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Abstract Assessing uncertainty of a spatial phenomenon requires the analysis of a
large number of parameters which must be processed by a transfer function. To cap-
ture the possibly of a wide range of uncertainty in the transfer function response, a
large set of geostatistical model realizations needs to be processed. Stochastic spa-
tial simulation can rapidly provide multiple, equally probable realizations. However,
since the transfer function is often computationally demanding, only a small num-
ber of models can be evaluated in practice, and are usually selected through a rank-
ing procedure. Traditional ranking techniques for selection of probabilistic ranges
of response (P10, P50 and P90) are highly dependent on the static property used.
In this paper, we propose to parameterize the spatial uncertainty represented by a
large set of geostatistical realizations through a distance function measuring “dissim-
ilarity” between any two geostatistical realizations. The distance function allows a
mapping of the space of uncertainty. The distance can be tailored to the particular
problem. The multi-dimensional space of uncertainty can be modeled using kernel
techniques, such as kernel principal component analysis (KPCA) or kernel clustering.
These tools allow for the selection of a subset of representative realizations containing
similar properties to the larger set. Without losing accuracy, decisions and strategies
can then be performed applying a transfer function on the subset without the need
to exhaustively evaluate each realization. This method is applied to a synthetic oil
reservoir, where spatial uncertainty of channel facies is modeled through multiple re-
alizations generated using a multi-point geostatistical algorithm and several training
images.
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1 Introduction

Stochastic spatial simulation is now widely used to generate multiple, alternative re-
alizations or samples of the same underlying spatial phenomenon, representing the
uncertainty of the simulated variable(s). This set of realizations models the so-called
“space of uncertainty” of the underlying phenomenon. In most applications, these re-
alizations are not sufficient to assess uncertainty; further processing must be applied
to address the practical questions at hand (Journel and Alabert 1990). For example, in
reservoir engineering, several realizations of petrophysical and/or lithological mod-
els of the subsurface reservoir are generated and then submitted to flow simulation
to assess reservoir flow performance, to assess the impact of drilling new wells or to
optimize their placement. A similar situation arises in the management of groundwa-
ter, where subsurface model realizations are used to assess the impact of pumping on
groundwater flow.

In general, a “transfer function” (e.g., flow simulator) is applied to post-process
each realization and thereby obtain its “response” (e.g., reservoir performance),
which may be single-valued or consist of a time-varying response. If many realiza-
tions are processed through the same transfer function, a probability distribution of
the response can be constructed and serve as a model of uncertainty (Fig. 1). While
this Monte Carlo simulation framework appears general and straightforward, sev-
eral challenges make it difficult to apply. First, the set of realizations may be gener-
ated by varying several key parameters impacting spatial variation. Applying a single

Fig. 1 Schematic diagram showing the calculation of probability quantiles though the evaluation of many
realizations using a transfer function
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geostatistical algorithm with a fixed parameter input often does not cover a wide
enough space of uncertainty. However, by jointly varying several input parameters
(variogram, histogram, training image, etc.) or even by varying the generating algo-
rithm itself, one may need to create several hundred or thousand of realizations to
capture the possible space of uncertainty adequately. Second, the transfer function
may be expensive to evaluate in terms of CPU. Many transfer functions are either
finite difference or finite element codes that may require some form of iterative op-
timization which may take several CPU hours if the grid underlying the realizations
contains a large (105, 106) number of cells. It is therefore impractical, in most cases,
to process several hundreds or thousand of realizations.

To circumvent these challenges, a widely used approach for modeling uncertainty
is the experimental design technique (Box and Draper 1975). Experimental design
aims at optimally selecting values of uncertain parameters in their range of varia-
tion, and then applying the transfer function on the resulting realizations to obtain
responses (Damslet et al. 1992; Manceau et al. 2001). From the response values, a
proxy model of the transfer function is built, which is a function of the uncertain pa-
rameters. The proxy model permits traditional Monte Carlo analysis of uncertainty.
However, one major drawback of experimental design techniques is that they are
often based on a simple linear regression and are thus not well suited for spatial vari-
ables or high-dimensional problems. In addition, experimental design techniques are
not appropriate for applications with many discrete parameters.

An alternative approach to quantifying uncertainty is to examine a large set of real-
izations, and not individual parameters as done in experimental design. For problems
of large dimensionality, evaluating the uncertainty of each parameter separately is of-
ten not useful, since many parameters are correlated, frequently in complex fashions.
Moreover, ultimately, we are not interested in uncertainty of individual parameters,
but in the realizations built from these parameters and responses predicted from those
realizations. Ranking techniques are traditionally used to select realizations that rep-
resent the P10, P50 and P90 quantiles of the responses of interest (Ballin et al. 1992).
The kth quantile is defined as the value x such that the probability of the response will
be less than x is at most k% and the probability that the response will be less than
or equal to x is at least k%. However, ranking techniques are highly dependent on
the ranking property employed. Ranking is often based on a rather simple statistics
extracted from the realization (e.g., original oil-in-place for reservoir models), which
may not correctly capture the transfer function behavior. These statistical measure-
ments often have a poor correlation with the response measured from the transfer
function.

In this paper we propose a new approach which is well suited to treat problems
using a very complex, time consuming transfer function, and non-Gaussian fields,
which do not fit with traditional Least-Squares techniques. The key concept is the
construction of a realization-based representation of uncertainty parameterized by
distances. This method employs a single parameter (the distance) between any two
realizations, which can be tailored to a particular application at hand. The aim is to
select a set of representative realizations by analyzing the properties of the realiza-
tions as characterized by the distance, and finally quantify uncertainty within that
set. Contrary to experimental design methodology which constructs a proxy model
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Fig. 2 Estimation of quantiles P10, P50 and P90 of a large set of responses by using only a few well
selected realizations

of the response, the proposed method relies on the assumption that a few selected
realizations have the same statistical characteristics in terms of response as the en-
tire set (Fig. 2). Thus, no prediction outside of the existing set of responses is done
with this method—the key is to select properly the subset of realizations. The follow-
ing section describes the methodology used in this approach. An application of the
methodology on a synthetic reservoir case of channel facies is presented. We end this
paper by giving some conclusions and a discussion of future work.

2 Description of Methodology

The objective of the methodology is to efficiently select, among a potentially large
set of realizations, a subset whose response (evaluated from a given transfer function)
exhibits the same statistical properties (densities, quantiles, mean, variance, etc.) as
the entire set of realizations. Since the transfer function can be very CPU demand-
ing, the objective is to avoid evaluating realizations having similar responses, and to
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concentrate on realizations which span a variety of response behavior. One way to do
so is to attempt to quantify differences or similarities between realizations, and then
group together realizations which are similar.

The principle of the methodology, illustrated for realizations of a binary categor-
ical variable, is described in Fig. 3. Each step in Fig. 3 will be described in greater
detail below. Starting with multiple (NR) realizations generated using any algorithm,
a dissimilarity distance matrix is constructed (Fig. 3(A) and 3(B)). This NR ×NR ma-
trix contains the “distance” between any two realizations. The matrix is then used to
map all realizations into a Euclidean space R (Fig. 3(C)) using multidimensional scal-
ing. Each point in this map represents a realization. Since in most cases the structure
of the points in mapping space R is not linear, we use kernel methods to transform
the Euclidean space R into a new space F , called the feature space (Fig. 3(D)). The
goal of the kernel transform is that points in this new space behave more linearly, so
that standard linear tools for pattern detection can be used more successfully (Prin-
cipal Component Analysis, cluster analysis, dimensionality reduction, etc.). These
tools allow the selection of a few “typical” points representing realizations, among
a potentially very large set. Application of the transfer function on a small subset of
realizations allows uncertainty quantification (e.g., P10, P50, P90 quantiles) of the
response variable.

2.1 Measurement of Dissimilarity Distance

2.1.1 Definition of Distance

The first step of the methodology is the definition of a dissimilarity distance between
any two realizations (Fig. 3(A)). The concept of similarity between geostatistical
model realizations was introduced by Arpat (2005), and Suzuki and Caers (2008).
The distance is a way to determine how similar two realizations are in terms of spa-
tial properties and transfer function response. The distance between two realizations
can be determined by classical distances that measure difference in geometry such
as the Hausdorff distance (Dubuisson and Jain 1994). For simulation of categori-
cal variables, the Hausdorff distance focuses on foreground facies pixels (if binary
model) or edge pixels of binary edges extracted from any type of realizations (Suzuki
and Caers 2008). However, the Hausdorff distance does not take into account con-
nectivity between wells which may be necessary to evaluate properly differences in
flow. Connectivity-based distances (Park and Caers 2007), or streamline-based sim-
ulation are other examples of possible distances. Note that the concept of “relative”
distance between two “objects” is different from the concept of difference in “ab-
solute” statistical summaries. It is not necessary to determine statistical measures
for each realization to measure dissimilarity. We need only to define a distance be-
tween any two realizations. The dissimilarity distance can be measured in any fash-
ion; the only requirement for the distance between two realizations is that it should
have a reasonable correlation with the difference in response of the same two realiza-
tions.
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Fig. 3 Proposed workflow for uncertainty quantification—(A) distance between two models, (B) distance
matrix D, (C) models mapped in Euclidean space, (D) feature space, (E) pre-image construction, (F) P10,
P50 and P90 quantile estimations



Math Geosci (2009) 41: 397–419 403

2.1.2 Construction of a Dissimilarity Distance Matrix

Given a set of NR realizations yi and a distance function δ between any two real-
izations, a NR × NR dissimilarity distance matrix D is constructed containing the
distance measured between any two realizations δij . A valid dissimilarity matrix
must satisfy both of the following constraints: self-similarity (δii = 0) and symmetry
(δij = δji). Once the distance matrix D is constructed, all the NR realizations are
mapped into an Euclidean space R using multidimensional scaling (MDS).

2.2 Multidimensional Scaling (MDS)

MDS is a technique used to translate the dissimilarity matrix into a configuration of
points in nD Euclidean space (Borg and Groenen 1997; Cox and Cox 1994). The
points in this spatial representation are arranged in such a way that their Euclidean
distances correspond as much as possible (in least square sense) to the dissimilarities
of the objects. A successful MDS procedure results in a good correlation between the
Euclidean distance and the dissimilarity distance. The classical MDS algorithm rests
on the fact that the coordinate matrix X of the points can be derived by eigenvalue
decomposition from a matrix A obtained by converting the dissimilarity matrix D

into a scalar product. Note that since the map obtained by MDS is derived solely
by the dissimilarity distances in the matrix, the absolute location of the points is
irrelevant. The map can be subject to translation, rotation, and reflection, without
impacting the methodology. Only the distances in mapping space R are of interest.

Applying this concept to our methodology, the objects under consideration are
realizations of a spatial phenomena, thus each realization is represented as a point.
MDS allows to represent each realization yi ∈ RNC , i = 1, . . . ,NR (defined by poten-
tially millions of grid-blocks) in a reduced coordinate system xi ∈ Rp , i = 1, . . . ,NR .
The dimension p of the Euclidean space is defined according to the eigenvalue de-
composition of A. In most cases, p can be small, since only a few eigenvalues in
the decomposition are significant. A higher dimensional space could be used to in-
crease the correlation, however, it would be improved only slightly while making
the convergence of the pre-image more difficult (see below for the description of the
pre-image).

An illustration of an application of classical MDS is presented in Fig. 4, illustrated
for facies models and using the Hausdorff distance to construct the dissimilarity ma-
trix. In this example, a 2D Euclidean space is sufficient to obtain a good quality map-
ping. The Euclidean distances between any two points are very close to the distances
in the dissimilarity matrix (correlation of 0.79). Figure 5 shows the increase of the
correlation as a function of the dimension of the Euclidean space. Note that the use
of high dimensional Euclidean spaces may not increase the correlation significantly.
For most applications, the structure of the points in the mapping space R is not linear
and therefore standard tools for pattern detection are not appropriate. To avoid this
problem, we employ kernel methods.
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Fig. 4 Multidimensional Scaling (MDS): each point represents a reservoir model in a 2D space

Fig. 5 Correlation between
dissimilarity distance and
Euclidean distance as a function
of the dimension of the
Euclidean space
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2.3 Kernel Methodology

2.3.1 Kernel-Principle

Kernel theory was recently developed in the field of neural computing and pattern
recognition (Vapnick 1998). Kernel principal component analysis (KPCA) is often
used as a tool to remove noise from computerized images (Shawe-Taylor and Cris-
tianni 2004). In reservoir engineering, kernel theory has been used by Sarma (2006)
in the context of inversion of flow data and production optimization. Kernel methods
consist of mapping the given data points from their input space R to some high-
dimensional feature space F using a multidimensional function Φ : Φ : R → F . The
feature space F is assumed to have a better linear variation than R. In other words,
points in F are linearly separable. Thus, tools requiring a linear relationship between
data can be applied into F instead of R. In our application, points generated by MDS
in space R are transformed by kernel methods into space F .

Kernel methods can be used to develop nonlinear generalizations of any algo-
rithm that can be cast in term of scalar products, such as PCA or k-means clustering
(Schöelkopf et al. 1998; Schöelkopf and Smola 2002). One principle advantage of
using kernels in these applications is that there is no need to map explicitly the points
from space R to F ; all necessary computations in space F can be carried out us-
ing the scalar product of the nonlinear function Φ . This function is called a kernel
function k, and is given by

k(x,y) = 〈
Φ(x),Φ(y)

〉
. (1)

The most common kernel function, the scalar product in the feature space F , is the
Gaussian kernel (radial basis function), which is given by

k(x,y) = exp

(
−‖x − y‖2

2σ 2

)
with σ > 0. (2)

In our application, we consider a Gaussian kernel for all the cases (2). Tests on other
kernel functions such as polynomial or sigmoidal were made, but the Gaussian kernel
was found to be more robust. The kernel width parameter σ controls the flexibility
of the kernel. From Keerthi and Lin (2003), we know that for small values of σ , the
kernel matrix becomes close to identity matrix (K = I ), and thus the application of
KPCA will lead to severe over-fitting. On the other hand, large values of σ gradually
reduce the kernel to a constant function (K = 1). In this case, the application of
KPCA will lead to severe under-fitting. As recommended by Shi and Malik (2000),
we choose σ as 10% to 20% of the range of the distance between points. Robustness
in the results of kernel clustering were found using σ within this range.

2.3.2 Pre-Image Construction

While the mapping Φ from input space R to feature space F is of primary importance
in kernel methods, the reverse mapping from feature space F back to input space R

may be desired (Fig. 3(E)). This reverse mapping process is called the pre-image
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problem. For example, one may want to map back to R the points (in space F )

projected by KPCA into a lower dimensional space. The difficulty with this procedure
is that the mapping function Φ into F is unknown, nonlinear and non-unique, thus
only approximate solutions are possible. In this work, approximate pre-images are
found using the fixed-point iteration approach proposed by Schölkopf. This approach
is essentially a gradient-based optimization technique. Note that the pre-image points
do not necessarily correspond to a point in the original space R. In this case, we take
the closest existing point. For details about the pre-images algorithm, see Schöelkopf
and Smola (2002).

2.3.3 Kernel Principal Component Analysis (KPCA)

To understand KPCA better, we first recall quickly the theory of principal component
analysis (PCA). PCA consists of projecting linearly the data onto a lower-dimensional
space. PCA provides a set of orthogonal axes, called principal components, obtained
by solving the eigenvalue problem of the sample correlation matrix. A small number
of principal components is often sufficient to describe the major trend in the data.
KPCA works in a similar manner. First, kernels map the given data points from space
R to space F using a multidimensional function Φ : Φ : R → F and then PCA is
applied in F . Using the kernel function (1), it can be shown (Schöelkopf and Smola
2002) that KPCA requires only an eigenvalue decomposition of the NR × NR kernel
matrix K defined by

Kij = k(xi ,xj ), xi ∈ R, i = 1, . . . ,NR.

KPCA is a powerful technique for extracting structure from potentially high-
dimensional data sets with complex variability. KPCA can be seen as a way of re-
moving noise from the points in R.

2.3.4 Kernel K-Means Clustering (KKM)

Clustering algorithms are also applicable in feature space F and are suited to our
problem. Cluster analysis aims to discover the internal organization of a dataset by
finding structure within the data in the form of clusters. Hence, the data is broken
down into a number of groups composed of similar objects. This methodology is
widely used both in multivariate statistical analysis and in machine learning. Defin-
ing clusters consists in identifying an ‘a priori’ fixed number of centers and assign
points to clusters with the closest center. The number of the cluster is defined by the
user, depending on the number of evaluations of the transfer function which can be
performed in the time allotted to the task. In this work, we apply the classical k-means
algorithm in the feature space F to determine a subset of points defined by the clus-
ter centroids. The k-means procedure requires a method for measuring the distance
between two points in the high-dimensional feature space F . The distance can be
computed using the scalar product information through the equality

∥∥Φ(x) − Φ(z)
∥∥2 = 〈

Φ(x),Φ(x)
〉 + 〈

Φ(z),Φ(z)
〉 − 2

〈
Φ(x),Φ(z)

〉

= k(x,x) + k(z, z) − 2k(x, z).
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Note that this equality is only true for Euclidean distance, hence the necessity of the
MDS procedure prior to performing KKM. For an overview of clustering techniques,
see Buhmann (1995), and Shawe-Taylor and Cristianni (2004) for specific informa-
tion about kernel clustering techniques.

2.4 Uncertainty Quantification

In our application, we apply KPCA or KKM to hundreds of realizations of a spatial
phenomenon mapped in a Euclidean space. These methods identify a small subset of
realizations which represent “typical” realizations of the full set. In Fig. 6(A), we use
the same example as in Fig. 4 using the Hausdorff distance—the subset of realizations
selected by KPCA is represented by squares. Application of the transfer function
(e.g., flow simulation) is then done on this subset of realizations. Uncertainty can be
subsequently analyzed by calculating, for example, the quantiles P10, P50 and P90 on
these few models (Fig. 6(B)). Note that the subset of realizations selected by KPCA
or KKM may not be equiprobable. Thus, a weighting scheme should be defined for
a proper estimation of the quantiles. In the case of KKM, it is obvious to represent
each simulation as many times as the number of models in the corresponding cluster.
In the case of KPCA, we propose to perform k-means in the subspace generated by
KPCA to define the weighting scheme.

2.5 Illustration of the Concept in a Simple Example

Before providing a realistic application of this methodology, we give a simple il-
lustrative example that describes intuitively the inner working of the proposed ap-
proach. In this example shown in Fig. 7, we have generated 30 2D-realizations
xi = (xi

1, x
i
2), i = 1, . . . ,30. Their representation in the 2D parameter space is given

by 3 clusters as shown by the points, colored by cluster. Such clusters could represent
three “geological populations”. The transfer function for this example is defined by
f (x1, x2) = 0.5x1 +x3

2 . The contours of the values of the transfer function are shown

Fig. 6 (A) Mapping space R: points selected by KPCA represented by squares, (B) Resulting quantiles
estimation (P10 P50 and P90)
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Fig. 7 Simple example demonstrating the benefits of using a good distance to group realizations having
similar transfer function values

in Fig. 7(A). Note that in the general case, for CPU reasons, the transfer function can-
not be evaluated exhaustively. To assess response uncertainty on these realizations,
one could select the centroids of each cluster in Fig. 7(A) and evaluate the transfer
function. This would result in 2 evaluations with similar responses, which should be
avoided in the case of a CPU demanding transfer function.

However, assume we can define a distance between realizations i and j , which is
defined as a weighted difference between the coordinates of the points (3).

dij = 0.5
(
xi

1 − x
j

1

) + (
xi

2 − xi
2

)
. (3)

The distance is a 1st order approximation of the actual difference in transfer function.
The correlation coefficient between dij and the actual distance is 0.81 (Fig. 7(B)). If
we compute the distance between each pair of realizations, we can map all the realiza-
tions using MDS into a new 2D space as shown in Fig. 7(C). We can see that 2 groups
are identified by traditional k-means in the MDS space, and only 2 transfer function
evaluations are necessary. The probability density derived from these 2 transfer func-
tion evaluations reproduces accurately the density of the response of the 30 realiza-
tions (Fig. 7(D)). The probability densities were generated using a kernel smoothing
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algorithm (Bowman and Azzalini 1997). This example, albeit simple, emphasizes an
important point that applies generally. Spatial model realizations may exist in a high-
dimensional space (e.g., the number of grid cells). Examining the responses in such
a high-dimensional space may be prohibitive. However, certain realizations may ap-
pear different from a spatial/geological point of view but may have similar responses.
Instead, if a response specific distance exists, the realizations can be mapped into a
low-dimensional response space (Fig. 7(C)) allowing efficient and effective selection
of representative realizations for quantifying response uncertainty. Note that, in the
example above, the realizations in the response space behave linearly and clustering
techniques can be applied directly in this space. However, in real applications, the
Euclidean space resulting from the MDS procedure is often very complex because of
the high non-linearity of the transfer function. Thus, kernel techniques are employed
to make the clustering procedure more efficient. Results of the application of KPCA
and KKM for an oil reservoir example are presented in next section.

3 Application to Subsurface Flow Uncertainty Assessment

In reservoir engineering, several realizations of petrophysical and/or lithological
models of the subsurface reservoir are generated using a geostatistical algorithm. The
transfer function in this application is a numerical flow simulator, which can be very
CPU demanding for models with a large number of grid cells. The realizations are
submitted to flow simulation in order to assess the uncertainty in reservoir flow per-
formance. We use the method proposed in this paper to perform only a small number
of flow simulations whose response has the same characteristics as the entire set of
realizations. The probability distribution of the flow response of interest, in this case
the field production oil rate, is then determined. A synthetic case study is presented
to demonstrate the potential of the proposed methodology. We consider a channel
system, composed of mud and sand. The background mud is understood as a seal-
ing rock which does not have flow capacity and storage capacity. The inner channel
heterogeneity in petrophysical properties is considered as negligible, thus channels
are modeled with uniform (known) porosity/permeability. The spatial distribution of
channel sands is considered the main driving parameter for flow. The reservoir model
is a 80 × 80 2D grid containing 3 producers and 3 injectors, all penetrating channel
sand. To construct a prior uncertainty space that accommodates a large set of model
realizations, 5 realizations derived from 81 training images (giving a total of 405
facies realizations) are geostatistically simulated. The realizations are conditioned
to facies observations at the wells, depicted in Fig. 8, all penetrating channel sand.
A multipoint geostatistical technique called SIMPAT (Arpat and Caers 2007) is used.
Note that in this case, we vary a key input component of the algorithm, namely the
training image. Since the training image determines the nature of the pattern being
simulated, the 405 realizations exhibit significantly varying patterns. In order to ana-
lyze the efficiency and quality of the method, standard flow simulations were run for
each realization. Note that for real field cases, this is in general not possible. For a
more detailed description of the case, see Suzuki and Caers (2008).

We apply the methodology proposed in this paper using flow-based distances mea-
sured using streamline simulation. The Hausdorff distance showed a poor correlation
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Fig. 8 Example of 3 reservoir model realizations with well locations

with the flow simulations, thus was not well suited to the application. We have found
that flow-based distances are well adapted when the response of interest is produc-
tion data, which is the case in this study. Streamline simulation has been shown to be
orders of magnitude faster than standard flow simulation, and is thus well suited for
problems where rapid evaluation of many models is needed (Batycky et al. 1997). Our
results are compared with traditional methods, such as ranking with static properties
and tracer simulations.

3.1 Application of the Proposed Methodology

3.1.1 Construction of the Distance Matrix

The distance is calculated using the tracer simulation option of a commercial stream-
line flow simulator. Tracer simulation approximates the flow as linear, meaning that
the injection and production fluids are assumed to be identical. Thus, in this case,
only a single pressure solve is necessary to perform fluid flow simulation, giving ex-
tremely rapid results. The distance between any two reservoir models is given as the
absolute difference in field oil rate at two given times (10 000 and 20 000 days):

δij =
∑

t∈{10000,20000}

∣∣FOPRstreamline
i (t) − FOPRstreamline

j (t)
∣∣.

The field oil rate for each model differs due to the difference in water breakthrough
for each producing well. Late simulation times are employed to ensure that the water
breakthrough has occurred for all realizations, enabling the greatest distinction in the
water breakthrough between each realization. As discussed before, the distance needs
to be reasonably well correlated with the flow response of interest. To compare the
distance with the results from standard flow simulation, we calculate the average of
absolute difference in oil rate as

�FOPR
ij = 1

Nt

Nt∑

t=1

∣∣FOPREclipse
i (t) − FOPREclipse

j (t)
∣∣, (4)
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where t represents the time and Nt the number of timesteps. In this case, the correla-
tion coefficient between the distance and the difference in oil is ρ(δ,�FOPR) = 0.77
which we have found is generally sufficient for accurate results. A smaller correlation
coefficient will not necessarily result in inaccurate uncertainty quantification; most of
the time increasing the number of clusters to retain more simulations is sufficient.

3.1.2 Multi-Dimensional Scaling

Using the dissimilarity distance previously defined, we apply multidimensional scal-
ing to map all the realizations in a 3D Euclidean space R. A 3D mapping space R is
deemed appropriate to ensure that the Euclidean distance between any two points in
R reproduces the dissimilarity in the matrix D. Indeed, the correlation coefficient be-
tween the dissimilarity matrix D and the pair-wise Euclidean distance is high at 0.9.
Subsequent application of KPCA and KKM only considers these Euclidean distances
between the models since Euclidean distance is a very good representation of the dis-
similarities of the reservoir models. Note that distinct geological properties give rise
to a wide scatter of flow responses. Note as well that certain realizations may appear
different from a geological point of view, but they may exhibit similar flow behavior.
In this case, these realizations would then be found in the same cluster, regardless
which training image they were derived from.

3.1.3 Application of KPCA

At this step of the methodology, we define a kernel function which transforms the
mapping space R into a space F with improved linear variation. The Gaussian radial
basis kernel is used (2), whose parameter was chosen as 10% of the range of the
dissimilarity matrix: σ = 800. We first perform KPCA to reduce the dimensionality
of the problem by projecting the points in a 4D subspace of the feature space. In
that subspace, we perform cluster analysis using k-means, to determine 15 clusters.
The number of cluster was defined as the maximum number of flow simulations we
can afford for a given CPU. We compute the pre-images of each centroid using the
Schölkopf fixed-point algorithm.

Full flow simulations are performed for 15 realizations corresponding to the pre-
images. Recall that the pre-image mapping may not result in points corresponding
to a realization. In this instance, we select the nearest point (realization) for flow
simulation. Uncertainty quantification is then performed by calculating the quantiles
P10, P50 and P90 on these 15 models as a function of time, each model being rep-
resented as many times as the number of models in the corresponding cluster. Thus,
only 15 flow simulations were performed out of a total of 405 reservoir models. Fig-
ure 9(A) represents the evolution of field oil rate as a function of time for the 15
selected realizations; Fig. 9(B) represents the quantiles resulting from the 15 and 405
simulations, respectively. We can observe that the estimation of quantiles P10, P50
and P90 is accurate. In Figs. 9(C) and 9(D), we present the probability density of
the field oil rate for the 405 realizations (dotted line), and for the 15 realizations for
2 different times (2000 and 6000 days). Table 1 shows the mean, variance, kurtosis,
and skewness coefficients of the densities. We can see that the estimated densities are
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Fig. 9 KPCA Results: (A) Oil Rate as a function of time for all the 15 realizations, (B) P10, P50 and P90
values, (C) Density of oil rate for all 405 realizations (dashed line) and 15 selected realizations (solid line)
at 2000 days and (D) at 6000 days

Table 1 Statistical properties of the densities resulting from KPCA and KKM

All Data KPCA KKM All Data KPCA KKM

2000 days 2000 days 2000 days 6000 days 6000 days 6000 days

Mean 4.11E+03 4.84E+03 4.35E+03 3.25E+03 3.20E+03 2.63E+03

Variance 2.04E+06 1.01E+06 1.25E+06 4.29E+06 1.53E+06 2.07E+06

Kurtosis 1.7998 1.7998 1.7998 1.7998 1.7998 1.7998

Skewness 8.71E−16 5.51E−16 −2.99E−15 −1.74E−16 −1.13E−15 1.24E−15

close to the reference, which means that the 15 realizations have similar characteris-
tics as the 405. We now replace this two-step methodology (PCA and clustering) by
performing a single cluster analysis in the feature space F .
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3.1.4 Application of KKM

In this section, we apply the second methodology, kernel k-means (KKM). The two
first steps, the definition of the dissimilarity matrix and mapping the points with
MDS, are identical for the 2 methods. Thus, they are not illustrated here. A Gaussian
kernel (2) with σ = 850 is used to define the feature space F in which clusters are
identified. Again, we assume that only 15 flow simulations are affordable in this case.
Uncertainty quantification is subsequently performed by flow simulation for the 15
realizations selected by KKM and by computing the resulting quantiles P10, P50 and
P90 (Figs. 10(A) and 10(B)). The weight of each realization equals the number of
points in the corresponding clusters. Figures 10(C) and 10(D) represent the density
computed from the 15 simulations, as well as the density for the full set of realiza-
tions for 2 different times. Table 1 gives their statistical properties. We can see that
the subset of 15 selected realizations has similar probability densities compared to
the entire set of 405 realizations.

Fig. 10 KKM Results: (A) Oil Rate as a function of the time for all the 15 realizations, (B) P10, P50, P90
values, (C) Density of oil rate for all 405 realizations (dashed line) and 15 selected realizations (solid line)
at 2000 days and (D) at 6000 days
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3.2 Comparison with Classical Ranking Techniques

In this section, we compare the results obtained by the proposed methodology with
classical techniques which consists of ranking the realizations according to a specific
measure, and then determining realizations for flow simulation.

3.2.1 Ranking Technique Review

The central goal of ranking is to exploit a relatively simple static measure to accu-
rately select geological realizations that correspond to the targeted percentiles of the
production responses, for example, those which represent P10, P50 and P90 (Ballin et
al. 1992). This would define the bounds of the uncertainty without performing a large
number of fine-scale flow simulations. The ranking and selection of realizations must
be tailored to the flow process. It is well known that a particular ranking measure
must be highly correlated to production response. Conventional ranking measures
are, for example, original oil in place or connectivity (McLennan and Deutsch 2005).
Use of streamline simulation (Gilman et al. 2002) and tracer simulation (Ballin et
al. 1992) have received significant attention. However, there is no unique ranking
index when there are multiple flow response variables and no ranking measure is
perfect.

3.2.2 Comparison of Quantile Estimation

In this work, we have considered two different measures for each of the 405 real-
izations: original oil in place (OOIP) which represents the total volume of oil in the
reservoir, and oil rate obtained by streamline tracer simulation, as used for the dis-
similarity distance. Once a ranking measure is selected, the methodology for ranking
and selecting the geostatistical realizations for flow processing is straightforward.
The ranking measure is calculated for every geostatistical realization. The low (P10),
medium (P50) and high (P90) geological realizations are then selected for flow mod-
eling. Results for oil rate are presented in Fig. 11. We have presented the quantiles
obtained with the entire set of realizations, and the quantiles resulting from the rank-
ing measure. Figure 11(A) represents results using OOIP as a ranking measure. Fig-
ures 11(B) to 11(D) represent results using the oil rate from the tracer at respec-
tively 7000, 10 000, and 20 000 days. Quantile estimations using ranking based on
OOIP and streamline tracer are less accurate than the one obtained with the proposed
methodology. To understand why the OOIP and tracer rankings provide less accu-
rate results, we examine the correlation coefficients of the ranking measurement with
the field oil rate. The correlation coefficient between OOIP and field oil rate is 0.19,
which indicates that the OOIP is not a good measure for ranking. Tracer simulation is
more suitable due to the improved correlation with the flow response (0.63, 0.76, and
0.87 at 7000, 10 000, and 20 000 days, respectively). This illustrates that in order for
the ranking procedure to give reliable results, the ranking measure must be strongly
correlated with production.

The ranking methods for selecting the P10, P50 and P90 realizations for flow sim-
ulation are not as accurate as the methodology proposed in this paper. However, only
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Fig. 11 Quantiles P10, P50 and P90 resulting from ranking measures: (A) OOIP, (B) Tracer—7000 days,
(C) Tracer—10 000 days, (D) Tracer—20 000 days

3 full flow realizations were performed, whereas for the new method, 15 flow sim-
ulations were necessary. To compare both methods based upon the same number of
flow simulations, we select 15 realizations equally spaced according to the ranking
measure. Resulting quantiles for field oil rate are presented in Fig. 12. For the same
number of flow simulation, Fig. 12 shows that the use of ranking measures is less
accurate than the use of KPCA or KKM. Note that in the method proposed in this
paper, we use tracer simulations for calculating the distance but not for ranking. The
selection of realizations is done using another approach (KPCA or KKM). In the
case shown here, results show that for the same measure (tracer simulation), better
results are obtained from KPCA or KKM than from ranking (Fig. 13). In Fig. 13,
we observe that the efficiency of the ranking technique relies on a high correlation
coefficient between the ranking measurement and the flow response, whereas in case
of distances, a smaller correlation coefficient is sufficient. In addition, for an equiv-
alent correlation coefficient, quantiles are more accurate using distances and kernels,
than using ranking measures (Fig. 14). In other words, the use of distances, instead
of absolute values, improves the solution by using a “measure” to select the realiza-
tions.
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Fig. 12 Quantiles P10, P50 and P90 resulting from ranking measures: (A) OOIP, (B) Tracer—7000 days,
(C) Tracer—10 000 days, (D) Tracer—20 000 days

4 Conclusions

We have presented results for a new realization-based method for uncertainty quan-
tification of a spatial phenomenon. The method relies on a reasonable correlation
between the distance measure and the response variables of interest. Using an ap-
plication specific distance is an important additional tool which makes the task of
response uncertainty quantification more effective. In general, each new type of ap-
plication will require investigation of a new distance, which requires more work and
produces more reward. For similar types of problems, these distances can then be
reused. In our example of assessing subsurface flow uncertainty, we use streamline
simulation to obtain the distances, which correlates well with the differences in pro-
duction response using standard flow simulation. Given the distance measure, we
employ KPCA and k-means clustering or kernel k-means to select a subset of 15 re-
alizations which contains the same P10, P50, P90 quantiles as for the entire set of
405 models. The application of this new method shows promising results; quantile
estimations using this methodology are noticeably better than those using traditional
ranking methods for the same number of transfer function evaluations. In addition,
only a small number of transfer function evaluations were necessary to obtain accu-
rate uncertainty quantification though quantile estimation. An application to a simple
synthetic case is provided in this paper. However, this methodology can also be suc-
cessfully applied on oil and gas reservoirs, as presented in Scheidt and Caers (2008),
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Fig. 13 Comparison between ranking and KKM using the same tracer measure. Note that the correlation
coefficient for the absolute values of ranking measure is greater than the relative (distance) measure, but
the P10, P50, P90 estimations are less accurate

Fig. 14 Comparison between ranking and KKM for similar correlation coefficient. Note that for similar
correlation coefficient, P10, P50, P90 estimations are more accurate for kernels
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where it was shown that KPCA and KKM easily outperform the state of the art rank-
ing technique. Tests on the robustness of the method with regards to the correlation
between the distance and the difference of transfer function evaluations were per-
formed on a real oil field case (Scheidt and Caers 2008). Results show that the higher
the correlation, the smaller the error in the quantile estimation. In addition, if the cor-
relation is low, increasing the number of transfer function evaluations is required in
order to obtain accurate representation of uncertainty. However, no systematic bias or
reduction in variance was noted. In the case where the correlation is zero, the method
does not better or worse than random selection.
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