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Abstract This paper describes a quantitative methodology for deriving optimal
exploration target zones based on a probabilistic mineral prospectivity map. The
methodology is demonstrated in the Rodalquilar mineral district in Spain. A subset
of known occurrences of mineral deposits of the type sought was considered dis-
covered and then used as training data, and a map of distances to faults/fractures
and three band ratio images of hyperspectral data were used as layers of spatial
evidence in weights-of-evidence (WofE) modeling of mineral prospectivity in the
study area. A derived posterior probability map of mineral deposit occurrence show-
ing non-violation of the conditional independence assumption and having the highest
prediction rate was then put into an objective function in simulated annealing in or-
der to derive a set of optimal exploration focal points. Each optimal exploration focal
point represents a pixel or location within a circular neighborhood of pixels with high
posterior probability of mineral deposit occurrence. Buffering of each optimal explo-
ration focal point, based on proximity analysis, resulted in optimal exploration target
zones. Many of these target zones coincided spatially with at least one occurrence of
mineral deposit of the type sought in the subset of cross-validation (i.e., presumed
undiscovered) mineral deposits of the type sought. The results of the study showed
the usefulness of the proposed methodology for objective delineation of optimal ex-
ploration target zones based on a probabilistic mineral prospectivity map.
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1 Introduction

Occurrences of mineral deposits, which could be in the form of mines (economic and
surveyed in three dimensions), prospects (surveyed mostly in two dimensions), or
even showings (significant outcrops), are considered samples of a mineralized land-
scape. Occurrences of mineral deposits of the type sought are used for training in
data-driven predictive mapping of mineral prospectivity. Basically, mineral prospec-
tivity mapping involves delineating exploration targets, whereabouts the probability
for the occurrence of the mineral deposit-type of interest is high. These targets might
require a more detailed survey in a further stage of mineral exploration. In regional- to
district-scale mineral prospectivity mapping, the objective is to delineate exploration
target zones (i.e., polygons). This differs in local- to deposit-scale mineral prospec-
tivity mapping, where the objective is to define exploration target locations or points.

Several mathematical methods exist for regional- to district-scale data-driven map-
ping of mineral prospectivity. Particular possibilities include the weights-of-evidence
or WofE method (Good 1950; Bonham-Carter et al. 1988, 1989; Agterberg et al.
1990), logistic regression (Chung and Agterberg 1980; Agterberg and Bonham-Carter
1999), canonical favorability analysis (Pan 1993), neural networks (Porwal et al.
2003; Rigol-Sanchez et al. 2003), and evidential belief functions (Carranza and Hale
2003). Regardless of which data-driven method of mineral prospectivity mapping is
applied, a logical question regarding the usefulness of a regional- to district-scale
mineral prospectivity map in making a decision to proceed (or not to proceed) to the
next higher scale of mineral exploration is: “Which areas of high likelihood of min-
eral deposit occurrence are optimal exploration target zones for further surveying of
undiscovered occurrences of mineral deposits of the type sought?”

The objective of this paper is to demonstrate a methodology that we have de-
veloped in order to provide a plausible answer to the aforementioned question in a
district-scale case study. We have tested our proposed methodology, for deriving op-
timal exploration target zones based on using a district-scale WofE-derived mineral
prospectivity map of the Rodalquilar mineral district (southeastern Spain).

2 General Description of the Methodology

Initially, a mineral prospectivity map via the WofE method was created (Fig. 1). It was
based on a Bayesian probability framework to update the prior probability of mineral
deposit occurrences of the type sought in every unit cell or pixel in a study area. We
used a set of training mineral deposit occurrences of the type sought and a number of
thematic map layers of geological evidence having positive spatial association with
these types of mineral deposits. The output mineral prospectivity map is a map of
posterior probability of mineral deposit occurrences of the type sought. Using the
map, we considered individual pixels to be prospective if their posterior probability
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Fig. 1 A flow diagram outlining the stages to obtain the optimal exploration target zones

was greater than the estimated prior probability. After determining the prediction rate
of the WofE-derived mineral prospectivity map (i.e., proportion of cross-validation
deposits that coincide with prospective pixels), we used it as input spatial information
for our proposed methodology (explained below), in order to determine the optimal
exploration target zones. Although we used WofE to create a mineral prospectivity
map in this case study, we postulate that any mineral prospectivity map derived by
any of the methods mentioned earlier could also be useful for the same purpose.

In order to determine the optimal exploration target zones from a given mineral
prospectivity map, we adopt the following paradigm. In searching for target object(s)
of interest, not only in regional- or district-scale mineral exploration but also in other
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types of “search endeavors” at similar scales (i.e., in large areas), one intuitively de-
fines at first instance a focal point according to a set of criteria and then draws a
perimeter (i.e., a search radius) around the focal point according to another set of cri-
teria. The perimeter around the focal point is usually, but not always, circular within
which to continue searching for the target object(s) of interest more intensively. Thus,
with this intuitive paradigm, we used a WofE-derived posterior probability map in or-
der to determine the optimal exploration target zones in the following way (Fig. 1).
First, we used the prediction rate of the WofE-derived posterior probability map and
the number of cross-validation deposits delineated correctly by the map in order to
estimate a number of exploration focal points. For this purpose, we used the binomial
distribution. Second, we used the posterior probabilities in the WofE-derived map
and the estimated number of exploration focal points as input data and as a control
parameter, respectively, in order to derive the locations of optimal exploration focal
points. An optimal exploration focal point is a pixel or location, at and around which
there is a high posterior probability of mineral deposit occurrences of the type sought.

Because mineral deposit occurrences are samples of a mineralized landscape,
a configuration of exploration focal points can also be considered as a sampling
scheme. Many studies have demonstrated that a sampling scheme can be optimized
satisfactorily via simulated annealing (SA). Previous studies of SA applications to
obtain optimal sampling schemes involved stratification of input data (van Groenigen
et al. 2000a; Debba et al. 2008), definition of thresholds (van Groenigen et al. 2000a;
Debba et al. 2005), definition of a weight function (van Groenigen et al. 2000b;
Debba et al. 2005), and application of ordinary kriging (Shyan-Shu et al. 2005).
Previous studies of deriving optimal sampling schemes in conjunction with remote
sensing have used multispectral data (Tapia et al. 2005) or hyperspectral data (Debba
et al. 2005, 2008). These studies typically developed model-based optimal sampling
schemes (de Gruijter and ter Braak 1990). In this study, we demonstrate application
of SA to derive a set of optimal exploration focal points based on a probabilistic
mineral prospectivity map.

The optimal exploration focal points derived via the application of SA are then
subjected to proximity analysis in order to delimit the optimal exploration target
zones around each of them. Each of the optimal exploration target zones are pri-
oritized according to certain criteria. The delineated optimal exploration target zones
are then validated for each of the prioritized optimal exploration target zones and are
tested against the set of cross-validation deposits that were also used to test and deter-
mine the prediction rate of the input WofE-derived posterior probability map (Fig. 1).

3 Generation of Prospectivity Map

3.1 Weights of Evidence (WofE) Modeling

WofE modeling (Good 1950; Bonham-Carter et al. 1988; Agterberg et al. 1990) is
a Bayesian method that combines information from multiple layers of spatial evi-
dences in order to predict the occurrence of a binary pattern. Each mineral deposit
occurrence is treated as a binary object, being either present or absent, in every unit
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cell or pixel. In mineral prospectivity mapping, each layer of spatial evidence has
either a positive or negative spatial association with a set of training mineral deposit
occurrences. Each layer of spatial evidence thereby either increases or decreases the
posterior probability of mineral deposit occurrence at unvisited locations.

Let D represent a set of discovered mineral deposits with each deposit either con-
tained in or represented by just one unit cell. Let P(D) be an estimate of the prior
probability of mineral deposit occurrence. Furthermore, let Bt denote a binary pat-
tern of a layer of spatial evidence with a threshold at t , which is a spatial data attribute
(e.g., band ratio or distance to faults/fractures), that is initially arbitrarily chosen. The
conditional probability given the presence of Bt is

P
(
D|Bt

) = P(D) · P(Bt |D)

P (Bt )
, (1)

where P(D|Bt) is the posterior probability of mineral deposit occurrence, given the
presence of the binary pattern. Similarly, we can define the posterior probability of
mineral deposit occurrence, given the absence of the binary pattern, Bt .

In WofE, the posterior probability is converted to the posterior odds ratio (O(A) =
P(A)/P (A) for any occurrence A), by dividing both sides of (1) by P(D|Bt) and
simplifying by replacing P(D|Bt) · P(Bt ) = P(Bt |D) · P(D). This yields

O
(
D|Bt

) = O(D) · P(Bt |D)

P (Bt |D)
, (2)

where O(D|Bt) is the posterior odds of D given Bt and O(D) is the prior odds of D.
By taking the natural logarithm on both sides of (2),

lnO
(
D|Bt

) = lnO(D) + W+, (3)

where W+ = ln P(Bt |D)

P (Bt |D)
is the weight of evidence for the presence of Bt . Similarly,

using the posterior probability of the mineral deposit occurrence given the absence of
Bt , we arrive at

lnO
(
D|Bt

) = lnO(D) + W−, (4)

where W− = ln P(Bt |D)

P (Bt |D)
is the weight of evidence for the absence of Bt .

The statistical significance of the weights can be determined based on their vari-
ances, which are approximated from Bishop et al. (1975) as

s2(W+) = 1

N(Bt ∩ D)
+ 1

N(Bt ∩ D)
and

s2(W−) = 1

N(Bt ∩ D)
+ 1

N(Bt ∩ D)
,

(5)

where N(·) denotes the number of counts. For example, N(Bt ∩ D) is the num-
ber of mineral deposit occurrences in the presence of the binary pattern Bt . Once
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the weights W+ and W− are determined from (3) and (4) for each layer of spa-
tial evidence Bt using several different thresholds, the maximum spatial contrast,
C = W+ −W− usually indicates the optimum threshold value of t , which can be cal-
culated. If the number of mineral deposit occurrences is small, the studentized spatial
contrast, C/s(C) (where s(C) is the standard deviation of C), aids in determining an
optimum threshold value of spatial evidence in order to create Bi . The binary pre-
dictor maps, Bi , are then used to determine the posterior probability of the mineral
deposit occurrence. For k sets of spatial evidence, resulting in B1,B2, . . . ,Bk binary
predictor maps,

P(D|B1, . . . ,Bk) = P(B1, . . . ,Bk|D) · P(D)

P (B1, . . . ,Bk)

= P(B1, . . . ,Bk|D) · P(D)

P (B1, . . . ,Bk|D) · P(D) + P(B1, . . . ,Bk|D) · P(D)
. (6)

Equation (6) allows us to calculate the posterior probability of a mineral deposit oc-
currence given the presence or absence of an evidence. Because of their interaction,
the terms P(B1, . . . ,Bk|D) and P(B1, . . . ,Bk|D) are difficult to estimate by the rules
of probability, P(D|B1, . . . ,Bk) is biased, unless conditional independence (CI) is
assumed among each of the P(Bi |D) where i = 1, . . . , k binary predictor maps. As-
suming CI, P(B1, . . . ,Bk|D) = ∏k

i=1 P(Bi |D). A similar expression applies for the
second term in the denominator of (6). With k binary predictor maps, 2k possible
combinations of spatial evidence exist, depending on whether binary predictor map
pattern Bi is present or not. This also means that there are 2k unique conditions in the
posterior probability map, being equivalent to 2k polygons or grid cells in which the
same combination of evidence occurs. After assuming CI in (6) and some simplifica-
tions, we obtain, in odds formulation,

lnOj(D|B1, . . . ,Bk) = lnO(D) +
k∑

i=1

W
j
i , (7)

where W
j
i denote the weights (W+

i or W−
i ) contributed by spatial evidence in binary

predictor map Bi (i = 1,2, . . . , k) to the j th unique condition (j = 1,2, . . . ,2k). The
posterior probabilities are then obtained from the posterior odds using

Pj = Pj (D|B1, . . . ,Bk) = Oj(D|B1, . . . ,Bk)

1 + Oj(D|B1, . . . ,Bk)
. (8)

The variance of the posterior odds is

s2(O) =
k∑

i=1

s2(Wi), (9)

where s2(Wi) is either s2(W+
i ) or s2(W−

i ) (defined by (5) for each binary predictor
map Bi ) depending on whether the binary predictor map Bi is present or not.
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The images of the hyperspectral band ratios and the image of the distances to faults
and fractures were converted to binary predictor maps Bi by finding the optimum
threshold value in these images with respect to D in order to maximize positive spatial
association of these evidential data with the target variable D as indicators of the
mineral deposit occurrence. In the binary predictor maps, the corresponding values
of W+ and W− are then assigned to the pattern indicating presence or absence of
evidence, respectively. The binary predictor maps are then combined using (7) and
the posterior probability is estimated using (8).

WofE modeling assumes CI among the evidence maps with respect to a set of the
mineral deposit occurrences. Violation of this assumption causes the posterior prob-
abilities to be over-estimated. The assumption of CI is tested using the ‘new omnibus
test’ (NOT) (Agterberg and Cheng 2002; Thiart et al. 2004). The NOT compares the
number of training mineral deposit occurrences N(D) to the number of predicted
training mineral deposit occurrences N(D)pred, where

N(D)pred =
2k∑

i=1

Pj

{
N(A)

}
j

(10)

and {N(A)}j is the area in unit cells for the ith unique condition. The test sta-
tistic (Agterberg and Cheng 2002; Thiart et al. 2004) under the null hypothesis
H0 : N(D)pred = N(D) is

NOT = N(D)pred − N(D)

s[N(D)pred] , (11)

where the variance of the number of predicted training mineral deposit occurrences
s2[N(D)pred] is estimated by

s2[N(D)pred
] =

2k∑

i=1

[{
N(A)

}
j

]2 × s2(Pj ) (12)

and the variance of Pj is estimated based on the variance of the weights (Bonham-
Carter et al. 1989) by

s2(Pj ) = 1

N(D)
+

k∑

i=1

s2(Wj
i

) × P 2
k . (13)

Values of NOT are assumed to approximate the standard Gaussian distribution and
the hypothesis will be rejected in favor of H1 : N(D)pred > N(D) for a statistically
larger difference. An integrated model showing non-violation of the CI assumption
is then used to create a posterior probability map. The prediction rate of a posterior
probability map is estimated as the proportion of the predicted undiscovered mineral
deposit occurrence in a cross-validation set. This corresponds with prospective pixels
(i.e., pixels with posterior probability greater than the prior probability) in a WofE
model created by using a training set of discovered mineral deposit occurrences. By
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interchanging the roles of the two sets of mineral deposit occurrences as training and
cross-validation data, the WofE model showing non-violation of the CI assumption
and having the highest prediction rate is chosen as input to our proposed method for
final derivation of the optimal exploration target zones.

3.2 Case Study

3.2.1 Geology and Mineralization of the Rodalquilar Mineral District

The Rodalquilar mineral district is located in the Sierra del Cabo de Gata volcanic
field, in the south-eastern part of Spain (Fig. 2). It consists of pyroxene andesites
to rhyolites of the late Tertiary age. Extensive hydrothermal alteration of the vol-
canic rocks resulted in the formation of high to low temperature minerals: silica →
alunite → kaolinite → illite → chlorite. Occurrences of high- or low-sulphidation
epithermal precious- and base-metal deposits are in veins or in hydrothermal brec-
cias (i.e., fracture controlled) associated with hydrothermally altered rocks (Ar-
ribas et al. 1995). High-sulphidation precious-metal deposits are associated with
advanced argillic (alunite ± kaolinite) and intermediate argillic (kaolinite ± illite)
zones, whereas low-sulphidation precious- and base-metal deposits are associated
with argillic to pyropylitic (illite ± chlorite) zones (Arribas et al. 1995). The epither-
mal minerals are localized along faults and fractures that cut through the volcanic
host rocks. Based on these generalized geological characteristics of the discovered
occurrences of epithermal mineral deposits in the district, we apply two recognition
criteria in mapping prospectivity for epithermal mineral deposits: (1) hydrothermal
alteration evidence, and (2) structural evidence.

3.2.2 Data for Hydrothermal Alteration Evidence

We used a sub-scene, consisting of 2640 × 1300 pixels, of airborne imaging spec-
trometer data acquired by the Hyperspectral Mapper (HyMAP) in July 2003 during

Fig. 2 A generalized geological map of the Rodalquilar area mineral district
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the HyEUROPE 2003 campaign over the study area and its vicinity. HyMap is a 126-
band sensor that collects spectral data in a cross-track direction by mechanical scan-
ning and along-track direction by movement of the airborne platform. The HyMap
sensor is an imaging spectrometer of reflected solar radiation within the 0.4–2.5 µm
wavelength region of the electromagnetic spectrum. The spectral coverage of HyMap
is nearly continuous in the visible-to-near-infrared (VNIR) and shortwave-infrared
(SWIR) regions with small gaps in the middle of the 1.4 and 1.9 µm atmospheric
water absorption bands. The spatial configuration of the HyMap sensor accounts
for an instantaneous-field-of-view (IFOV) of 2.5 mrad along track and 2.0 mrad
across track resulting in a pixel size of 3–5 m for the data used in this paper. Due
to malfunction of the HyMap’s SWIR 1 detector during acquisition, there was no
data in the 1.50–1.76 µm spectral window. Data acquired by the SWIR 2 detector
(bandwidth 16 nm), within the 1.95–2.48 µm spectral range was atmospherically
and geometrically corrected using the Atmospheric and Topographic Correction (AT-
COR 4) model (Richter 1996). The 1.95–2.48 µm spectral region covered the most
prominent spectral absorption features of hydroxyl-bearing minerals, sulfates and
carbonates, which are common to many hydrothermal alteration assemblages (Kruse
2002). SWIR 2 data was useful for mapping hydrothermal alteration assemblages
as well as regolith characterization (Abrams et al. 1977; Goetz and Srivastava 1985;
Cudahy et al. 2000; Kruse 2002).

Figure 3 shows the plots of spectra of seven most prominent hydrothermal al-
teration minerals in the study area (Arribas et al. 1995) at spectral intervals coin-
ciding with the HyMAP SWIR 2 data. This figure shows the differences in absorp-
tion features of the different minerals, in terms of shape, size, symmetry, depth, and
position. Other than the quartz spectrum, all the other spectra have distinctive ab-
sorption features at wavelengths of approximately 2.2 µm, although each absorp-
tion feature differs slightly in position and depth. In order to delineate predomi-
nant minerals in hydrothermal alteration zones associated with the epithermal de-
posits, hyperspectral band ratio images (Lillesand et al. 1994) were created using
the HyMap SWIR 2 bands corresponding to the wavelengths indicated in Fig. 3,
namely, bands 103/107 (2.100/2.171 µm), bands 107/109 (2.171/2.205 µm) and
bands 118/112 (2.357/2.258 µm). Band ratioing is a way to enhance the presence
of a material of interest from spectral images by dividing data in a spectral band
with data in another spectral band. Band ratioing images can convey information, at-
tributable to spectral properties of surface mineral, independent of variations in scene

Fig. 3 Plot of seven
endmembers from USGS
spectral library (Clark et al.
1993) in the spectral range
1.95–2.48 µm. Vertical lines
indicate the band centers used to
obtain band ratio images (see
text for further information)



430 Math Geosci (2009) 41: 421–446

illumination. We used an arctan transformation on the band ratios (Lillesand et al.
1994), which considered the gradient of spectral data between two bands.

Figure 4 displays the images of band ratios used as input evidence layers in WofE
modeling. Pixels in the image of band ratio 1 (2.100/2.171 µm) are brighter (i.e.,
higher ratios) for alunite, kaolinite, and pyrophyllite but slightly darker (i.e., lower ra-
tios) for illite (Fig. 4a). The first three minerals are predominant in advanced argillic
zones. Pixels in the image of band ratio 2 (2.171/2.205 µm) are brighter for illite
and kaolinite but are darker for alunite and pyrophyllite (Fig. 4b). The brighter pix-
els in the image of band ratio 2 thus enhance predominant minerals associated with
intermediate argillic zones. Pixels in the image of band ratio 3 (2.357/2.258 µm) are
darker for minerals predominant in advanced argillic zones but brighter for minerals
predominant in argillic to pyropylitic zones (Fig. 4c).

3.2.3 Data for Structural Evidence

Mapped faults and fractures were screen-digitized on georeferenced raster-scanned
maps, which were obtained from published (IGME 1981; Arribas et al. 1995) and
unpublished sources. In addition, faults and fractures were interpreted and screen-
digitized on shaded-relief images of a digital elevation model (DEM) derived from
Advanced Spaceborne and Thermal Emission Radiometer (ASTER) data acquired on
26 May 2002. A map of distances to mapped and interpreted faults and fractures was
then created (Fig. 4d) and used in WofE modeling.

3.2.4 Mineral Occurrence Data for WofE Modeling

Two sets of locations of mineral deposit occurrences were used in WofE model-
ing. One set, of 14 epithermal deposit occurrences, was digitized from a 1:50,000
scale geological map of Spain (IGME 1981) and from a map in Arribas et al. (1995).
The other set, of 47 epithermal deposit occurrences, was digitized from the mineral
prospectivity map of Rigol-Sanchez et al. (2003). This set actually shows 49 epither-
mal occurrences, although two of these fall outside our study area. In this latter set,
11 epithermal deposit occurrences were discarded because each of them lie within
25 m of an epithermal deposit occurrence in the first set, which indicates a high like-
lihood that these are the same 11 of the 14 in the first set. Thus, the second set has
36 epithermal deposit occurrences, each of which is believed to be different from
the 14 epithermal deposit occurrences in the first set only in terms of location, but
not in terms of deposit type. Each of the two sets of epithermal deposit occurrences
were then used for training and for cross-validation of a WofE model. A training set
is assumed to represent discovered mineral deposits, whereas a cross-validation set
is assumed to represent undiscovered mineral deposits. The prediction rate was the
criterion applied to select the better of the two WofE models created as input for
derivation of optimal exploration zones. The epithermal deposit occurrences in ei-
ther of the sets used are at present not economically interesting under the prevailing
economic and geopolitical conditions. Thus, implications for the usefulness of the
methods demonstrated here, based on either of these two deposit occurrence datasets,
are discussed later.
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3.3 Results of WofE Modeling of Mineral Prospectivity

The study area consists of 65253 unit cells of 25 × 25 m, based on the spatial resolu-
tion of the ASTER DEM. All the maps/images used in the analyses were resampled
to this spatial resolution, which is adequately small and appropriate for WofE model-
ing (Agterberg 1992). Each unit cell or pixel containing a mineral deposit occurrence
in training set 1 (with 14 epithermal occurrences) was buffered to a minimum of
25 m to increase the number of training set 1 pixels to 70 in order to obtain statisti-
cally significant weights and contrasts. The distance buffer, derived by point pattern
analysis (Boots and Getis 1988), represents the minimum distance from each mineral
deposit occurrence within which there is zero probability of another mineral deposit
occurrence. The estimate of P(D) based on training set 1 is 0.00107, whereas the
estimate of P(D) based on training set 2 is 0.00055. Table 1 shows the results of
WofE modeling to create binary predictor patterns using the sets of hydrothermal
alteration evidence and structural evidence with respect to either set of epithermal
deposit occurrences.

Zones with high values of band ratio 1 (CR1) and band ratio 2 (CR2) have positive
spatial associations with epithermal deposit occurrences in either set of the training
data. Positive spatial association between zones with high values of CR1 and epither-
mal deposit occurrences is stronger than positive spatial association between zones

Table 1 Results of WofE calculations for binary predictor patterns based on range of spatial data attributes
(in brackets under column 1) having optimum spatial associations (in terms of studentized C) with the
training epithermal deposit occurrences

Binary predictor
patternsa

N(B)b N(D ∩ B)c W+ s(W+) W− s(W−) C Stud. C

Using training set 1 (N(D) = 14 epithermal deposit occurrences) for WofE modelingd

CR1 (≥ 0.80) 13038 46 1.19 0.15 −0.85 0.20 2.04 8.10

CR2 (≥ 0.79) 32509 44 0.23 0.15 −0.30 0.20 0.53 2.16

CR3 (≥ 0.71) 52290 38 −0.56 0.18 1.01 0.16 −1.57 −5.97

DFF (≤ 70 m 24800 48 0.59 0.14 −0.68 0.21 1.27 4.55

Using training set 2 (N(D) = 36 epithermal deposit occurrences) for WofE modeling

CR1 (≥ 0.81) 9819 19 1.26 0.23 −0.59 0.24 1.84 5.52

CR2 (≥ 0.79) 22791 19 0.41 0.23 −0.32 0.24 0.73 2.20

CR3 (≥ 0.70) 55419 21 −0.38 0.22 1.02 0.26 −1.39 −4.12

DFF (≤ 170 m 45396 32 0.25 0.18 −1.01 0.50 1.25 2.36

aValues in brackets indicate attributes of spatial data within pattern representing presence of binary evi-
dence. CR1 = values of channel ratio 1 (Fig. 4a). CR2 = values of channel ratio 2 (Fig. 4b). CR3 = values
of channel ratio 3 (Fig. 4c). DFF = distances to faults and fractures (Fig. 4d)
bValues in this column refer to number of pixels within pattern representing presence of binary evidence
cValues in this column refer to number of pixels of training data within pattern representing presence of
binary evidence
dEach location of epithermal deposit was buffered to 25 m, which increased number of training pixels
from 14 to 70
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Table 2 Results of tests of the
CI assumption based on NOT

aCR1 = values of channel
ratio 1 (Fig. 4a). CR2 = values
of channel ratio 2 (Fig. 4b).
CR3 = values of channel ratio 3
(Fig. 4c). DFF = distances to
faults and fractures (Fig. 4d)

Predictor map combination NOT value p(NOT) CI test

Integrated models based on training set 1 (N(D) = 14 epithermal de-
posit occurrences) for WofE modeling

CR1–CR2–CR3 1.77 0.038 Fail

CR1–CR2–DFF 0.49 0.312 Pass

CR1–CR3–DFF 2.09 0.018 Fail

CR2–CR3–DFF 1.00 0.159 Pass

CR1–CR2–CR3–DFFa 2.24 0.012 Fail

Integrated models based on training set 2 (N(D) = 36 epithermal de-
posit occurrences) for WofE modeling

CR1–CR2–CR3 1.34 0.090 Pass

CR1–CR2–DFF 0.35 0.363 Pass

CR1–CR3–DFF 0.85 0.198 Pass

CR2–CR3–DFF 0.17 0.432 Pass

CR1–CR2–CR3–DFF 1.37 0.085 Pass

with high values of CR2 and epithermal deposit occurrences as indicated by the mag-
nitude of W+ and C. Zones with high values of band ratio 3 (CR3) have negative
spatial association with epithermal deposit occurrences in either set of the training
data. These results are consistent with field observations, as most epithermal deposits
in the area are associated with intermediate argillic to advanced argillic alteration
zones while some are associated with argillic to propylitic zones.

The epithermal deposit occurrences in training set 1 have a positive spatial associ-
ation with faults and fractures, and the spatial association is optimal within 70 m of
these geological features. The spatial association of faults and fractures with the ep-
ithermal deposit occurrences in training set 2 is also positive, and it is optimal within
170 m of these geological features. In training set 1, these results suggest that there is
a higher proportion of vein-type epithermal deposits than disseminated-type epither-
mal deposits. In training set 2, there is a higher proportion of the disseminated-type
epithermal deposits than the vein-type epithermal deposits. The types and relative
strengths of spatial associations (as indicated by C or Studentized C) of the individ-
ual layers of spatial evidence with the epithermal deposit occurrences in set 1 and in
set 2 are the same. This indicates that the epithermal deposit occurrences in either
set 1 or set 2 have very similar geological characteristics. This implies further that
a mineral prospectivity map derived through WofE modeling using either one of the
two training sets would be able to predict a large proportion of epithermal deposit
occurrences in the other set. Table 2 shows the results of the tests of CI on 3-layer
and full 4-layer models of posterior probabilities of epithermal deposit occurrence
based on each training set.

Only two 3-layer models based on training set 1 pass the NOT for CI assump-
tion. The two 3-layer models exclusive of CR1 and CR3 both do not violate the
CI assumption, whereas the models inclusive of CR1 and CR3 violate the CI as-
sumption. Violation of the CI assumption is mainly due to overlap between the pos-
itive values in W+ patterns of CR1 and the positive values in W− patterns of CR3
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(a) Using training set 1 (N(D) = 14 epithermal deposit occurrences) for WofE modelling

(b) Using training set 2 (N(D) = 36 epithermal deposit occurrences) for WofE modelling

Fig. 5 Maps of posterior probability of epithermal deposit occurrences

(Table 1), which results in an over-estimation of posterior probability. Each of the
two 3-layer models, which pass the CI test, can be used mainly to map prospective
zones for epithermal deposits associated with intermediate argillic to advance argillic
zones. Based on prospective pixels, the CR1–CR2–DFF model has a prediction rate
of 0.58 as it predicts correctly 21 of the 36 cross-validation deposit occurrences. The
CR2–CR3–DFF model has a prediction rate of 0.47 as it predicts correctly 17 of the
36 cross-validation deposit occurrences. The posterior probability map based on the
CR1–CR2–DFF model from training set 1 is shown in Fig. 5a.

All the 3-layer models and the full 4-layer model based on training set 2 pass the
NOT for CI assumption. Models inclusive of CR1 and CR3, however, barely pass
the NOT. This indicates to some degree the existence of a conditional dependence
that the binary predictor patterns of CR1 and CR3 are to some extent conditionally
dependent. This is mainly due to the overlap between the positive values in W+
patterns of CR1 and the positive values in W− patterns of CR3 (Table 1). Because
all the integrated models based on training set 2 pass the CI test, each of them can be
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used to map prospective zones for epithermal deposits. However, only the full 4-layer
model was considered further in the analysis because it includes all of the four pieces
or layers of spatial evidence, suggesting that it is useful not only for mapping zones
prospective for epithermal deposits associated with intermediate to advanced argillic
zones but also for epithermal deposits associated with argillic to propylitic zones.
Based on prospective pixels and on training set 2, the CR1–CR2–CR3–DFF model
has a prediction rate of 0.64 as it predicts correctly nine of the 14 cross-validation
deposit occurrences. Thus, the full 4-layer model based on training set 2 is superior
to any of the models based on training set 1. The posterior probability map based on
the CR1–CR2–CR3–DFF model from training set 2 is shown in Fig. 5b.

3.4 Discussion on Predictive Modeling of Mineral Prospectivity

Deriving optimal exploration target zones depends on the accuracy of an input min-
eral prospectivity map, which in turn depends on the number and accuracy of eviden-
tial datasets. In the case of data-driven methods, it also depends on the number and
accuracy of training data used in modeling. In the present work, we used four sets of
evidential data and two sets of training deposit occurrences. Three sets of our eviden-
tial data are remotely-sensed data, which are indications of hydrothermal alteration.
The accuracy of each set of remotely-sensed evidence is reliable based on a number
of spectral measurements of ground samples used by Debba et al. (2005). Several
other methods exist to detect hydrothermal alteration from spectral remote sensing
data. For example, principal component scores from several spectral band ratio im-
ages (Crósta et al. 2003) could be used as evidence for the presence of hydrothermal
alteration. However, with principal component analysis, it may be difficult to judge
the hydrothermal alteration assemblages associated with the epithermal mineraliza-
tion. Selecting pairs of hyperspectral bands for band ratioing in order to enhance the
presence of hydrothermal alteration is more intuitive and practical than applying prin-
cipal component analysis. The accuracy of interpreted faults/fractures, which were
combined with the published mapped faults/fractures, was also considered reliable
based on ground-checking.

The two sets of mineral deposit occurrences, used for training and cross-validation
were each derived from independent published literatures (IGME 1981; Arribas et al.
1995; Rigol-Sanchez et al. 2003). The mineral deposit occurrences derived from the
published literatures were considered accurate mainly in terms of their locations but
not in terms of the deposit (sub-) type homogeneity. The rather low prediction rate
(of 64%) of the probabilistic prospectivity map shown in Fig. 5b is attributable partly
to the small number of evidential datasets used and to the presence of two (precious-
and base-metal) sub-types of epithermal deposits used in modeling prospectivity. In
regard to the latter, we could have prepared relatively homogeneous sets of training
data precious-metal epithermal deposits by reclassifying all of the epithermal de-
posits in the district through an application of artificial neural network (Singer and
Kouda 2003, 1997). However, the required datasets (e.g., mineralogy, grade and ton-
nages, etc.) for the classification of the mineral deposits via application of artificial
neural networks were incomplete or unavailable. Alternatively, we could have com-
bined the two mineral deposit occurrence datasets and then made a series of random
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partitions into training and cross-validation data sets in order to carry out a bootstrap
or jackknife validation, leading to the ‘best’ mineral prospectivity map. This was
not an objective of this study. Instead our objective was to obtain a properly created
and validated mineral prospectivity map with a good prediction rate based on limited
available evidential data and mineral deposit occurrence data.

The 14 epithermal deposit occurrences in training set 1 are now mostly defunct
mines and prospects, whereas the 36 epithermal deposit occurrences in training set 2
are mostly prospects and showings. The epithermal deposit occurrences in both sets
are not economically interesting under the present economic and geopolitical con-
ditions. In view of this, one might question the value of a mineral prospectivity
map derived from using these training sets, in particular training set 2. The results
of using these training sets, however, are consistent with results of previous works
(Carranza and Hale 2000), where a larger training set of relatively non-economic de-
posit occurrences results in a mineral prospectivity model that is better than a mineral
prospectivity model derived from a smaller training set of relatively economic deposit
occurrences. The theoretical explanation for this is that ‘non-economic’ deposit oc-
currences have much higher frequencies, corresponding to a large number of samples,
whereas ‘economic’ deposit occurrences have lower frequencies, corresponding to a
small number of samples. Because mineral prospectivity mapping involves the con-
cept of sampling, better mineral prospectivity models are more often derived when
using larger number of samples than when using smaller number of samples. The
two probabilistic prospectivity maps (Fig. 5) were created from two independently
collected epithermal deposit occurrence data, and each map was validated with de-
posit occurrence data not used in modeling (Agterberg and Bonham-Carter 2005).
The prospectivity map with the better prediction rate (Fig. 5b) was used as input data
to the proposed method for deriving optimal exploration zones.

4 Derivation of Focal Points and Target Zones

In order to derive optimal exploration target zones, the posterior probabilities in a
mineral prospectivity map are used (a) to estimate a reasonable number of exploration
focal points (or pixels) and (b) as weights in an objective function to derive optimal
exploration focal points via SA. Each of the optimal exploration focal points is then
buffered with a reasonable distance determined via proximity analysis in order to
derive a set of optimal exploration target zones.

4.1 Number of Exploration Focal Points

The number of exploration focal points must be estimated prior to deriving their op-
timal locations. Each optimal exploration focal point is represented by just one unit
cell or pixel and is considered to be the centroid of a circular optimal neighborhood
or zone of adjoining unit cells where the mineral deposit occurrence can be investi-
gated further by an appropriate exploration technique. Since any optimal zone around
each exploration focal point may or may not contain at least one undiscovered min-
eral deposit, the number of exploration focal points must be greater than or equal to
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the number of undiscovered mineral deposits. Methods for estimation of the latter is
discussed by Singer (1993). Here, we describe a procedure used for estimating the
number of exploration focal points based on a mineral prospectivity map.

In order to estimate the number of exploration focal points, we employed a bino-
mial distribution because the mineral deposit occurrence is a binary variable, being
either present or absent. Thus, estimation of n exploration focal points so as to yield
(or discover) at least r mineral deposit occurrences, with a probability of success p,
at a 95% confidence, requires a solution for the following equation

n∑

i=r

(
n

i

)
pi(1 − p)n−i = 0.95. (14)

The obtained value of n from (14) is a way to determine the number of opti-
mal exploration focal points. Each of the n optimal exploration focal points is a lo-
cal optimum in a neighborhood of pixels where posterior probabilities are not only
high but also having low uncertainty. Therefore, the optimal exploration focal points
sought are non-adjoining pixels so that the assumption of independence among every
n in (14) is not violated. Deriving the optimal exploration focal points requires defi-
nition of an objective function, called the fitness function.

4.2 Simulated Annealing

Simulated annealing is a generally applicable optimization technique for finding the
global optimum of an objective function in the presence of local optima (Kirkpatrick
et al. 1983; Bohachevsky et al. 1986). In SA, a fitness function φ(S), depending on
the sampling configuration S, has to be minimized. Starting with a random sampling
scheme S0, let Si and Si+1 represent two solutions with fitness functions φ(Si ) and
φ(Si+1), respectively. Sampling scheme Si+1 is derived from Si by randomly replac-
ing one of the points of Si towards a new point not in Si . A probabilistic acceptance
criterion decides whether Si+1 is accepted or not

Pc(Si → Si+1) =
{

1, if φ(Si+1) ≤ φ(Si ),

exp
(φ(Si )−φ(Si+1)

c

)
, if φ(Si+1) > φ(Si ),

(15)

where c denotes a positive control parameter, usually called the temperature in
SA problems. The parameter c is lowered, according to a cooling schedule as the
process evolves, in order to find the global minimum. A transition takes place if
Si+1 is accepted. Next, a solution Si+2 is derived from Si+1, and the probability
Pc(Si+1 → Si+2) is calculated with a similar acceptance criterion as in (15). For
each value of c, several transitions have to be made before the annealing can proceed
and c can take its next value.

A slow linear cooling schedule was chosen, in order to prevent solutions at local
minima so that the chance of arriving at the global minimum increases. The cooling
schedule starts with an initial value c0 which has an acceptance ratio (γ ) of 0.95 or
higher for alternative solutions. For l = 0,1,2, . . . , the decrements of c is given by
cl+1 = γ · cl , with 0 < γ < 1.
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For a two-dimensional region A divided into N(A) unit cells, let the spatial con-
figurations of n optimal exploration focal points be denoted by Sn. We denote the
posterior probability of the mineral deposit occurrence per unit cell in A derived from
WofE modeling (i.e., A represents all prospective pixels) by P(�x) = {Pj (�x)|�x ∈ A},
where �x is the location vector of the unit cell in A, with a corresponding pixel in an
image I , for unique condition j . A fitness function φ(Sn) : Sn → R

+, which is an
extension to the Weighted Means Shortest Distance (WMSD)-criterion (Debba et al.
2005; van Groenigen et al. 2000b), is minimized to optimize the search for n explo-
ration focal points.

φWMSD+V
(
Sn

) = λ

N(A)

∑

�x∈A

P (�x)
∥∥�x − QSn(�x)

∥∥ + (1 − λ)s2(OSn), (16)

where QSn(�x) is the location vector of an optimal exploration focal point in Sn near-
est to �x, and s2(OSn) is the variance of the posterior odds (9) at every optimal explo-
ration focal point in Sn. The spatial distribution of posterior probabilities expresses
the knowledge or assumptions about the spatial distribution of mineral deposit oc-
currences in region A, while the magnitude of the posterior probabilities controls the
selection of a unit cell or pixel as an optimal exploration focal point. A pixel with
posterior probability higher than its neighboring pixels, therefore, is a candidate for
selection as an optimal exploration focal point. The variance of the posterior odds also
controls the selection of optimal exploration focal points in a neighborhood of pixels
where the posterior probabilities are not only high but also have a low uncertainty.
The objective function that was optimized by considering not only the magnitude of
the posterior probability but also the uncertainty of the posterior probability. By do-
ing so, optimal exploration focal points are spread over the district and positioned in
pixels with high posterior probability and low uncertainty of coinciding with or being
proximal to an undiscovered deposit (i.e., a deposit occurrence in the cross-validation
set that is predicted correctly by the input WofE model of mineral prospectivity). This
means that optimal exploration focal points are sited in areas characterized by strong
and statistically significant positive spatial associations between evidential patterns
and discovered (i.e., training set of) mineral deposit occurrences. The λ ∈ [0,1] is
a constant controlling the effect of the posterior probability and the variance of the
posterior odds in finding and selecting optimal exploration focal points. The value
of λ could be estimated automatically by random selection between [0,1] when the
above fitness function is minimized through SA.

4.3 Case Study

The posterior probability map (Fig. 5b) based on the training set 2 was used as input
data to derive optimal exploration focal points. Training set 1 was used as a cross-
validation set and a as reference for the number of undiscovered epithermal deposits
(i.e., deposit occurrences in the cross-validation set that are predicted correctly by
the input WofE model of mineral prospectivity) in order to validate the derived set of
optimal exploration target zones.
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4.4 Results of Deriving Optimal Exploration Target Zones

4.4.1 Estimated Number of Exploration Focal Points

In solving for n in (14), we first assumed that r = 9 based on the nine predicted out of
14 undiscovered epithermal occurrences in training set 1 and that p = 0.0025 based
on the average posterior probabilities of prospective pixels in the input WofE prospec-
tivity model. With these assumptions we derive n = 6280. This number of exploration
focal points is intractable. However, we interpret and show later that 6280 is approxi-
mately the total number of unit cells within plausible exploration target zones. Instead
of p = 0.0025, we used p = 0.6 based on the approximate prediction rate of the input
WofE model. Accordingly, n = 22, which is a plausible number of exploration focal
points as centroids of individual exploration target zones wherein to search further
for the nine (assumed) undiscovered epithermal deposit occurrences.

4.4.2 Locations of Optimal Exploration Focal Points

By using the posterior probability map shown in Fig. 5b as input and by specifying
n = 22 and λ = 0.5 in (16), the locations of the optimal exploration focal points were
derived. The value of λ = 0.5 was chosen instead of being estimated automatically in
order to avoid computational time problem and to specifically avoid giving preference
to the effect of either the posterior probability or the variance of the posterior odds in
the fitness function. Each of the derived optimal exploration focal points (Fig. 6) oc-
cupies a unit cell with the highest posterior probability value based on training set 2
in a circular neighborhood of unit cells with posterior probabilities greater than the
prior probability estimate. This indicates that the algorithm was effective in finding
and selecting optimal exploration focal points in prospective ground (i.e., adjoining
prospective pixels). Each of the derived optimal exploration focal points does not
fall exactly on but is proximal to a unit cell representing an undiscovered epithermal
mineral deposit occurrence belonging to either set of epithermal deposit occurrence

Fig. 6 Optimal exploration target zones defined by buffering to 238 m each of the optimal exploration
focal points
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data in training set 1. This is a validation occurrence predicted correctly by the input
WofE model. Because the derived optimal exploration focal points are each consid-
ered to be the centroid of a circular neighborhood or zone of adjoining pixels where
a mineral deposit occurrence could be explored at higher scales, exploration target
zones should be delineated around them.

4.4.3 Optimal Exploration Target Zones

In order to define optimal exploration target zones around each of the derived op-
timal exploration focal points, the following analysis was performed. We quantified
proximity to an undiscovered deposit occurrence by utilizing the estimated number of
6280 unit cells required to delineate the nine predicted deposit occurrences out of the
14 cross-validation deposit occurrences and using p = 0.0025 in (14). The total area
represented by the 6280 unit cells is approximately 6280 × 252 = 3925000 m2. If
each of the nine undiscovered deposit occurrences, predicted by the WofE model, out
of the 14 cross-validation undiscovered deposit occurrences, is within a delineated
sub-area of 3925000/22 = 178409 m2 containing each of the optimal exploration
focal points, then this indicates that an optimal exploration target zone is proximal
to at least one undiscovered deposit occurrence. This also means that, if each of the
nine predicted undiscovered deposit occurrences, delineated by the WofE model, out
of the 14 cross-validation undiscovered deposit occurrences, is within a radius of√

178409/π = 238 m (area of circle = π × radius2) around a derived optimal explo-
ration focal point, then an optimal exploration focal point is in close proximity to at
least one undiscovered deposit occurrence.

Each of the 22 derived optimal exploration focal points was then buffered with
a radius of 238 m in order to delineate optimal exploration target zones. Seven of
the nine (assumed) undiscovered deposit occurrences, delineated by the WofE model
out of the 14 cross-validation undiscovered deposit occurrences, are within the de-
lineated optimal exploration target zones. The result of this analysis indicates that
the derived optimal exploration focal points are proximal to undiscovered epither-
mal deposit occurrences. The average of posterior probabilities of unit cells within
each of the delineated optimal exploration target zones is 0.010, which is higher than
the average posterior probability (0.0024) of unit cells representing discovered ep-
ithermal deposit occurrences (training set 2) and the average posterior probability
(0.0029) of unit cells representing (assumed) undiscovered epithermal deposit oc-
currences (training set 1). These indicate that the algorithm is efficient in finding
and selecting optimal exploration focal points in prospective ground. The results also
suggest that within the delineated exploration target zones there is much higher prob-
ability of mineral deposit occurrence than would be expected due to chance, which is
translatable theoretically to increase the chance of a mineral deposit discovery. This
suggestion is validated below.

4.5 Prioritization and Validation of Optimal Exploration Target Zones

In practice, exploration target zones are prioritized or ranked according to some cri-
teria. The criteria we applied to prioritize each of the 22 optimal exploration target
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zones are (a) the number of prospective pixels and (b) the average posterior proba-
bility of prospective pixels. The first criterion represents a measure of whether or not
an exploration target zone is wholly made up of prospective cells, whereas the sec-
ond criterion is an index of mineral occurrence. To each optimal exploration target
zone, descending ranks from 1 through to 22 were assigned according to decreasing
values per criterion. The ranks per criterion were then added to represent a measure
of relative prospectivity; for example, lower sums indicate higher prospectivity. The
sums of criteria ranks of each individual exploration target zones were assigned as-
cending ranks from 22 to 1 indicating their priority for further investigation. Table 3
summarizes the priority/rank derived for each exploration target zone.

In order to validate the derived optimal exploration target zones, the presence of at
least one undiscovered deposit occurrence within each of the derived optimal explo-
ration target zones was determined. In addition, the distance from each of the derived
optimal exploration target zones to the nearest undiscovered deposit occurrence was
determined. The 238 m buffer zones of seven optimal exploration focal points (T01,
T02, T05, T08, T10, T13, and T21) contain at least one (assumed) undiscovered
deposit occurrence (Table 3). Five of the top 10 priority optimal exploration target
zones (T01, T02, T05, T08, and T10) contain at least one (assumed) undiscovered
deposit occurrence. The 238 m buffer zones of three optimal exploration focal points
(T06, T12, and T16) are only about 10–30 m away from an undiscovered deposit
occurrence. However, for the other 12 optimal exploration focal points, whose 238 m
buffer zones do not contain an (assumed) undiscovered deposit occurrence and whose
buffer limits are at least 50 m away from an (assumed) undiscovered deposit occur-
rence, the average distance to their corresponding nearest (assumed) undiscovered
deposit occurrence is just about 600 m. Figure 6 also shows that all of the nine (as-
sumed) undiscovered deposit occurrences (i.e., those predicted correctly by the input
WofE model of mineral prospectivity) are within or very close (on average about
15 m) from a delineated optimal exploration target zone. The other five undiscov-
ered deposit occurrences not predicted by the WofE model (and thus not assumed to
be undiscovered deposit occurrences in the derivation of optimal exploration focal
points) are, on average, about 230 m away from the limits of an optimal exploration
focal point. These results indicate that derived optimal exploration focal points are
satisfactorily positioned such that further mineral prospecting within and up to a few
tens of meters beyond their 238 m buffer limits could potentially lead to mineral
deposit occurrence discovery.

4.6 Discussion on Derivation of Optimal Exploration Target Zones

Until now, there is no objective procedure for demarcating and prioritizing of new ex-
ploration target zones based on regional- to district-scale mineral prospectivity maps
that have been determined subjectively. That is, portions of predicted prospective
ground that are distal to and not containing discovered mineral deposit occurrences
are considered, based on subjective judgement, new exploration target zones. In this
study, new exploration target zones are determined based on the spatial distribution
of estimated posterior probabilities of mineral deposit occurrence, which are used
as weights in an objective function in SA to determine optimal exploration focal
points. Cross-validation of the results, by using mineral deposit occurrence data, that
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Table 3 Results of prioritization and validation of optimal exploration target zones. Rows in bold and
italics indicate that target (i.e., buffered) zones around individual optimal exploration focal points that,
respectively, contain and are proximal to 30 m of an undiscovered deposit occurrence (i.e., cross-validation
deposit occurrence predicted correctly by WofE predictive model of mineral prospectivity)

IDa Prioritization of target zones Validation of target zones

Crit1b Rank1c Crit2d Rank2e SumR12f Final Rankg Within zoneh Distancei

T01 237 1 0.00512 1 2 1 Yes 159.7

T02 222 4 0.00395 4 8 2 Yes 33.9

T03 231 2 0.00370 7 9 3 No 314.6

T04 216 5 0.00376 6 11 4 No 638.9

T05 226 3 0.00353 9 12 5.5 Yes 150.0

T06 199 9 0.00401 3 12 5.5 No 266.2

T07 212 7 0.00358 8 15 7 No 334.0

T08 191 11 0.00378 5 16 8.5 Yes 217.8

T09 186 14 0.00430 2 16 8.5 No 430.8

T10 215 6 0.00311 13 19 10 Yes 222.6

T11 187 12.5 0.00323 11 23.5 11 No 464.6

T12 210 8 0.00255 16 24 12 No 261.4

T13 185 15 0.00345 10 25 13 Yes 164.6

T14 187 12.5 0.00292 15 27.5 14 No 759.9

T15 172 17 0.00318 12 29 15 No 706.6

T16 196 10 0.00189 21 31 16 No 246.8

T17 142 19 0.00302 14 33 17 No 905.1

T18 180 16 0.00237 18 34 18 No 1021.2

T19 116 20 0.00245 17 37 19.5 No 421.1

T20 143 18 0.00223 19 37 19.5 No 663.1

T21 106 21 0.00195 20 41 21 Yes 150.0

T22 47 22 0.00069 22 44 22 No 551.8

aTarget zone ID, with number representing priority

bValues for criterion 1 (i.e., number of unit cells with posterior probability > prior probability within each
of the 238 m buffered optimal exploration focal points)
cDescending ranks assigned to decreasing values for criterion 1

dValues for criterion 2 (i.e., average posterior probability of all unit cells within each of the 238 m buffered
optimal exploration focal points)
eDescending ranks assigned to decreasing values for criterion 2

fSum of ranks for criteria 1 and 2
gAscending ranks assigned to increasing sums of Rank1 and Rank2

hPresence of (assumed) undiscovered deposit within the 238 m buffer zone

iDistance to the nearest (assumed) undiscovered deposit (m)

were not used to create the probabilistic mineral prospectivity map, suggests that the
derived optimal exploration target zones are useful in guiding further exploration to-
wards probable locations of undiscovered mineral deposits. Thus, by application of
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the proposed methodology, optimal exploration target zones can be derived objec-
tively, instead of subjectively, from a given probabilistic mineral prospectivity map.

Although we demonstrated our proposed methodology for deriving optimal explo-
ration target zones by using as input a posterior probability map, it can be adapted to
accommodate other maps of numerical indices of mineral prospectivity in the range
[0,1]. Examples, such as, fuzzy prospectivity membership values and degrees of evi-
dential belief. Other numerical indices of mineral prospectivity not in the range [0,1]
can be transformed into this range so they can be used as input to our proposed
methodology. In addition, a threshold index for differentiating between prospective
and non-prospective pixels must be specified so that the optimal exploration focal
points are searched and selected in neighborhoods of prospective pixels with index
of prospectivity above this threshold. In the present case study, we used the estimated
prior probability of mineral deposit occurrence as the threshold index. The graphical
technique of Porwal et al. (2003) can be useful in determining threshold indices par-
ticularly for knowledge-driven fuzzy approaches that do not involve updating of prior
probability of mineral occurrence.

A critical consideration in the application of the objective function in SA is the
plausible number of exploration focal points. This number should be at least equal
to the number of undiscovered occurrences of mineral deposits. Estimation of undis-
covered deposits in geologically-permissive terrane is based on grade-and-tonnage
model of deposit-type of interest and is practically performed through consensus by
a group of geoscience experts in mineral deposits (Singer and Kouda 1997). We did
not perform this exercise because the first criterion is not satisfied, as epithermal
mineralizations according to our database are mostly showings or prospects while a
few of them are deposits or measured reserves, and that not all of us met the second
criterion. Furthermore, we did not estimate the number of undiscovered deposits in
the district. As an alternative procedure, we applied the binomial distribution to es-
timate a plausible number of exploration focal points based on correctly predicted
and thus assumed undiscovered cross-validation mineral deposit occurrences. Using
an estimated number of exploration focal points based on actually discovered known
mineral deposit occurrences illustrates, nonetheless, that our proposed methodology
provides a potentially useful link between predictive modeling of mineral prospec-
tivity and assessment of undiscovered mineral resources. For example, if number
of undiscovered deposits and their corresponding confidence or probability levels
have been estimated (Cox 1993; Singer 1994; Scott and Dimitrakopoulous 2001;
McCammon et al. 2004) then such estimates could be used, respectively, in lieu of
r and 0.95 in (14). For p in (14), we have shown that using the prediction rate of a
mineral prospectivity model results in a plausible number of exploration focal points.
If all discovered mineral deposit occurrences would be used for modeling of mineral
prospectivity, then p in (14) could be represented by the success or fitting rate of a
mineral prospective model (i.e., proportion of training deposit occurrences coincid-
ing with prospective pixels or values in a predictive model). In this case, estimates
of the number of undiscovered mineral deposit occurrences and their corresponding
confidence or probability levels should be obtained in order to estimate the number
of exploration focal points.

In district-scale mineral prospectivity mapping, one does not aim to define drilling
targets as individual pixels but as prospective zones defined by a neighborhood of
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pixels of high prospectivity for further exploration work. Therefore, after deriving
optimal exploration focal points as individual pixels based on a probabilistic mineral
prospectivity map, we defined exploration target zones around them. The analysis
presented is based upon available datasets and geo-information derived from them,
but avoids subjective expert opinion. As an alternative analysis, we have also stud-
ied the spatial support around the derived optimal exploration focal points based on
the variography of random samples of posterior probabilities in the central part of
the study area where most of the known epithermal deposits occur (Fig. 5b). In this
alternative analysis, we encountered two problems. First, the number of random sam-
ples of posterior probabilities was inadequate to define a meaningful spatial pattern.
Second, the variograms were mostly showing a pure nugget, which is probably due
to an inadequacy of numbers of random samples of posterior probabilities or the dis-
cretization of evidential data into binary maps in the WofE modeling. Delineation
of optimal exploration target zones around derived optimal exploration focal points
apparently needs further research.

The best way to validate the proposed methodology for guiding mineral prospect-
ing to undiscovered deposit occurrences is to visit and perform detailed sampling and
prospecting work in the delineated and prioritized optimal exploration target zones.
The way forward as shown in our study is to further test the proposed methodology
in control areas where works on both mineral prospectivity modeling and assessment
of undiscovered mineral resources has already been carried out.

5 Conclusions

This study resulted in three main conclusions.

• The proposed methodology provides for objectively, and with reasonable accuracy,
demarcation and selection of optimal exploration target zones for further investi-
gation of undiscovered mineral deposit occurrences based on a given probabilis-
tic mineral prospectivity map. In the study area, nine out of 14 (assumed) undis-
covered epithermal deposit occurrences, predicted correctly by a WofE predictive
model of mineral prospectivity, are either within or at most 30 m away from a
buffered zone of an optimal exploration focal point.

• The analysis described for deriving optimal exploration focal points in order to
demarcate and prioritize exploration target zones is shown to be useful in this study.
Further work, however, is needed to test and/or improve the analysis and to test
other approaches.

• Airborne hyperspectral images provide valuable information for predictive model-
ing of prospectivity for epithermal deposits in the study area, particularly if they
are supported by other pieces of spatial evidence, such as proximity to faults and
fractures.
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