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Abstract Given the wealth of data concerning the kinematics of deforming fold-
thrust belts (FTBs), first-order generalizations about how the major strain components
vary within a deforming thrust wedges are considered. These generally observed
strain patterns are used to constrain a general, kinematics-based, FTB-wedge model.
We considered five strain components within a deforming thrust sheet: (1) thrust-
parallel simple shear, (2) horizontal contractional strain, (3) thrust-normal reaction
strain, (4) gravitational strain, and (5) a lateral confining boundary condition. After
making assumptions about how these strain components vary within a model FTB-
wedge, the incremental deformation matrix can be calculated for any given point
within the deforming wedge. Thus, the material path of a given marker can be de-
termined and an initially spherical marker’s strain path can be calculated as it moves
through the deforming wedge. Furthermore, by illustrating various kinematic para-
meters of many initially spherical markers (for example, Flinn’s k-value, incremental
octahedral shear strain, transport-perpendicular stretch), we have assembled repre-
sentations of the kinematic properties of the entire model wedge. By including a
flat-ramp-flat fault surface geometry for the model wedge, we are able to examine
the kinematic effects of this relatively common structural geometry. Within the fault
ramp segment there are greater incremental strain magnitudes, out-of-the-plane mo-
tion, and flattening strains. Additionally, data from this model suggests that gravita-
tional strains potentially have a significant effect on the strain distribution within a
deforming thrust wedge.
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1 Introduction

Mechanical and numerical models have been responsible for considerable advance-
ments in the understanding of the structural evolution of mountain-belts, particularly
within fold-thrust belts (FTB) (Chapple 1978; Davis et al. 1983; Erickson and Jami-
son 1995; Strayer and Suppe 2002; Kwon and Mitra 2004). It is important to recog-
nize that all models have their limitations, mostly associated with the assumptions
incorporated. Most mechanical models make assumptions about forces and bound-
ary conditions. An alternative approach is to make assumptions about how various
components of strain are distributed throughout the deforming FTB-wedge. The ben-
efit of the latter is that detailed strain and particle paths are easily determined as
are the incremental strain distributions. Additionally, our assumptions are based on
well-documented field data as opposed to stress fields which are exceedingly diffi-
cult to determine. Since our assumptions are based on the distribution of deformation
components and displacements, we consider our model to be a kinematics-based as
opposed to a mechanical-based mathematical model.

Using field-based observations, we make generalizations about strain patterns
within naturally deformed FTB-wedges. These generalizations are then used to con-
strain our kinematics-based numerical model. The model takes into account five
separate strain components: (1) thrust-parallel simple shear, (2) horizontal, motion
plane-parallel, uniaxial shortening (contractional strain), (3) thrust-normal, uniaxial
shortening (reaction strain), (4) vertical, uniaxial shortening (gravitational strain), and
(5) horizontal, motion plane-normal, uniaxial shortening (a lateral confining bound-
ary condition) (Fig. 1). These strain components vary independently within the wedge
depending on the dip of the fault, the horizontal position within the wedge, the depth,
and the normal distance away from the fault surface. As initially spherical markers
move through the wedge, they will experience different incremental strains at each
position within the wedge, the sum of which has the potential for yielding relatively
complex strain paths. The addition of a flat–ramp–flat fault geometry compounds the
complexity of the strain path while giving insight into the kinematics of a common

Fig. 1 The five strain components in our numerical model: gravitational strain (εg), horizontal contraction
strain (εtc), simple shear strain (εss), thrust normal reaction strain, (εrnx), and lateral confining strain (εbc)
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structural geometry. The model has shown that the deformation within the ramp seg-
ment of a deforming wedge has larger incremental strain magnitudes that are dom-
inated by flattening strains when compared to the adjacent thrust flats. Also, note
that the vertical gravitational strain component may have a considerable effect on the
strain distribution within a deforming FTB wedge; in particular, this strain has a large
effect on the incremental, out-of-the-plane motion within the wedge.

2 Mathematical Model Set-up and Design

2.1 Overview

The general approach taken in constructing the numerical model is to set up an ini-
tially straight line of spherical markers, that we will call observation markers. These
can be tracked as they move through the deforming wedge. The initially straight line
of observation markers is oriented perpendicular to the thrust surface. Deformation is
split into a component of thrust parallel, basal-displacement followed by a component
of pure strain (distortion of the initially spherical observation markers). In addition to
determining the incremental strain, the incremental deformation matrices are used to
determine the material displacement of the observation markers. While it is a simpli-
fication to consider basal-displacement and strain to be taking place as two distinct
increments, the effect of this simplification is minimized by running the model with
many closely spaced increments of deformation. The more increments of deforma-
tion, the more closely the model approximates simultaneous pure strain and thrust-
parallel displacement. At the outset, the model assumes relationships for the manner
in which five strain components vary throughout the wedge (discussed later). There-
fore, at any point within the wedge, an incremental deformation matrix can be as-
sembled (Fossen and Tikoff 1993; Tikoff and Fossen 1993; Jiang and Williams 1998;
Lin et al. 1998). This is done for each of the observation markers for each increment
of deformation. In this way, detailed strain path information for each of the observa-
tion markers can be determined. Since the line of observation markers moves through
the wedge, generalizations concerning the kinematics and strain patterns of the entire
deforming wedge can be made.

2.2 Input Data

The first component of the numerical model is the “input data” which can be sepa-
rated into three categories: model-run parameters, geometric input parameters, and
geologic input parameters (Fig. 2). Model-run parameters are simply logistical in-
puts concerning a given run which include the number of increments of deforma-
tion, the number of observation markers, and the level of precision for our “find
root” function. Geometric input includes all parameters that will ultimately deter-
mine the geometry of the deforming wedge. These include parameters such as the
dip of the fault along the flats (β), the dip of the fault on the ramp segment (Γ ),
the surface slope of the thrust wedge (α), the length of each of the fault segments,
and the height of the rear of the wedge. The entire complement of geometric input
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Fig. 2 A flow chart outlining the major components of our mathematical model program

parameters is illustrated in Fig. 3. For simplicity’s sake the wedge is assumed to have
already achieved a steady-state topography such that erosion is keeping pace with
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Fig. 3 The geometry of the deforming thrust wedge used within our numerical model. Dtot, Df1, Dr, Dth,
Γ , α, β , fd, lul, and hul are all input data. All other wedge parameters are calculated from these data

uplift and the wedge remains a constant shape. Willet (1999) shows convincingly
that topography in an FTB wedge will tend toward steady state because of the posi-
tive feedback between erosion rates and elevation. In detail, steady states in geologic
settings are ephemeral at best, and a deforming thrust wedge will increase in length
and decrease in taper throughout its deformation history (DeCelles and Mitra 1995;
Mitra 1997). The output of this model incorporates a finite length of time which is
shorter than the entire history of the deforming FTB-wedge and an amount of de-
formation that is less than the entire strain history for the wedge. In essence, we are
only looking at an increment of deformation, albeit a relatively long increment. Also,
included in the geometric input parameters is the vertical height of our line of obser-
vation markers (Dth) (Fig. 3). Since the bulk of the deformation within thrust wedges
is confined to the areas adjacent to the thrust surface and because of the computa-
tional cost, we have restricted the height of Dth to five kilometers above the thrust
surface.

Our last category of input data is geologic input. Incorporated into these data
are many of our assumptions about how strain varies within a deforming wedge.
For instance, we have assumed that simple shear deformation within the wedge is
inhomogeneous and decreases exponentially with increased normal distance away
from the thrust surface. It is a long-standing observation that deformation is het-
erogeneously distributed within natural shear zones, and that strain increases dra-
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Fig. 4 The general form for the assumed relationship between simple shear strain, εss, and the normal
distance from the thrust surface, nd, for our numerical model. εssmax determines the amount of simple
shear exactly at the thrust surface, and the shape factor (sf) determines how rapidly the simple shear strain
tapers off away from the thrust

matically within the middle of the zone and tapers off gradually towards the
boundaries (Ramsay and Graham 1970; Mitra 1979; Ramsay and Huber 1983;
Law 1987). For a thrust wedge, this type of heterogeneous strain pattern can be de-
scribed mathematically using an exponential relationship of the form

εss = e(Log[εssmax]+nd·sf), (1)

where εss is the thrust parallel simple shear strain, εssmax is the strain immediately
above the thrust surface, nd is the normal distance away from the thrust, and sf a shape
factor that determines how rapidly the strain decreases away from the thrust (Fig. 4)
(Table 1). Simple shear deformation is invariably related to the amount of friction
along the thrust surface. In this numerical model, both εssmax and sf are geologic input
parameters. However, since we have no intuitive feel for appropriate values for sf, the
amount of simple shear strain (octahedral shear strain) experienced at 1000 meters
normal distance away from the thrust, εss1000 is inputted. Using εss1000, εssmax and (1),
a value for sf is calculated. Typical values of εssmax and εss1000 inputted into our model
are 1.0 and 0.05, respectively.

The parameter TotDisp is the total amount of basal-displacement that occurs im-
mediately adjacent to the fault surface for a given model run. These displacements
at the base of the thrust wedge simulate the extreme shearing related displacements
that are observed along the thrust surfaces of large-scale shear zones; for example,
the Moine thrust (White et al. 1982; Coward 1988; Holdsworth 1990), the Särv thrust
(Gilotti and Kumpulainen 1986, 1992), and the Morcle nappe (Ramsay and Huber
1983).

We define tectonic contraction strain (εtc) as a horizontal, uniaxial shortening with
the shortening direction contained within the FTB motion plane. In the model, εtc de-
creases away from the hinterland toward the foreland as is schematically illustrated
in Fig. 5. There is an abundance of geological evidence showing an increase in hori-
zontal shortening towards the hinterland of a deforming thrust wedge (Gwinn 1970;
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Table 1 List of model parameters and abbreviations

γ Shear strain

εss Octahedral shear strain due to simple shear

εssmax The simple shear strain directly at the thrust surface

εss1000 The simple shear strain at 1000 meters normal distance form the thrust

εtc Octahedral shear strain due to tectonic contraction

εg Octahedral shear strain due to gravity

εg15k Gravitational strain at 15 km depth

εrxn Octahedral shear strain due to the reaction force perpendicular to the fault

εbv The amount of lateral confining stain needed to produce a plane strain

εBC The lateral confining boundary strain

εbvmax The maximum lateral boundary strain allowed in a given model run

TotDisp Total amount of basal-displacement

nd Normal distance from thrust

ninc The number of increments in a given model run

Dinc The distance of basal-displacement for each increment

F Deformation matrix (e.g., Finc an incremental deformation matrix)

F2D The two-dimensional deformation matrix

L Velocity gradient matrix (e.g., Lhv in the horizontal-vertical reference frame)

εa, εb, εc Diagonal components of the Lhv

Rφ Rotation matrix

φ The dip of the fault within a given domain

EM Ellipsoid matrix

Fig. 5 A schematic diagram of
how the tectonic contraction
strain, εtc, varies throughout our
wedge. This wedge has a
vertical exaggeration of 2× that
of our model wedge

Coward and Kim 1981; Price 1981; Mitra 1994; Gray and Mitra 1999). As with all
the strain components, εtc is proportional to the size of the deformation increment
and is also proportional to the amount of displacement for a given increment. To vary
the amount of εtc with respect to the position in the wedge (Fig. 5), we have assigned
a proportionality (P ) to relate εtc and the amount of displacement. P is dependent on
the horizontal distance from the back of the wedge (d). P(d) decreases linearly with
increased distance (d) such that d = 0 at the rear of the wedge and increases toward
the foreland. Furthermore, P(d) = 0 at the toe of the thrust wedge. To completely
define this relationship, one other value for P needs to be input for some horizontal
distance, d . Thus, we input the amount of tectonic contraction strain we might expect
if a marker started at the rear of the wedge (d = 0) and traveled above the thrust a
distance of TotDisp. Using this value, P(0), combined with the zero condition at the
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Fig. 6 The geometric
relationship between the
horizontal contraction
length (ltc), the thrust normal
reaction length (lrxn), and the
fault dip (β) for a given
displacement increment (Dinc).
The horizontal contraction strain
(εtc) and the thrust normal
reaction strain (εrxn) are
dependent on these respective
lengths

wedge toe, the linear relationship for P(d) can be completely defined. A value of 0.7
(octahedral shear strain) for P(0) with a TotDisp value of 30 km is typically used.

In addition to εtc, we also consider a thrust normal reaction strain which is related
to εtc. Given a dipping fault, not all of the tectonic contraction will go into short-
ening the rock horizontally because some of the deformation will be “re-directed”
such that there is a component of the shortening that is directed normal to the fault.
As Newton’s third law of motion dictates, pushing against the fault will cause the
fault to push back, resulting in what we call a thrust-normal reaction strain (εrxn).
Thus, there is a relationship between the tectonic contraction strain (εtc), the thrust
normal reaction strain (εrxn), and the dip of the fault (β). This relationship needs to
account for the two end-member cases of β = 0◦, and β = 90◦. At β = 0◦, there
would be no reaction strain because the contractional forces are directed parallel to
the thrust surface. At β = 90◦, both εtc and εrxn should go to infinity because move-
ment along the fault from a horizontally directed force has become impossible. We
have chosen to define this link between εtc and εrxn with the geometric relationship
illustrated in Fig. 6. For a given incremental displacement amount (Dinc), a tectonic
contraction length (ltc) and thrust normal reaction length (lrxn) can be solved for:
ltc = Dinc/ cos[β]; lrxn = Dinc · tan[β]. These two lengths can be used in conjunction
with P(d) to determine εtc and εrxn using the simple formulas εtc = P(d) · ltc and
εrxn = P(d) · lrxn.

The relative importance of gravitational strains within tectonic environments has
not been made clear within naturally deformed rocks. In fact, the effect of gravity is
often ignored during strain analysis. It is a relatively straightforward calculation to
estimate the stresses due to gravity at any given depth if one makes the simplifying
assumption that the density and Poisson’s ratio for the overlying rocks remains con-
stant with depth (Means 1976). However, the relationship between these stresses and
their associated strains is not straightforward. To relate stress to strain, one needs to
assume a flow law. However, flow laws will vary dramatically with depth and the as-
sociated changes in temperature and pressure (Griggs et al. 1960; Handin et al. 1963;
Donath 1970; Gleason and Tullis 1995). The exact relationship between temperature
and pressure and a given flow law is not known. Therefore, we have made the simpli-
fying assumption that gravitational strain (εg) varies linearly with depth. While our
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linear assumption is certainly an over-simplification, this assumption is more geologi-
cally realistic than ignoring gravitational strain altogether. Moreover, we consider the
linear assumption is more realistic than assuming a constant flow law for the entire
wedge coupled with assumptions of constant rock-density and Poisson’s ratio. We
define εg as the octahedral shear strain associated with a vertically-oriented, uniaxial
shortening. Assuming that εg = 0 at the surface of the wedge, then all we need to
input into our model is the slope (αg) of the line that relates εg with depth. Instead of
inputting αg directly, we input a value of octahedral shear strain associated with an
overburden of 15 km, εg15k; typically a value of 0.08 is chosen. Using εg15k, we then
calculate αg thus defining the relationship between εg and depth. The last geologic
input parameter is εbvmax, the maximum amount of lateral confining strain allowed
within a given model run is discussed in more detail below.

2.3 Assembly of the Model Wedge and Initial Displacement profile

Once all the input data is entered into the program, the geometric input data is used
to calculate all of the remaining wedge-shape parameters and construct the model
wedge (Fig. 3). Next, we calculate the position along the thrust surface of the wedge
where the base of each incremental line of observation markers will be positioned.
The spacing between the individual basal markers is simply TotDisp/ninc, where
ninc is the number of increments. This represents the incremental amount of basal-
displacement. The observation markers above the basal marker will ultimately be
displaced farther than the incremental slip amount due to internal distortion of the
thrust sheet. The position of the first basal marker is dependent on Dth, the vertical
height above the thrust surface to the top of the initial line of observation markers,
and the dip of the fault, β (Fig. 3). Knowing the positions of the top and bottom
of the initial line of markers, as well as the number of markers for a given model
run, allows us to determine the initial position for each of the observation markers.
Because the observation markers are initially oriented in a line that is perpendicular
to the thrust surface, they are useful for tracking the displacement of material points
within the deforming wedge. We refer to these distorted lines of observation markers
as displacement profiles. This situation is analogous to the distortion of an initially
vertical drill hole within an actively flowing glacier with a horizontal base.

The displacement profile is most easily observed within its own reference frame
where the fault surface is the horizontal axis; this reference frame is called the profile-
space. Within profile-space, the material paths of the observation markers are calcu-
lated and then transformed back into the reference frame for the deforming wedge, or
wedge-space. Once the initial position of all the observation markers is determined
(in both profile and wedge-space), the finite deformation matrices for each of these
initial markers must be set to identity; in other words, the observation markers must
start out as undeformed spheres.

The transformation between wedge space and profile space is typically a simple
rotation operation. However, if the displacement profile passes through a kink bound-
ary, a second rotation must be performed at the intersection of the kink boundary and
a projected line connecting the two markers from the displacement profile closest to
the kink boundary and on opposite sides of the boundary. No additional deformation
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is associated with passing through the kink boundary in the model. While we under-
stand that this is not geologically realistic, we consider it a necessary simplification
at this stage in the development of the model, particularly in light of our goal of
understanding first-order strain distribution patterns within deforming thrust wedges.
Translating between profile-space and wedge space must be accomplished on a point-
by-point basis because the position of each observation marker in wedge-space deter-
mines the deformation matrix used to calculate the incremental displacements within
profile-space. The position for each observation marker is influenced by the displace-
ments of all the markers beneath it. Thus, it is necessary to continually go back and
forth between profile-space and wedge-space.

2.4 While Loops and Defining Strain Components

The primary function of the numerical model is to calculate the strain and strain paths
of a series of observation markers. This is accomplished by utilizing two nested While
loops (Fig. 2). The first/external While loop continues to run until the prescribed num-
ber of increments has elapsed. The second/internal While loop runs until all of the
observation markers for a given increment have had their deformation matrices and
associated strain calculations performed. The combined effect is that each observa-
tion marker for each increment successively undergoes a series of calculations which
simulate progressive deformation through space and time.

Once inside the nested While loops, the first calculation assigns a domain num-
ber for each observation marker, where Domain 1 is within the lowermost thrust flat
segment, Domain 2 is within the thrust ramp segment, and Domain 3 is within the
uppermost flat segment. These domains are separated by kink boundaries (Fig. 3).
It is important to monitor whether any given marker changed domains from the pre-
vious increment or even during an intermediate displacement within an increment
because the appropriate rotations must be applied when a marker passes through a
kink boundary.

Once the domains are known, ltc and lrxn can be calculated. If a marker passes
through a kink boundary, these calculations become somewhat more involved and
ultimately give rise to the separation of the increment into two sub-increments. Using
ltc and lrxn, εtc and εrxn are calculated for a given observation marker with a horizontal
position, d . The gravitational strain, εg, is calculated after determining the depth of
the observation marker. Similarly, εss is calculated once the normal distance away
from the thrust is determined for the observation marker. From εss, shear strain, γ ,
can be calculated using the relationship

γ = e
√

2·εss − 1
√

e
√

2·εss

,

which is derived in Appendix.

2.5 Assembling the Incremental Deformation Matrix

Using the four strain components εtc, εrxn, εg, γ , a velocity gradient matrix can be
assembled by assuming time = 1 (Ramberg 1975; Means 1976). First, the strain
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components are grouped according to their reference frames. Since εg is vertically
oriented and εtc is horizontally oriented, they can be considered to be in the same
reference frame. Since the orientations of εrxn and γ are both dependent on the ori-
entation of the fault, they can be considered to have the same reference frame. Strain
components εg and γ need to be normalized by the number of deformation incre-
ments, ninc. εrxn and εtc are already normalized by ninc because Dinc (which equals
TotDisp/ninc) is incorporated into their formulations. A velocity gradient matrix that
incorporates both horizontal and vertical uniaxial shortening will take the form

Lhv =
[

εa 0 0
0 εb 0
0 0 εc

]

,

where for our model εa = εg, εb = εg + εtc, and εc = εtc. A velocity gradient matrix
that incorporates horizontal simple shear and vertical shortening has the form

Lf =
[

εrxn 0 γ

0 εrxn 0
0 0 0

]

(Ramberg 1975).

To transform this velocity gradient matrix into the “horizontal-vertical” reference
frame we must pre- and post-multiply this matrix by the rotation matrix Rφ and the
transpose of Rφ , respectively, where

Rφ =
[ cos[φ] 0 sin[φ]

0 1 0
− sin[φ] 0 cos[φ]

]

and φ is the dip of the fault within a given domain. Thus, Lfrot = [Rφ] · [Lf] · [Rφ]T.
By adding together the two separate reference frame velocity gradient matrices, Lhv

and Lfrot, we produce the total velocity gradient matrix for the deformation within
the “horizontal-vertical” reference frame:

Ltot =
[

εg + εrxn · cos2[φ] − γ · cos[φ] · sin[φ] 0 γ · cos2[φ] + εrxn · cos[φ] · sin[φ]
0 εg + εtc + εrxn 0

−γ · sin2[φ] + εrxn · cos[φ] · sin[φ] 0 εtc + εrxn · sin2[φ] + γ · cos[φ] · sin[φ]

]

(Ramberg 1975).
However, the velocity gradient matrix does not allow us to determine kinematic

parameters of interest (e.g., octahedral shear strain, the orientations of principal strain
axes, Lode’s ratio, etc.). A more useful tensor quantity for calculating such para-
meters is the deformation matrix. Unfortunately, it is considerably more difficult to
combine instantaneous deformation matrices. Therefore, we assemble the velocity
gradient matrix, where it is relatively easy to combine the various components of de-
formation, and then solve for the deformation matrix using the differential equation:
L · F = F ′, where L is the velocity gradient matrix and F is the deformation matrix
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(Bowen 1989). The resulting deformation matrix is

F =

⎛

⎜⎜⎜⎜
⎝

1

2
Λ

(
1 + e

Ω√
2 − (−1 + e

Ω√
2 )(

√
3(εtc − εg − εrxn · cos[2φ]) + √

2 · γ · sin[2φ])
Ω

)
0

0 e
εtc+εg+εrxn√

6

Λ(−1 + e
Ω√

2 ) sin[φ] · (√3εrxn · cos[φ] − √
2 · γ · sin[φ])

Ω
0

Λ(−1 + e
Ω√

2 ) · cos[φ] · (√2 · γ · cos[φ] + √
3 · εrxn · sin[φ])

Ω
0

Λ((1 + e
Ω√

2 ) · Ω + (−1 + e
Ω√

2 )(
√

3(εtc − εg − εrxn · cos[φ]) + sin[2φ]))
2Ω

⎞

⎟⎟⎟
⎠

,

where

Ω =
√(

3
((

εtc − εg
)2 + ε2

rxn

) − 2(εtc − εg) · (3 · εrxn · cos[2φ] − √
6 · γ · sin[2φ]))

and

Λ = e
−

√
3·(εtc+εg+εrxn)+3Ω

6
√

2 .

Ω and Λ have no physical meaning and are only used for spatial parsimony. The
deformation matrix has been constructed in such a way as to insure a constant volume
deformation. This matrix has indeterminate components for the case where εrxn = 0
and εg = εtc because Ω will equal zero, and therefore the denominators of the 11,
13, 31, and 33 elements will also equal zero. For this special case, we need to use a
simplified form of the deformation matrix, where

F =

⎛

⎜⎜⎜
⎝

− 1
2 · e

−εtc√
6 · (−2 + γ · sin[2φ]) 0 e

−εtc√
6 · γ · cos2[φ])

0 e

√
2
3 ·εtc 0

−e
−εtc√

6 · γ · sin2[φ] 0 1
2 · e

−εtc√
6 · (2 + γ · sin[2φ])

⎞

⎟⎟⎟
⎠

.

In the context of our model, F constitutes an increment of the total deformation for a
given observation marker referred to as Finc.

2.6 Lateral Confining Boundary Conditions

The deformation matrix that has been calculated at this stage within the model has
not incorporated any lateral confining boundary condition. We assume that our lat-
eral boundary condition can only stop or hinder material from moving laterally out
but cannot actively push in, i.e., no shortening occurs in the lateral direction. We ac-
cept that there are deformation environments that do produce lateral shortening, but
we will not be addressing those boundary conditions at this stage within our model.
To determine the maximum possible lateral confining strain, we calculate how much
uniaxial shortening, directed perpendicular to the motion plane (i.e., the plane that
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contains the slip vector and is perpendicular to the fault surface) is necessary to make
the deformation plane strain, which we call εbv. Because we cannot solve for εbv
symbolically, we use the numerical bisection method to find the root of the equation
f (εlc) = k(εlc) − 1, where k(εlc) is the Flinn’s k-value for a given incremental de-
formation with an applied lateral confining strain, εlc. The quantity k is defined such
that k = 1 is a plane strain deformation (Flinn 1962). Therefore, f (εlc) will equal
zero when an εlc is applied that produces a plane strain ellipsoid. The numerical “find
root” algorithm quits once a predetermined amount of precision has been achieved
(input into the model in the model-run input parameter section); typically a precision
value of 10−7 such that f (εlc) < ±10−7 is used.

An additional complication in determining εbv is that there are multiple εlc values
that satisfy the equation k(εlc) = 1. The reason for this is that there are three possi-
ble plane strain ellipsoids for the orthogonal reference frame that we have chosen; in
other words, each reference plane (a plane that contains two of the reference axes)
could be a plane strain plane (the plane which contains all the material motion vec-
tors during plane strain deformation). What this means for the numerical “find root”
method is that the function can cross the origin up to three times; therefore, our al-
gorithm must solve for a particular root, evaluate whether it is the appropriate root,
and if it is not, continue to increase εlc until the appropriate plane strain ellipsoid is
found. For the case of thrust systems, the appropriate plane strain ellipsoid will ex-
hibit plane strain parallel to the motion plane (defined above). A common scenario
is to obtain a prolate ellipsoid (where 1 < k < ∞) whose long axis is perpendicular
to the motion plane. In this case, the first plane strain ellipsoid achieved by adding
increasing amounts of εlc will continue to have its long axis perpendicular to the
motion plane. By continuing to increase εlc, another plane strain ellipsoid will be
achieved, one whose long axis is within the motion plane. Thus, εbv, the amount of
lateral confining strain needed to make the deformation plane strain, is calculated.

One of our geologic input parameters is the term εbvmax, which we define as the
maximum amount of lateral confining strain allowed for a given model run. If εbv
is less than or equal to εbvmax, then the lateral confining boundary condition, εBC,
will equal εbv and the deformation will be plane strain (for that specific marker and
that particular increment) (Fig. 7). However, if εbv is greater than εbvmax, then the
lateral confining strain is capped at the value εbvmax. After determining a value for the
lateral confining strain component, εBC, it can be incorporated into the incremental
deformation matrix such that εa = εg + εBC and εc = εtc + εBC; εb and γ will remain
unchanged.

2.7 The Displacement Profile

Once the incremental deformation matrix, Finc, is assembled, we use the corner com-
ponents of that matrix to assemble the two-dimensional deformation matrix, F2D.
F2D is used to determine the movement of the particles that make up the displace-
ment profile. In profile space, the observation markers are initially arranged into a
vertical line of markers with its lowermost end at the origin (Fig. 8). The markers
are numbered such that marker zero is at the fault surface (the horizontal axis in pro-
file space) and the marker numbers increase successively above the fault. Using F2D,
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Fig. 7 A flow chart illustrating the process by which our numerical model determines the lateral confining
strain, εBC

we can determine the displacement of observation marker #1 for the first increment
of deformation by directly applying the deformation matrix to this marker’s position
matrix, [F2D] · {x, y}. However, for successive increments (and successive markers),
the displacement vector is determined by applying F2D to the matrix {0, h}, where
h is the vertical distance between the marker of interest, #x, and the marker directly
beneath it, #x − 1. This displacement vector can then be applied to the observation
marker’s initial position, yielding the displaced position for that given increment.
The marker directly above this displaced marker, marker #x + 1, is assumed to have
moved passively with marker #x which yields an intermediate position for marker
#x + 1 (Fig. 8). The intermediate position of marker #x + 1 is determined in wedge-
space as well as profile space. The intermediate position in wedge-space is used to
determine the depth, the horizontal position, and the normal distance away from the
thrust; this ultimately determines the deformation matrix for that given increment (as
described above). This process can then be repeated for each successive observation
marker which then determines the material path for each of the markers, yielding
a displacement profile. This approach assumes that each increment of deformation
starts at the fault and propagates away from the fault surface. While this assump-
tion is invariably inaccurate in detail, the inaccuracy is minimized by increasing the
number of increments within the model and therefore decreasing the size of each in-
dividual increment. Again, it is important to keep track of which domain a particular
observation marker is in and if it crosses into a new domain during these intermediate
movements.
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Fig. 8 A schematic illustration
of how our displacement profiles
are constructed. Displacement
proceeds from the bottom to
the top. After an observation
marker is displaced, the marker
directly above it is passively
displaced by the same amount
before that marker is displaced
by its own deformation matrix.
The circled numbers represent
the order in which the
displacements occur

2.8 Finite Strain Deformation Matrix

Finally, the incremental deformation matrix, Finc, can be incorporated into the
finite deformation matrix, Ftot, which tracks the sum of the deformation incre-
ments for a given observation marker. Finc is incorporated by using the formula:
Ftot[increment number] = Finc[increment number] · Ftot[increment number − 1].
From both the finite deformation matrix, Ftot, and the incremental deformation ma-
trix, Finc, we can calculate the ellipsoid matrix, EM, by [EMx] = [[Fx]−1]T · [Fx]−1,
where x is either tot or inc. The lengths of the principal axes of the strain ellipsoid,
lx , can be determined by using the equation lx = 1√

λx
, where λx are the eigenvalues

of EM (x = 1,2, or 3 which represent the maximum, intermediate, and minimum
extension directions, respectively). The principal strain axes are parallel to the eigen-
vectors of EM which, combined with the principal lengths, uniquely defines the strain
ellipsoid.

2.9 Graphical Representation of Wedge Kinematics

Once the While loops have finished (Fig. 2), both the finite and increment strain el-
lipsoids have been calculated and stored for each observation marker along with their
position in the wedge for each increment. At this stage, strain parameters (octahedral
shear strains, Lode’s ratio, etc.) can be calculated from the strain ellipsoids and vari-
ous aspects of the kinematics of the thrust wedge can be graphically represented. The
program can output a series of either finite or incremental ellipsoid images (Fig. 9a).
Since the program is written in Mathematica, it is easy to view a series of images as
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Fig. 9 Forms of graphical output for kinematic data from our numerical model: a progressive finite strain
ellipsoids for successive increments of deformation for a given observation marker, b progressive dis-
placement profiles for successive increments of deformation, c a series of Flinn’s k-value versus normal
distance from the thrust plots (nd) for increments 1, 300, 400, and 500 for a model run with 500 incre-
ments, d a Hsu diagram illustrating the strain path for a particular observation marker. Within the ramp
segment the strain path deflects to the right, i.e., undergoes increased flattening, e our deforming thrust
wedge. The black portion is the area in which the displacement profiles have traveled through. Contour
lines are values of εbv, the amount of lateral confining strain needed to make the incremental deformation
plane strain. εbv values increase within the ramp segment, f a series of 500 displacement profiles plotted
in wedge-space. The individual observation markers are color-coded to values of Flinn’s k-value
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a movie of the deforming marker, which is a helpful visual supplement to the numer-
ical data. Similarly, the displacement profiles can be viewed as a series of images in
profile space which can then easily be viewed as a movie (Fig. 9b). We have found
the profile movies particularly useful in noticing changes in trajectory and rates of
particle movement associated with moving through the ramp segment of the thrust.
Flinn’s k-value (Flinn 1962) is a familiar parameter to most structural geologists;
therefore, we have plotted k-values versus normal distance from the thrust for var-
ious increments (Fig. 9c). Again, a movie is a useful way to recognize changes in
kinematics throughout the deformation history. While Flinn’s k-value is more well-
known, we consider the most useful diagram for examining strain path to be the Hsu
diagram (Hsu 1966) which plots Lode’s ratio (ν) (Hossack 1967) versus octahedral
shear strain (εs) (Nadai 1963). The Hsu diagram consists of a 60° wedge segment of
a circle where εs increases radially away from the apex of the wedge and ν ranges
from −1 to 1 along the concentric arcs (Fig. 9d) (Hsu 1966). Lode’s ratio is defined
such that ν = −1 for a perfectly prolate strain ellipsoid, ν = 0 for plane strain, and
ν = 1 for a perfectly oblate strain ellipsoid (Hossack 1967). Another useful way to
visualize wedge kinematics is to plot all of the displacement profiles in wedge space
and then contour some value associated with the kinematics (e.g., εbv, Fig. 9e). Alter-
natively, we color-code each of the observation markers in the displacement profiles
to some kinematic value (e.g., Flinn’s k-value for the finite strain ellipsoids, Fig. 9f),
allowing us to observe the kinematics of the entire wedge.

3 Mathematical Model Results

As the model is configured to compute strain data for a thrust wedge with a flat-ramp-
flat geometry (although a simpler wedge geometry can be input by setting Γ = β and
hul = lul = 0, Fig. 3), we first examine the difference between flat and ramp kinemat-
ics. For instance, there is a difference in the general material path within the ramp seg-
ment, when compared to the adjacent flats. The displacement profile tends to increase
in height within the flat segments and decrease in height within the ramp segment.
This difference reflects variable amounts of horizontal contraction versus thrust nor-
mal reaction strain. In the more steeply dipping ramp segment, the tectonic forces are
pushing harder against the fault surface, generating greater flattening strains which
are reflected in the vertically shortened displacement profile. A similar trend can be
observed within Hsu diagrams. The Hsu diagram allows one to observe the strain path
for a given observation marker (Hsu 1966). In Fig. 9d, the Hsu diagram demonstrates
that when the marker enters the ramp segment, there is an increase in the amount of
flattening strain (i.e., the strain path gets deflected to the right, toward ν = 1, oblate
strain geometry). When the observation marker leaves the ramp segment the strain
path deflects again, this time toward the left.

One of the major concerns in developing the numerical model was how to incor-
porate realistic lateral boundary conditions. Many numerical models make the sim-
plifying assumption that deformation takes place by plane strain (Willet 1992, 1999;
Erickson and Jamison 1995; Strayer and Hudleston 1997, 1998; Smart et al. 1999).
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On the other hand, there is an abundant amount of data from thrust wedge environ-
ments which demonstrate that a plane strain assumption is not realistic in detail (Dur-
ney and Ramsay 1973; Geiser 1988; Mukul and Mitra 1998; Twiss and Unruh 1998;
Gray and Mitra 1999; Strine and Mitra 2004). However, incorporating no lateral
boundary condition is even less realistic. What, then, is a realistic value for the lat-
eral confining boundary condition? This question would be considerably difficult,
if not impossible, to address with only finite strain data collected from naturally de-
formed rocks. However, a realistic forward model combined with significant amounts
of field data may be able to give reasonable estimates of lateral boundary conditions.
A series of models with gradually increasing amounts of maximum lateral confining
strain, εbvmax, was run and the strain patterns that vary as a function of εbvmax were
observed. With little or no lateral confining strain much of the thrust wedge will have
finite strain ellipsoids with their long axes perpendicular to the motion plane (Fig. 10).
The reason for this is that the vertical gravitational strain, the horizontal contraction
strain and the thrust normal reaction strain all have components of extension nor-
mal to the motion-plane. Unlike the extension directions within the motion plane,
these extension directions are all parallel, and therefore constructively reinforce one
another. As a result, the maximum extension direction for the combination of these
three strain components is perpendicular to the motion plane. The lateral confining
boundary condition competes against extension in this direction (Fig. 1). Figure 10
illustrates the effect of increasing εbvmax on the orientation of the maximum exten-
sion direction (i.e., whether it is perpendicular or parallel to the transport direction).
When there is little or no lateral confining strain, the only place within the wedge
that has transport parallel maximum extension directions is near the thrust surface
where the deformation is being dominated by simple shear deformation. As εbvmax
increases, more of the finite strain ellipsoids within the wedge have their long axes
oriented parallel to the transport direction until the entire wedge has transport parallel
long axes. Note that the area within the wedge that is most likely to have transport
perpendicular long axes is the ramp segment. This is demonstrated in Fig. 10b where
the finite strains do not switch to being transport-perpendicular until they reach the
ramp segment and eventually switch back to being transport-parallel within the up-
per flat. This situation illustrates the idea that hanging wall rocks carry with them the
sum of their deformation histories which could contain such complexities as traveling
over flat–ramp–flat fault geometry.

It is also useful to examine the strain patterns within the deforming wedge. The
finite strains increase from left to right with progressive deformation as well as in-
creasing closer to the thrust surface, as one would expect (Fig. 11a). It is somewhat
more illustrative to examine the incremental strain patterns (Fig. 11b). In general,
the incremental strains also increase closer to the thrust surface. In addition, the in-
cremental strain data demonstrates an increase in strain magnitudes within the ramp
segments. Therefore, not only do the hanging wall markers record increased flatten-
ing strain geometries from the ramp segment, but because of the increase in strain
magnitude, those “ramp-strains” could have a significant influence on the finite strain
magnitudes and geometries.

The interplay of the various strain components will determine the strain geom-
etry for a given observation marker. As discussed above, one way to characterize
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Fig. 10 A series of models runs
where the maximum amount of
lateral confining strain, εbvmax
is varied. Each wedge includes a
series of 500 displacement
profiles. The red region
represents observation markers
with finite strain ellipsoid long
axes that lie within the motion
plane. The blue regions
represent finite strain ellipsoids
with their long axes
perpendicular to the motion
plane: a εbvmax = 0.1425,
b εbvmax = 0.095,
c εbvmax = 0.0475,
d εbvmax = 0.0

strain geometry is with Flinn’s k-value (Flinn 1962). Therefore, k-values were plot-
ted against the normal distances from the thrust surface for each increment (Fig. 9c).
From these plots, one can observe that the k-values are at a maximum closest to the
fault. This is due to the predominance of simple shear deformation (which is a plane
strain deformation, k = 1) near the fault surface. In general, for markers farther away
from the fault surface, the k-values decrease until they reach some minimum value
and then begin to increase (Fig. 9c). This minimum k-value changes with position in
the wedge and is therefore a function of the relative proportions of the various strain
components. The k-value pattern is somewhat complicated by the existence of the
fault ramp. At the ramp, the k-values dramatically decrease. Once they reach a value
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Fig. 11 Finite a and incremental b strains within a deforming thrust wedge. Each wedge includes a series
of 500 displacement profiles color-coded to values of octahedral shear strains, εs

of zero, they start to increase again. This represents the situation where the long axis
of the strain ellipsoid switches from being transport parallel to transport perpendicu-
lar. Once the deformation profile has reached the upper flat, the “switched” k-values
will begin to decrease and the “non-switched” k-values will begin to increase. Similar
results can be observed by viewing the wedge diagram where the observation mark-
ers have been color-coded to values of k. Figure 9f illustrates that the k-values are at
a maximum near the thrust surface; they decrease away from the thrust to a minimum
value and then begin to increase. One can also notice a kinked lozenge-shaped do-
main in the ramp and upper flat wedge segments. This domain is defined by a circuit
of minimum k-values. Within this circuit, the k-values increase because these mark-
ers have switched from having transport parallel to transport perpendicular long axes
(Fig. 10). In the upper flat portion of the wedge, the “switched” k-values decrease
to zero and then start to increase from left to right, i.e., as deformation progresses
and material moves up the thrust. Furthermore, all the transport-parallel observation
markers within the upper flat have k-values that increase from left to right.

Another way of evaluating wedge kinematics is to examine the lengths of the in-
dividual strain axes. In particular, the length of the strain axis perpendicular to the
motion plane (lperp) can be useful for quantifying the amount of out-of-the-plane
motion. Figure 12 illustrates both finite and incremental lengths of the motion-plane-
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Fig. 12 Distribution of the out-of-the-plane motion for the finite a and incremental b strain ellipsoids
throughout the deforming wedge. Each wedge includes a series of 500 displacement profiles contoured
with respect to the length of the motion plane perpendicular strain axes, lperp

perpendicular strain axes. Again, the incremental strain diagram is more useful for
understanding the kinematic effects of the flat–ramp–flat geometry. Not surprisingly,
the maximum perpendicular motion of markers is within the ramp segment. What
may be surprising is where, within the ramp segment, the maximum perpendicular
motion occurs. It is neither within the middle of the ramp segment where there is
the greatest likelihood of having transport perpendicular long axes (Fig. 10b) nor in
the center of the kinked lozenge defined by the minimum k-values (Fig. 9f). Instead
it is where the depth is greatest within the ramp segment. This means that markers
closer to the thrust with transport parallel long axes can have greater out-of-the-plane
motion than markers farther from the thrust with transport perpendicular long axes.
One should also notice the kinked geometry of the (lperp) contours. These kinked
regions are associated with kinks in the topographic surface, illustrating the influ-
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ence of depth on out-of-the-plane motion. Since depth is only incorporated in the
calculation of the gravitational strain, we recognize the potential for gravity to have
a considerable influence on the strain patterns within a deforming wedge.

We consider εbv, the amount of confining strain needed to make any given incre-
mental deformation plane strain, to be a useful kinematic parameter for this type of
modeling. In Fig. 9d, the contours of εbv are shown within the model wedge. Again,
notice a kink geometry to the contours which is associated with kinks in the topo-
graphic surface. It is intuitive that the amount of motion-plane-perpendicular short-
ening needed to make the deformation plane strain will be related to the initial lengths
of the strain ellipsoid axis perpendicular to the motion plane. Therefore, the εbv pat-
terns within the wedge are also strongly influenced by the gravitational strain com-
ponent.

In the above examples, the values for εtc, εssmax, εss1000, and εg15k are held con-
stant while varying εbvmax. However, it is also instructive to observe the consequences
of varying each of these four parameters individually. Increasing εtc results in in-
creased flattening throughout the wedge, increased perpendicular flow, and a greater
number of transport-perpendicular maximum extension directions. The increased εtc
also makes the kinks within the incremental perpendicular flow contours (Fig. 12b)
less severe, suggesting that gravity is playing a relatively smaller roll in the de-
formation. By increasing either εssmax or εss1000, the amount of flattening near the
thrust decreases, the strain magnitudes near the thrust increase, and the displacement
profiles (Fig. 9b) become much more sheared out; they extend farther in the hori-
zontal direction. Lastly, increasing εg15k causes an increase in the flattening strains,
increased perpendicular flow, and a greater number of transport-perpendicular max-
imum extension directions. Furthermore, the increased εg15k also makes the kinks
within the perpendicular flow contours more distinctive.

4 Conclusions

Using the conceptually simple technique of combining successive incremental defor-
mation matrices, we have developed a useful mathematical model for understanding
the kinematics of a deforming thrust wedge. Assumptions have been made about
how several strain components (gravitational, contractional, thrust normal reaction,
and simple shear strains) vary within a thrust wedge based on generally observed
strain patterns within deforming FTB-wedges. Furthermore, we have imposed a lat-
eral confining strain component, εBC, which is less than or equal to the amount of
strain needed to make the deformation plane strain. Because there is no data avail-
able for appropriate magnitudes of this lateral boundary condition strain, we ran a
series of models in which εbvmax was the only parameter that we varied. In this way,
we have been able to calculate the incremental strains and assemble an incremental
deformation matrix for any position within the wedge. By combining these incre-
mental deformation matrices for the given observation markers within a deforming
wedge, we can observe the strain paths for those markers. Our model has included a
wedge with a flat–ramp–flat fault surface geometry. This enables us to examine the
effects of this relatively common fault geometry on the kinematics of a deforming
wedge.
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Using the numerical model, some general predictions about the kinematics of a
deforming FTB-wedge with a flat–ramp–flat geometry can be made. Multiple lines
of evidence for greater flattening strains within the ramp segment of the wedge were
observed. This flattening was manifest in the vertical shortening of the displacement
profiles, the rightward deflection of the strain paths on the Hsu diagram, and the
kinked lozenge shaped domain of minimum Flinn’s k-values originating within the
ramp segment. We also note that, in general, flattening strains increase away from
the thrust surface (k-values decrease) to some minimum value at which point they
tend to decrease (k-values increase). Furthermore, the incremental octahedral shear
strains have relatively greater values within the ramp segment than the adjacent flats.
The fault ramp is also the most likely region to observe transport perpendicular long
axes for the finite strain ellipsoid given low to moderate lateral confining boundary
conditions. Lastly, from the distribution of the strain axes that are oriented perpendic-
ular to the motion plane and the contoured εbv patterns, we predict that gravitational
strain can significantly affect the finite strain distribution within a deforming wedge,
particularly with regards to out-of-the-plane motion.
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Appendix

A relatively simple relationship can be determined for the octahedral shear strain
due to simple shear, εss, and the shear strain, γ . First, it is useful to determine a
relationship between the axial ratio of a strain ellipse, R, and the associated γ . Using
the deformation matrix for simple shear,

[SS] =
[

1 γ

0 1

]
,

we can calculate the ellipse matrix, [EMss] = [[SS]−1]T · [SS]−1. Ramsay (1967)
determined the relationship θ ′ = 0.5 · tan−1[ 2

γ
], where θ ′ is the angle between the

shear surface and the long axis of the strain ellipse. Using θ ′, we can diagonalize EM
with the rotation matrix

Rθ ′ =
[

cos[θ ′] − sin[θ ′]
sin[θ ′] cos[θ ′]

]

such that [EMdiag] = [Rθ ′ ]T · [EMss] · [Rθ ′ ]. The square root of the diagonal com-
ponents of [EMdiag] equals the lenghts of the principal axes of the strain ellipse. The
axial ratio, Rss, of the strain ellipse is the ratio of the major principal axis to the minor
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principal axis. Therefore,

Rss =

√
2 + γ 2

(
1 +

√
1 + 4

γ 2

)

√
2 − γ 2

(−1 +
√

1 + 4
γ 2

)
. (2)

Solving for γ yields

γ = ±
√−(1 + Rss)2

√
Rss

, (3)

γ = ± i
√−(Rss − 1)2

√
Rss

. (4)

The solution for γ shown in equation (3) yields imaginary numbers for any real value
of Rss, thus we disregard this solution. The positive solution for equation (4) always
yields a negative value for γ given a positive value for Rss. To stay in keeping with
typical sign convention, we eliminate this solution as well. This leaves the solution

γ = −i
√−(Rss − 1)2

√
Rss

, (5)

which simplifies to

γ = (Rss − 1)√
Rss

. (6)

Our next step is to find a relationship between Rss and εss. The general equation
for octahedral shear strain is εs = 1√

3

√
(ε1 − ε2)2 + (ε2 − ε3)2 + (ε3 − ε1)2, where

εx = Ln[ lx
l0

], (x = 1,2, or 3 which represent the maximum, intermediate, and min-
imum extension directions, respectively), lx equals the half-length of the principal
axes and l0 equals the initial radius of the undeformed sphere. Because simple shear
deformation is plane strain, we know that l2 = l0, and therefore ε2 = 0. Also, we can
assume that the deformation maintains a constant volume. This assumption allows us
to relate the lengths of the principal axes with their axial ratios. For plane strain defor-
mation, we need only consider the axial ratio of the major and minor axes which are
equivalent to the axial ratio we calculated in (2), Rss. The area of the ellipse contain-
ing the major and minor axes will be equivalent to the area of a circle with a radius
of l0. Thus, the area, A = πl2

0 = πl1l3. Using the relationship Rss = l1
l3

, we can solve
for l1 and l3 in terms of Rss and A

l1 =
√

RssA

π
, (7)

l3 =
√

A

Rssπ
. (8)
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Next, dividing equations (7) and (8) by l0 yields

l1

l0
= √

Rss, (9)

l3

l0
=

√
1

Rss
. (10)

Plugging equations (9) and (10) into the equation for octahedral shear strain gives

εss = 1√
3

√
(
Ln

[√
Rss

])2 +
(

Ln

[
1√
Rss

])2

+
(

Ln
[√

Rss
] − Ln

[
1√
Rss

])2

, (11)

which simplifies to

εss =
√

2

2
Ln[Rss]. (12)

Solving for Rss gives

Rss = e
√

2·εss . (13)

Combining equation (13) with equation (6) yields

γ = e
√

2·εss − 1
√

e
√

2·εss

, (14)

which is the relationship between shear strain, γ , and octahedral shear strain for
simple shear, εss.
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