases as the classification becomes more certain, i.e., the likelihood (F) increases

the middle of the mortality map grows to become an aggregate of seven counties on
the map of kriged risks. Another weakness is that the uncertainty attached to the risk
estimates (i.e., kriging variance) is ignored in the analysis.
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3.2 Stochastic Simulation of Cancer Mortality Risk

Static maps of risk estimates and the associated prediction variance fail to depict
the uncertainty attached to the spatial distribution of risk values and do not allow
its propagation through local cluster analysis. Instead of a unique set of smooth risk
estimates {r̂PK(vα),α = 1, . . . ,N}, stochastic simulation aims to generate a set of L

equally-probable realizations of the spatial distribution of risk values, {r(l)(vα),α =
1, . . . ,N; l = 1, . . . ,L}, each consistent with the spatial pattern of the risk as mod-
eled using the function γR(h). Goovaerts (2006a) proposed the use of p-field simu-
lation to circumvent the problem that no risk data (e.g., only risk estimates), hence
no reference histogram, is available to condition the simulation. The basic idea is to
generate a realization {r(l)(vα),α = 1, . . . ,N} through the sampling of the set of lo-
cal probability distributions (ccdf) by a set of spatially correlated probability values
{p(l)(vα),α = 1, . . . ,N}, known as a probability field or p-field. Assuming that the
ccdf of the risk variable is Gaussian, each risk value can be simulated as

r(l)(vα) = r̂PK(vα) + σ̂PK(vα)y(l)(vα), (15)

where y(l)(vα) is the quantile of the standard normal distribution corresponding to the
cumulative probability p(l)(vα). r̂PK(vα) and σ̂PK(vα) are the ATA kriging estimate
and standard deviation, respectively. The L sets of random deviates or normal scores,
{y(l)(vα),α = 1, . . . ,N}, are generated using non-conditional sequential Gaussian
simulation with the distance metric (13) and the semivariogram of the risk, γR(h),
rescaled to a unit sill; see Goovaerts (2006a) for a detailed description of the algo-
rithm.

Figures 4C–D show two realizations of the spatial distribution of cervix cancer
mortality risk values generated using p-field simulation. The simulated maps are
more variable than the kriged risk map of Fig. 3, yet they are smoother than the map
of potentially unreliable rates of Fig. 1. Differences among realizations depict the un-
certainty attached to the risk map. For example, Nye County in the center of the map,
which has a very high mortality rate (recall Fig. 1) but low population, has a simu-
lated risk that is small for realization #1 but large in the next realization. Five hundred
realizations were generated and underwent a local cluster analysis. The information
is provided by the set of 500 LCAs is summarized at the bottom of Fig. 4. The color
code indicates the most frequent classification (maximum likelihood = ML) of each
county across the 500 simulated maps. The gray shading reflects the probability of
occurrence or likelihood of the mapped class (Fig. 4F). The solid shading corresponds
to classifications with high frequencies of occurrence (e.g., likelihood > 0.9), while
hatched counties denote the least reliable results (e.g., likelihood < 0.75). This cod-
ing is somewhat subjective but leads to a clear visualization of the lower reliability of
the clusters of high values relatively to the cluster of low risk identified in Utah. Only
one county south of Salt Lake City is declared a significant low-risk cluster with a
high likelihood (0.906).
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4 Correlation Analysis

Once spatial patterns, such as clusters of high risk values, have been identified on the
cancer mortality map, a critical step for cancer control intervention is the analysis
of relationships between these features and putative, environmental, demographic,
socioeconomic and behavioral factors. The major difficulty is the choice of a scale
for quantifying correlations between variables that are typically measured over very
different supports, e.g., counties and census blocks in this study.

4.1 Ecological Analysis

The most straightforward approach is to aggregate the finer data to the level of coarser
resolution data, resulting in a common spatial support for the correlation analysis. For
example, Fig. 5 shows the county-level kriged risk and the two covariates of Fig. 1
aggregated to the same geography: the percentage of habitants living below the feder-
ally defined poverty line, and the percentage of Hispanic females. Both variables were
logarithmically transformed, and their product defines the interaction term. Table 1
(first two rows) shows the correlation coefficient between each of the three covariates

Fig. 5 Maps of cancer mortality risk estimated by Poisson kriging and the log transformed values of three
putative covariates aggregated to the county-level for conducting the ecological analysis
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Table 1 Results of the correlation analysis of cervix cancer mortality rates and kriged risks with two
putative covariates, as well as their interaction. Kriging estimates are weighted according to the inverse of
their kriging variance. The use of neutral models allows one to incorporate the spatial uncertainty attached
to cancer risk estimates into the computation of the correlation coefficients and testing of their significance
( * = significant, ** = highly significant). The last two rows show the results obtained after disaggregation

Regression models Correlation with covariates R2 (%)

Hispanic Poverty Interaction

County-level correlation

Rates 0.210* 0.144 0.240** 6.2

ATA kriging 0.625** 0.473** 0.690** 48.8

ATA kriging (weighted) 0.641** 0.613** 0.729** 54.1

ATA kriging (neutral model) 0.247–0.703** 0.173–0.590** 0.347–0.716** 14.4–52.0

Point-level (25 km2 cells) correlation

ATP kriging 0.096** −0.036** 0.188** 9.8

ATP kriging (weighted) 0.239** 0.090** 0.321** 14.0

and the mortality rates before and after application of Poisson kriging. Filtering the
noise due to the small number problem clearly enhances the explanatory power of
the covariates. The proportion of variance explained (R2) increases by almost one
order of magnitude (6.2% to 48.8%) and all correlation coefficients become highly
significant. The uncertainty attached to the risk estimates can be accounted for by
weighting each estimate according to the inverse of its kriging variance, leading to
slightly larger correlation coefficients and R2 (Table 1, 3rd row).

Instead of computing the correlation between each covariate and the smoothed
risk map, the correlation was quantified for each of the 500 risk maps generated by
p-field simulation in Sect. 3.2. This propagation of uncertainty leads to a range of
correlation coefficients and R2 that can be fairly wide (Table 1, 4th row). Next, this
distribution must be compared to the one expected under the assumption of no corre-
lation between mortality risk and each covariate. So far, the significance of the corre-
lation coefficient has been tested by using the common assumption of independence
of observations, which is clearly inappropriate for most spatial datasets.

A reference distribution, which accounts for the spatial correlation of the data,
was obtained empirically using the following two-step procedure. First, the maps of
covariates are modified using the spatially ordered shuffling procedure proposed by
Goovaerts and Jacquez (2004). The idea is to generate a standard normal random
field with a given spatial covariance, e.g., the covariance of the demographic variable
in this paper, using non-conditional sequential Gaussian simulation. Each simulated
normal score is then substituted by the value of same rank in the distribution of pro-
portion of Hispanic females. To maintain the correlation among covariates, all three
covariate maps were modified simultaneously. The operation was repeated 100 times,
yielding 100 sets of covariate maps. Secondly, the correlation between each of the re-
ordered covariate maps and each of the 500 simulated risk maps is assessed, leading
to a distribution of 50,000 correlation coefficients that corresponds to a hypothesis
of no correlation, since the covariate maps were modified independently of the risk
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maps. For this case study, this more realistic testing procedure does not change the
conclusions drawn from the classical analysis.

The correlations computed between health outcomes and risk factors averaged
over geographical entities, such as counties, are referred to as ecological correlations.
The unit of analysis is a group of people, as opposed to individual-based studies that
relies on data collected for each cancer case. A limitation of ecological analyses is
the resolution available which might be too coarse to obtain a detailed view of geo-
graphical patterns in disease mortality or incidence. The aggregation may also distort
or mask the true exposure/response relationship for individuals, a phenomenon called
the ecological fallacy (Waller and Gotway 2004). The disaggregation performed by
ATP Poisson kriging eliminates the need for using averaged values, and the correla-
tion coefficients between both risk and covariates estimated at the nodes of the 5-km
spacing grid are listed in Table 1 (last rows). The correlation is much weaker than for
county-level data, which might be due to the noise in the map of socio-demographic
variables and/or the scale-dependence of the relationship.

4.2 Geographically-Weighted Regression

The analysis in Table 1 is aspatial and makes the implicit assumption that the impact
of covariates is constant across the study area. This assumption is likely unrealistic
for large areas, which can display substantial geographic variation in demographic,
social, economic, and environmental conditions. Several local regression techniques
have been developed to account for the non-stationarity of relationships in space
(Fotheringham et al. 2002; Congdon 2006). In geographically-weighted regression
(GWR), the regression is performed within local windows centred on each obser-
vation or the nodes of a regular grid, and each observation is weighted according
to its proximity to the centre of the window. This weighting scheme avoids abrupt
changes in the local statistics computed in adjacent windows. Local regression co-
efficients and associated statistics (i.e., proportion of variance explained, correlation
coefficients) can then be mapped to visualize how the explanatory power of covariates
changes spatially (Goovaerts 2005d). It is noteworthy that the geostatistical method
of kriging with an external drift (KED) accomplishes a similar re-evaluation of local
relationships, while accounting for data clustering and pattern of correlation (Wack-
ernagel 1998; Goovaerts 1999). However, GWR is easier to implement than KED
and empirical comparisons have demonstrated the good correspondence between the
results of both methods (Goovaerts 2009a). GWR regression was conducted using
as dependent variable the mortality risk estimated by ATA and ATP kriging (20 km
spacing grid). The centers of the local windows were identified to either the county
population-weighted centroids or the nodes of the 5 km spacing grid. The window
size was defined as the set of 50 closest observations for both county-level and point-
level data (as for the LISA statistic, results are tied to the rather subjective choice of a
local neighborhood structure). The weight assigned to each observation uα was com-
puted as Csph(h0α)/σ̂ 2

PK(ua), where Csph(h0α) is the value of the spherical covariance
at a distance h0α to the center u0 of the window, and σ̂ 2

PK(ua) is the kriging variance
of the ATA or ATP kriged estimate. The range of Csph(h) was set to the distance be-
tween the center of the window and the most distant observation. Two statistics are
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Fig. 6 Results of the geographically-weighted regression applied to the ATA and ATP kriged risk values.
The left column displays the maps of the local proportion of variance explained, whereas the right maps
show, for each county or node of the 5 km spacing grid, the covariate (Hispanic population, poverty level,
and interaction) that has the highest significant correlation (hatched areas = negative correlation) with
cancer mortality risk. Maps (C, D) show the analysis of county-level data conducted at each node of the
5 km spacing grid
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displayed in Fig. 6: the proportion of variance explained within each window (left
column) and the covariate with the highest significant correlation coefficient (right
column).

The analysis of county-level data (Figs. 6A, B) shows a clear SW–NE trend in the
explanatory power of the local regression models. The higher mortality values along
the coast are better explained by the two covariates than the lower risk recorded in
Utah. In this state, none of the covariates displays significant correlation with can-
cer mortality. Poverty level is the best correlated covariate in Northern California,
while the interaction between economic and demographic variables is the most sig-
nificant factor in Central California and in the South of the study area. The proportion
of Hispanic females is the most significant covariate in a very small transition area
between the coast, where higher mortality rates and higher proportion of Hispanic
females are observed, and in Utah where the same two variables have lower values.
The computation of the GWR statistics over a regular grid allows one to visualize the
within-county variability (Figs. 6C, D), yet the analysis is still based on county-level
aggregates of socio-demographic variables which can be overly simplistic for some
counties (Fig. 1, bottom maps). For example, the largest R2 observed in the Northeast
corner of the study area (Fig. 6E) corresponds to the Eastern border of a county that
displays great variation for both proportion of Hispanic females and habitants below
the poverty level. Differences between the GWR of county-level and point-support
data are even more striking for the map of significantly correlated covariates. The
pattern becomes much more complex and correlations are locally negative (Fig. 6F,
hatched areas). These maps are mainly used for descriptive purpose and should guide
further individual-level studies to interpret these local relationships.

5 Conclusions

The analysis of health data and putative covariates, such as environmental, socio-
economic, behavioral or demographic factors, is a promising application for geosta-
tistics. However, it presents several methodological challenges that arise from the fact
that data is typically aggregated over irregular spatial supports and consists of a nu-
merator and a denominator (e.g., population size). Common geostatistical tools, such
as semivariograms or kriging, thus cannot be blindly implemented in environmental
epidemiology. This paper demonstrated how recent developments in other disciplines,
such as ecology for Poisson kriging or remote sensing for area-to-point kriging, can
foster the advancement of health geostatistics. Capitalizing on these results and an in-
novative approach for semivariogram deconvolution, this paper presented one of the
first studies where the size and shape of administrative units, as well as the population
density, is incorporated into the filtering of noisy mortality rates and the mapping of
the corresponding risk at a fine scale (e.g., disaggregation).

As in other disciplines, spatial interpolation is rarely a goal on its own. Rather, it is
a step along the decision-making process. In epidemiology one main concern is to es-
tablish the rationale for targeted cancer control interventions, including consideration
of health services needs, and resource allocation for screening and diagnostic testing.
Thus, it is important to delineate areas with significantly higher mortality or incidence
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rates, as well as to analyze relationships between health outcomes and putative risk
factors. The uncertainty attached to cancer maps needs to be propagated through this
analysis, a task that geostatisticians have been tackling for several decades using sto-
chastic simulation. Once again the implementation of this approach in epidemiology
faces specific challenge, such as the absence of measurements of the target attribute.
This paper introduced the application of p-field simulation to generate realizations of
cancer mortality maps, which allows one to quantify numerically how the uncertainty
about the spatial distribution of health outcomes translates into uncertainty about the
location of clusters of high values or the correlation with covariates. Lastly, this study
also demonstrated the limitation of a traditional aspatial regression analysis, which
ignores the geographic variations in the impact of covariates.

In the future, the approach should be generalized to the multivariate case to an-
alyze jointly multiple diseases or the rates of the same disease recorded for differ-
ent categories of individuals (e.g., different genders or ethnic groups). Analysis of
spatial relationships among diseases should facilitate the identification of common
stressors, such as poverty level, and lack of access to health care or environmental
pollution. A multivariate approach would also enable the mapping and detection of
health disparities, such as the delineation of areas where cancer mortality rates are
significantly higher for minority groups. Another avenue of research is the incorpo-
ration of the temporal dimensions into the analysis (Goovaerts 2005d). The study
of temporal changes in spatial patterns would provide useful information for can-
cer control strategies, for example, through the identification of areas where current
prevention (e.g., screening for cancers) is deficient. Secondary information, such as
socio-demographic variables, could also be incorporated in the disaggregation of dis-
ease rates using recent developments in area-to-point residual kriging (Liu et al. 2008)
and Poisson kriging with spatial drift (Bellier et al. 2009).

In contrast to the well-developed methods for mapping aggregated epidemiologic
data, the spatial mapping of individual-level data has received much less attention
(Webster et al. 2006). In addition to the greater accuracy in the location of health out-
comes, the analysis of geocoded data however can often capitalize on detailed infor-
mation on residential history and a large number of potential risk factors. A straight-
forward mapping approach is to use kernel density estimation method’, whereby the
number of cases and the total number of individuals at risk (or number of controls)
are summed within sliding windows and their ratio defines the rate (or odd ratio)
assigned to the center (i.e., grid node) of that window (Rushton et al. 2004). The op-
eration is repeated for each grid node, allowing the creation of isopleth maps of, for
example, late-stage cancer rates (ratio of number of late-stage cancer cases to total
number of people diagnosed with that cancer) or cancer odds ratios (ratio of number
of cases to the number of controls). Unlike kernel density estimation, geostatistics
has the potential to take into account the spatial support of the data and the pattern
of spatial dependence (e.g., anisotropy, range of autocorrelation) in the computation
of the weights assigned to neighboring data. Each observation represents the proba-
bility (0 or 1) that the individual is a case (e.g., late stage cancer, birth defect), hence
indicator kriging (Journel 1983) seems well suited to the analysis of such data. Non-
parametric geostatistics was recently applied to individual-level epidemiologic data
to map the risk for late stage breast cancer diagnosis using patient residences across



Math Geosci (2009) 41: 243–264 263

Michigan (Goovaerts 2009b). Finally, in addition to methodological developments,
critical components to the success of health geostatistics include the publication of
applied studies illustrating the merits of geostatistics over spatial statistical methods
commonly used in health departments and cancer registries, training through short
courses and updating of existing curriculum, as well as the development of user-
friendly software.
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