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Abstract Outlier detection based on the Mahalanobis distance (MD) requires an ap-
propriate transformation in case of compositional data. For the family of logratio
transformations (additive, centered and isometric logratio transformation) it is shown
that the MDs based on classical estimates are invariant to these transformations, and
that the MDs based on affine equivariant estimators of location and covariance are the
same for additive and isometric logratio transformation. Moreover, for 3-dimensional
compositions the data structure can be visualized by contour lines. In higher dimen-
sion the MDs of closed and opened data give an impression of the multivariate data
behavior.

Keywords Mahalanobis distance · Robust statistics · Ternary diagram · Multivariate
outliers · Logratio transformation

1 Introduction

Outlier detection is one of the most important tasks in multivariate data analysis.
The outliers give valuable information on data quality, and they are indicative of
atypical phenomena. Although a comprehensive literature exists on outlier detection
(Rousseeuw and Leroy 2003; Maronna et al. 2006), also in the context of geochem-
ical data (Filzmoser et al. 2005), further research is needed for outlier detection in
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the context of compositional data (Barceló et al. 1996). Compositional or closed data
sum up to a constant value (Aitchison 1986). This constraint makes it necessary to
first transform the data to an unconstrained space where standard statistical methods
can be used. One of the most convenient transformations is the family of logratio
transformations (Aitchison 1986). However, it is not clear if different transforma-
tions will lead to different answers when identifying outliers. In this paper we will
consider three well known transformations, the additive, the centered, and the iso-
metric logratio transformation. The next section will provide a brief overview of their
formal definitions, and the definitions of the inverse transformations. We will dis-
cuss multivariate outlier detection methods, as they are used for unconstrained mul-
tivariate data. Our focus here is on ‘standard’ methods for outlier detection that are
widely used and implemented in statistical software packages. The link between out-
lier detection and the different types of logratio transformations is made. In contrast
to Barceló et al. (1996) where only the additive logratio transformation is considered
for outlier detection, this section provides theoretical results on the equivalence of
the additive, the centered, and the isometric logratio transformation in the context of
outlier identification. In the case of 3-dimensional compositional data, the multivari-
ate data structure can be viewed in the ternary diagram, and multivariate outliers are
highlighted. For higher dimensional compositions a plot is introduced that is useful
for revealing multivariate outliers.

2 Compositional Data and Transformations

Compositional or closed data are multivariate data with positive values that sum up
to a constant, usually chosen as 1

x = (x1, . . . , xD)′, xi > 0,

D∑

i=1

xi = 1.

The set of all closed observations, denoted as SD , forms a simplex sample space,
a subset of R

D . Convenient operations on the simplex and their properties for dealing
with compositions were summarized in Aitchison and Egozcue (2005). In practice,
standard statistical methods can lead to questionable results if they are directly ap-
plied to the original, closed data. For this reason, the family of logratio one-to-one
transformations from SD to the real space was introduced (Aitchison 1986). We will
briefly review these transformations as well as their inverse counterparts.

Additive logratio (alr) transformation: This is a transformation from SD to R
D−1,

and the results for an observation x ∈ SD are the transformed data x(j) ∈ R
D−1 with

x(j) = (
x

(j)

1 , . . . , x
(j)

D−1

)′ =
(

log
x1

xj

, . . . , log
xj−1

xj

, log
xj+1

xj

, . . . , log
xD

xj

)′
. (1)

The index j ∈ {1, . . . ,D} refers to the variable that is chosen as the ratioing variable
in the transformation. This choice usually depends on the context, but also on the
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suitability of the results for visualization and data exploration. The main advantage
of the alr transformation is that it opens compositional data into an unconstrained
form in the real space. The inverse alr transformation from R

D−1 to SD , also called
‘additive logistic transformation’, is defined as

xi = exp(x
(j)
i )

exp(x
(j)

1 ) + · · · + exp(x
(j)

D−1) + 1
for i = 1, . . . ,D, i �= j,

xj = 1

exp(x
(j)

1 ) + · · · + exp(x
(j)
D ) + 1

for j ∈ {1, . . . ,D}.
(2)

Centered logratio (clr) transformation: Compositions x ∈ SD are transformed to
data y ∈ R

D , with

y = (y1, . . . , yD)′ =
(

log
x1

D

√∏D
i=1 xi

, . . . , log
xD

D

√∏D
i=1 xi

)′
. (3)

It is easy to see that this transformation results in collinear data because
∑D

i=1 yi = 0.
On the other hand, the clr transformation treats all components symmetrically by
dividing by the geometric mean. The interpretation of the resulting values might thus
be easier. The inverse clr transformation is

xi = exp(yi)

exp(y1) + · · · + exp(yD)
for i = 1, . . . ,D. (4)

Isometric logratio (ilr) transformation: This transformation solves the problem of
data collinearity resulting from the clr transformation, while preserving all its advan-
tageous properties (Egozcue et al. 2003). It is based on the choice of an orthonormal
basis on the hyperplane in R

D that is formed by the clr transformation, so that the
compositions x ∈ SD result in noncollinear data z ∈ R

D−1. The explicit transforma-
tion formulas for one such chosen basis are

z = (z1, . . . , zD−1)
′, zi =

√
i

i + 1
log

i

√∏i
j=1 xj

xi+1
for i = 1, . . . ,D − 1. (5)

The inverse ilr transformation is then obtained using (4) in which the terms

yi =
D∑

j=i

zj√
j (j + 1)

−
√

i − 1

i
zi−1 with z0 = zD = 0 for i = 1, . . . ,D (6)

are substituted.
For all logratio transformations, the problem of values xi = 0 is solvable in many

ways (Martín-Fernández et al. 2003).
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3 Outlier Detection Methods

In contrast to univariate outliers, multivariate outliers are not necessarily extreme
along single coordinates. Rather, they could deviate from the multivariate data struc-
ture formed by the majority of observations. There are two different procedures to
identify multivariate outliers: (1) methods based on projection pursuit and (2) meth-
ods based on the estimation of the covariance structure. The idea of (1) is to repeat-
edly project the multivariate data to the univariate space, because univariate outlier
detection is much simpler (Gnanadesikan and Kettenring 1972; Peña and Prieto 2001;
Maronna and Zamar 2002). Although these methods are usually computationally in-
tensive, they are particularly useful for high-dimensional data with low sample size.
For method (2), the estimated covariance structure is used to assign a distance to
each observation indicating how far the observation is from the center of the data
cloud with respect to the covariance structure. This distance measure is the well-
known Mahalanobis distance, defined for a sample x1, . . . ,xn of n observations in
the d-dimensional real space R

d as

MD(xi ) = [
(xi − T )′C−1(xi − T )

]1/2 for i = 1, . . . , n, (7)

where T and C are location and covariance estimators, respectively. The choice of
the estimators T and C in (7) is crucial. In the case of multivariate normally distrib-
uted data, the arithmetic mean and the sample covariance matrix are the best choices
leading to the best statistical efficiency. In this case, the squared Mahalanobis dis-
tances approximate a chi-square distribution χ2

d with d degrees of freedom. A certain
cut-off value, like the 97.5% quantile of χ2

d , can be taken as an indication of extreme-
ness: data points with higher (squared) Mahalanobis distance than the cut-off value
are considered as potential outliers (Rousseeuw and Van Zomeren 1990).

Both the arithmetic mean and the sample covariance matrix are highly sensitive
to outlying observations (Maronna et al. 2006). Therefore, using these estimators for
outlier detection leads to questionable results. A number of robust counterparts have
been proposed in the literature, like the MCD or S estimator (Maronna et al. 2006).
The resulting estimates of location and covariance also lead to robust estimates of
the Mahalanobis distance (7). It is common to use the same cut-off value from the
χ2

d distribution (Rousseeuw and Van Zomeren 1990), although other approximations
could lead to more accurate cut-off values (Filzmoser et al. 2005; Hardin and Rocke
2005).

Besides robustness properties, the property of affine equivariance of the estimators
T and C is important. The location estimator T and the covariance estimator C are
called affine equivariant, it for any nonsingular d × d matrix A and for any vector
b ∈ R

d , the conditions

T (Ax1 + b, . . . ,Axn + b) = AT (x1, . . . ,xn) + b,

C(Ax1 + b, . . . ,Axn + b) = AC(x1, . . . ,xn)A′

are fulfilled. The estimators transform accordingly, and it is readily seen that the
Mahalanobis distances remain unchanged under regular affine transformations

MD(Axi + b) = MD(xi ) for i = 1, . . . , n. (8)
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The identified outliers will be the same, independent of the choice of A and b for
the transformation. The above mentioned robust MCD and S estimators share the
property of affine equivariance.

4 Properties of the Logratio Transformations in the Context of Outlier
Detection

The usefulness of robust Mahalanobis distances for multivariate outlier detection has
been demonstrated in the literature and in many applications (Maronna et al. 2006).
This tool would not be appropriate for closed data, but only for the data after trans-
formation. The problem arises, which logratio transformation from the simplex to
the real space is the most suitable? An answer concerning the alr transformation is
given by the following theorem. The proof to this theorem as well as the proofs to
subsequent theorems can be found in the appendix.

Theorem 1 The Mahalanobis distances (MDs) for alr transformed data are invariant
with respect to the choice of the ratioing variable if the location estimator T and the
scatter estimator C are affine equivariant.

Theorem 1 thus guarantees that the identified outliers will not depend on the ra-
tioing variable that has been chosen for the alr transformation, as long as the location
and scatter estimators are taken to be affine equivariant. A result for the clr transfor-
mation is given in the following theorem.

Theorem 2 The MDs for clr and alr transformed data are the same if the location
estimator T is the arithmetic mean and the covariance estimator C is the sample
covariance matrix.

The result of Theorem 2 is unsatisfactory from a robustness point of view. The
equality of the Mahalanobis distances is only valid for the non-robust estimators
arithmetic mean and sample covariance matrix, and not for robust estimators like
the MCD or S estimators which are not even computable for the clr transformed
data. It should be noted that relations between the sample covariance matrices of alr
and clr transformed data were already investigated in Aitchison (1986, Property 5.7),
Aitchison (1992), Bohling et al. (1998), and Barceló-Vidal et al. (1999). However,
the results in the proof of this theorem are valuable for finding the link to the ilr
transformation, shown in the next theorem.

Theorem 3 The MDs for ilr transformed data are the same as in the case of alr
transformation if the location estimator T and the covariance estimator C are affine
equivariant.

This theorem completes the relations between the three mentioned transforma-
tions. When using classical estimators, i.e. arithmetic mean and sample covariance
matrix, all three transformations lead to the same MDs. Since outlier detection is
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only reliable with robust estimates of location and covariance, the resulting robust
MDs are the same for alr and ilr transformed data, if affine equivariant estimators are
used. In the following we will use the MCD estimator for this purpose, because of
the good robustness properties and because of the fast algorithm for its computation
(Rousseeuw and Van Driessen 1999). The MCD (Minimum Covariance Determinant)
estimator looks for a subset h out of n observations with the smallest determinant of
their sample covariance matrix. A robust estimator of location is the arithmetic mean
of these observations, and a robust estimator of covariance is the sample covariance
matrix of the h observations, multiplied by a factor for consistency at normal distribu-
tion. The subset size h can vary between half the sample size and n. It will determine
the robustness of the estimates and also their efficiency. The clr transformation will
not be considered in the following, since there exist no affine equivariant robust esti-
mators of location and covariance that could be applied to the opened singular data.

5 Numerical Examples

In this section we apply the theoretical results to real data examples. The first two ex-
amples are taken from Barceló et al. (1996), who applied outlier detection based on
different additive logratio transformations combined with Box-Cox transformation.
Since the closed data has 3 parts or components, we can even plot them in the ternary
diagram. Additionally, we can visualize the Mahalanobis distances in the ternary di-
agram to get a better impression of the multivariate data structure.

5.1 Visualizing Mahalanobis Distances in the Ternary Diagram

Let p1, . . . ,pn be the opened (alr or ilr) transformed data in the 2-dimensional real
space (the original closed data was in the space S3). Using estimates of location T

and covariance C based on the data p1, . . . ,pn, the Mahalanobis distances can be
computed. Moreover, any other point p ∈ R

2 can be assigned a Mahalanobis distance
using the same estimates T and C, i.e. MD(p) = [(p − T )′C−1(p − T )]1/2. Now
we are interested in those points pc ∈ R

2 that have the same constant Mahalanobis
distance c, i.e. MD(pc) = c. Using polar coordinates, it is easy to see that

pc = �

(√
a1 0
0

√
a2

)(
c · cos(2π · m)

c · sin(2π · m)

)
+ T , (9)

where � = (γ 1,γ 2) is the matrix with the eigenvectors of C, a1 and a2 are the asso-
ciated eigenvalues, and m is any number in the interval [0,1). In particular, distances

c =
√

χ2
2;q will be of interest, for certain quantiles q , like the 97.5% quantile indicat-

ing the outlier cut-off value.
The points pc can be back-transformed to the original space S3 by applying the

corresponding inverse transformation, i.e. formula (2) if an alr transformation has
been applied, or formulas (4) and (6) in case of a clr and ilr transformation. The
resulting back-transformed points can be drawn as contours in the ternary diagram.
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Example 1 (Arctic Lake Sediment data) This data set from Aitchison (1986, p. 359)
describes 39 sediment samples of sand, silt and clay compositions in an Arctic lake.
The data set was originally from Coakley and Rust (1968). The ternary diagram
shown in Fig. 1 (lower left and right) reveals deviating data points. In this display
it is not clear which data points belong to a joint data structure and which points are
deviating from this structure. The data with the alr transformation is opened using the
second variable as ratioing variable (Fig. 1, upper left and right). The real bivariate
data structure is immediately visible. We compute the classical MDs using sample
mean and covariance, and the robust MDs using the MCD estimator. The plots are
overlaid using (9) with the ellipses corresponding to 0.75, 0.9, and 0.975 quantiles of√

χ2
2 for the classical (left) and robust (right) estimators. While classical estimation

only reveals two observations as outliers, robust estimation discovers the data struc-
ture of the majority of the data points in a much better way and highlights additional
points as potential outliers. Back-transformation of the ellipses to the original data
space results in the contours shown in Fig. 1 (lower left: classical; lower right: ro-
bust). The same data points as in the above plots are flagged as outliers. Additionally,
the robust contours make the main data structure visible (right ternary diagram). Note
that the contours would be exactly the same if another variable had been used as ratio
variable (Theorem 1), or if an ilr transformation had been used (Theorem 3), or if a
clr transformation had been used for the classical case (Theorem 2).

Barceló et al. (1996) also used this data for outlier detection. The authors used a
very different procedure (alr and different Box-Cox transformations), and the obser-
vations 6, 7, 12, and 14 were identified as potential outliers. Our approach flagged
the same observations as atypical, but also some additional data points. The visual
impression in the transformed space (Fig. 1, upper right) confirms our findings. It
should be noted that the representation of the alr transformed data with orthogonal
coordinates in Fig. 1 (upper left and right) is not coherent with the Aitchison geome-
try of the simplex (Egozcue et al. 2003). Nevertheless, the results concerning outlier
detection are correct.

Example 2 (Aphyric Skye Lavas data) The data in Aitchison (1986, p. 360), adapted
from Thompson et al. (1972), represent percentages of Na2O + K2O (A), Fe2O3 (F)
and MgO (M) in 23 aphyric Skye lavas and define compositions with sum 100%. We
apply the ilr transformation and compute classical and robust MDs. The graphical
representation of the results is analogous to Fig. 1. The upper row of Fig. 2 shows the
ilr transformed data with ellipses corresponding to classical (left) and robust (right)
MDs. The lower row of Fig. 2 shows the original data in the ternary diagram, with
the ellipses (classical: left; robust: right) back-transformed. Only the robust analysis
identifies two potential outliers: the observations 2 and 3.

For this data set, Barceló et al. (1996) did not report any outliers. Note that the two
observations 2 and 3 identified as potential outliers with our method are really on the
boundary. If another outlier cut-off value is used, these observations could fall inside
the boundary. In practice, a more detailed inspection of the two atypical data points
is recommended.

Example 3 (Kola data) This data set is derived from a large geochemical mapping
project, carried out from 1992 to 1998 by the Geological Surveys of Finland and
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Fig. 1 alr transformed Arctic Lake Sediment data with classical (upper left) and robust (upper right) MDs
and their transformation into the ternary diagram (classical: lower left; robust: lower right)

Norway, and the Central Kola Expedition, Russia. An area covering 188000 km2 in
the Kola peninsula of Northern Europe was sampled. In total, approximately 600
samples of soil were taken in 4 different layers (moss, humus, B-horizon, C-horizon)
and subsequently analyzed by a number of different techniques for more than 50
chemical elements. The project was primarily designed to reveal the environmental
conditions in the area. More details can be found in Reimann et al. (1998), which also
includes maps of the single element distributions. The data is available in the library
‘mvoutlier’ of the statistical software package R (R development core team 2006).
The 10 major elements Al, Ca, Fe, K, Mg, Mn, Na, P, Si, and Ti of the C-horizon for
multivariate outlier detection was used. We applied the ilr transformation to open the
data.

For this example it is no longer possible to use ternary diagrams for graphical in-
spection. However, we still can compute the Mahalanobis distances and show them
graphically, together with an outlier cut-off value. It could be interesting to see the
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Fig. 2 ilr transformed Aphyric Skye Lavas data with classical (upper left) and robust (upper right) MDs
and their transformation into the ternary diagram (classical: lower left; robust: lower right)

effect of robust versus classical estimation of the Mahalanobis distances. Figure 3
shows the distance-distance plot introduced in Rousseeuw and Van Driessen (1999),
comparing both measures. The robust Mahalanobis distances are based on MCD es-

timates. The outlier cut-off values are the 0.975 quantiles of
√

χ2
9 , and are shown as

the horizontal and vertical lines. The dashed line indicates equal distance measures.
Using the outlier cut-off values, the plot can be subdivided into 4 quadrants: reg-

ular observations (lower left; symbol grey dot), outliers (upper right; symbol ‘+’),
outliers only identified with the classical MD (empty), and outliers only identified
with the robust MD (symbol triangle). Figure 3 (right) shows the map of the survey
area. The same symbols as used on the left plot are plotted at the sample locations.
The multivariate outliers marked with ‘+’ are in the northern coastal area and in the
east around Monchegorsk, a big industrial center, and Apatity (Filzmoser et al. 2005).
However, the additional multivariate outliers identified with the robust method (sym-
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Fig. 3 Comparison of classical and robust Mahalanobis distances of the ilr transformed Kola data (left)
and presentation of the regular observations and identified outliers in the map (right)

bol triangle) emphasize the atypical regions in a much clearer way, and additionally
highlight an area left from the center of the survey area. This area is characterized
by a felsic/mafic granulite belt (Reimann et al. 1998) which obviously has deviating
multivariate data behavior.

Figure 3 makes the necessity of robust estimation clear. Besides robust estimation,
it could be used to see the effects of opening the data for outlier detection. Figure 4
is a modification of the distance-distance plot. The robust Mahalanobis distances of
the closed original data are plotted against the robust Mahalanobis distances of the ilr
transformed data. The horizontal lines are the outlier cut-off values, namely the 0.975

quantiles of
√

χ2
10 and

√
χ2

9 , respectively. The plot is split the plot into 4 quadrants,
and we use different symbols in each quadrant. Additionally, for the observations
identified as multivariate outliers by both distance measures (upper right; symbol
‘+’) we use black and gray symbols, depending on which distance measure is larger.

Figure 4 (right) shows the same symbols in the map. We see that the multivariate
outliers characterize much the same areas as in Fig. 3, but the measure based on the
closed data misses many outliers in the center of the survey area (symbol triangle).
The outliers only identified with the closed data (symbol open circle) seem to make
no sense at all, because they form no spatial pattern on the map. Interestingly, the
distinction in size of the outliers identified with both measures (symbol “+”, black
and grey) allows also a geographical distinction. The grey symbols are mainly around
Monchegorsk and Apatity in the east, and they are over-emphasized by resulting in
too large distances, if the data are not opened.

6 Conclusions

Robust Mahalanobis distances are a very common tool for multivariate outlier de-
tection. However in the case of compositional data, the application of this tool to
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Fig. 4 Comparison of robust Mahalanobis distances with original and ilr transformed Kola data (left) and
presentation of the regular observations and identified outliers in the map (right)

the closed data can lead to unrealistic results. Different data transformations like the
alr, clr, or ilr transformation should be applied first. We have shown that all three
transformations result in the same Mahalanobis distances if classical estimates are
used. If a robust affine equivariant estimator (like the MCD estimator) is used, the
Mahalanobis distances are the same for alr and ilr transformed data. The data used in
Examples 1 and 2 allow a visualization of the Mahalanobis distances in the ternary
plot as contour lines, making the multivariate data structure clearly visible. For data
of higher dimension the visualization can be done by comparing Mahalanobis dis-
tances of the original (closed) and the opened data. Outlier detection based on robust
Mahalanobis distances implicitly assumes that the majority of data points is ellipti-
cally symmetric. If the transformation for opening the data does not approach this
elliptical symmetry, an additional data transformation should be applied. In fact, this
was proposed in Barceló et al. (1996) who used a Box-Cox transformation on the
data. However, nice theoretical properties are lost. Again, it will depend on the type
of transformation which observations are identified as potential outliers. A way out
of this situation is to use covariance estimators which are less sensitive to deviations
from elliptical symmetry, like estimators based on spatial signs or ranks (Visuri et al.
2000). For 3-dimensional compositional data the elliptical symmetry can be graph-
ically inspected by visualizing the Mahalanobis distances in the transformed data
space (Figs. 1 and 2, upper right). Finally, the critical outlier cut-off value used in
this paper only indicates ‘potential’ outliers, and it should not be used to automati-
cally declare these observations as outliers. These observations are different from the
majority of data points. The reason for this difference could be a different process
influencing the data (another data distribution), or atypically high or low values caus-
ing ‘extreme’ observations (same data distribution). Filzmoser et al. (2005) discussed
this issue and introduced modified cut-off values to distinguish between these types
of outliers.



244 Math Geosci (2008) 40: 233–248

Acknowledgements The authors are grateful to the referees for helpful comments and suggestions.
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Appendix

Proof of Theorem 1 Let Xn,D be a data matrix with closed observations xi =
(xi1, . . . , xiD)′ with

∑D
j=1 xij = 1 and xij > 0 for i = 1, . . . , n, i.e. xi ∈ SD . Let

X(l)
n,D−1 be matrix resulting from alr transformation of X using column l. The rows

of X(l) are

x(l)
i =

(
log

xi1

xil

, . . . , log
xi,l−1

xil

, log
xi,l+1

xil

, . . . , log
xiD

xil

)′
(10)

(compare with (1)). Similarly, let X(k) be the alr transformed data matrix from X
using column k, with k �= l. Then, using log

xij

xil
= logxij − logxil , it can be easily

shown that X(l) = X(k)Bkl or x(l)
i = B′

klx
(k)
i with the (D − 1) × (D − 1) matrix

Bkl =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0
. . .

...

1 0
−1 . . . −1 −1 −1 . . . −1 . . . −1

1 0 0
. . .

. . .
...

1 0
0 1
...

. . .

0 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The undisplayed entries in this matrix are zero. The l-th row includes only entries
of −1. The main diagonal is 1, except for entry l where it is −1 and the entries l + 1
to k − 1 which are 0. Finally, all entries to the left of the main diagonal zeros are 1.
An example of such a matrix for D = 7, k = 5, and l = 2 is

B5,2 =

⎛

⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0
−1 −1 −1 −1 −1 −1

0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎞

⎟⎟⎟⎟⎟⎟⎠
.

The matrix Bkl is evidently nonsingular, so its inverse B−1
kl and the inverse of the

transposed matrix (B′
kl)

−1 exist. Thus, for T and C affine equivariant

T
(
x(l)

1 , . . . ,x(l)
n

) = T
(
B′

klx
(k)
1 , . . . ,B′

klx
(k)
n

) = B′
klT

(
x(k)

1 , . . . ,x(k)
n

)
,
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C
(
x(l)

1 , . . . ,x(l)
n

) = C
(
B′

klx
(k)
1 , . . . ,B′

klx
(k)
n

) = B′
klC

(
x(k)

1 , . . . ,x(k)
n

)
Bkl

and consequently

MD2(x(l)
i )

= [
x(l)
i − T

(
x(l)

1 , . . . ,x(l)
n

)]′[
C

(
x(l)

1 , . . . ,x(l)
n

)]−1[x(l)
i − T

(
x(l)

1 , . . . ,x(l)
n

)]

= [
B′

klx
(k)
i − B′

klT
(
x(k)

1 , . . . ,x(k)
n

)]′[B′
klC

(
x(k)

1 , . . . ,x(k)
n

)
Bkl

]−1

× [
B′

klx
(k)
i − B′

klT
(
x(k)

1 , . . . ,x(k)
n

)]

= [
x(k)
i − T

(
x(k)

1 , . . . ,x(k)
n

)]′BklB
−1
kl

[
C

(
x(k)

1 , . . . ,x(k)
n

)]−1
(B′

kl)
−1

× B′
kl

[
x(k)
i − T (x(k)

1 , . . . ,x(k)
n )

] = MD2(x(k)
i ). �

Proof of Theorem 2 Let the composition x = (x1, . . . , xD)′ ∈ SD or
∑D

i=1 xi = 1,
xi > 0, be given. First, we provide a matrix transformation between alr and clr trans-
formations of x. Without loss of generality, the last variable D is used for the alr
transformation. Using an alternative representation of (1)

x(D) = (logx1 − logxD, . . . , logxD−1 − logxD)′

and another presentation of (3)

y = (y1, . . . , yD)′, yi = D − 1

D
logxi − 1

D

D∑

j=1,j �=i

logxj , i = 1, . . . ,D,

it is easy to show that x(D) = Fy and y = F∗x(D), where

FD−1,D =
⎛

⎜⎝
1 −1

. . .
...

1 −1

⎞

⎟⎠ and F∗
D,D−1 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

D−1
D

− 1
D

. . . − 1
D

− 1
D

D−1
D

. . .
...

...
. . .

. . . − 1
D

...
. . . D−1

D− 1
D

. . . . . . − 1
D

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

(Aitchison 1986, Sect. 5.1). Moreover, FF∗ = ID−1 (identity matrix of order D − 1),
F∗F is symmetric, FF∗F = F, and F∗FF∗ = F∗. Thus, F∗ fulfills all properties of the
Moore–Penrose inverse matrix F+ of F,

FF+F = F, F+FF+ = F+, (FF+)′ = FF+, (F+F)′ = F+F

and in our case additionally FF+ = I. Analogous conclusions can be obtained also
for other choices of the ratioing variable for the alr transformation, but the structures
of the matrices are different.

Let us consider now alr and clr transformed data matrices X(D)
n,D−1 and Yn,D with

rows x(D)
i and yi , for i = 1, . . . , n, respectively. We use the notations x̄(D) and ȳ for
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the corresponding arithmetic mean vectors, and Sx(D) and Sy for the sample covari-
ance matrices. For the latter we find the relation

Sy = 1

n

n∑

i=1

(yi − ȳ)(yi − ȳ)′

= 1

n

n∑

i=1

(
F+x(D)

i − F+x̄(D)
)(

F+x(D)
i − F+x̄(D)

)′

= F+ 1

n

n∑

i=1

(
x(D)
i − x̄(D)

)(
x(D)
i − x̄(D)

)′
(F+)′ = F+Sx(D) (F+)′.

Furthermore,

MD2(x(D)
i ) = (

x(D)
i − x̄(D)

)′S−1
x(D)

(
x(D)
i − x̄(D)

) = (Fyi − Fȳ)′S−1
x(D) (Fyi − Fȳ)

= (yi − ȳ)′F′S−1
x(D)F(yi − ȳ), i = 1, . . . , n.

We denote S∗
y = F′S−1

x(D)F. Then, using the above mentioned properties of the Moore–
Penrose inverse, property FF+ = I, and basic matrix algebra, we can compute

SyS∗
ySy = F+Sx(D) (F+)′F′S−1

x(D)FF+Sx(D) (F+)′ = F+Sx(D) (F+)′ = Sy,

S∗
ySyS∗

y = F′S−1
x(D)FF+Sx(D) (F+)′F′S−1

x(D)F = F′S−1
x(D)F = S∗

y,

(SyS∗
y)

′ = [
F+Sx(D) (F+)′F′S−1

x(D)F
]′ = (F+F)′ = F+F

= F+Sx(D) (F+)′F′S−1
x(D)F = SyS∗

y,

(S∗
ySy)

′ = [
F′S−1

x(D)FF+Sx(D) (F+)′
]′ = [

(F+F)′
]′ = (F+F)′

= F′S−1
x(D)FF+Sx(D) (F+)′ = S∗

ySy.

This shows that S∗
y = S+

y is the Moore–Penrose inverse of Sy, and consequently

MD2(x(D)
i

) = (yi − ȳ)′F′S−1
x(D)F(yi − ȳ) = (yi − ȳ)′S+

y (yi − ȳ) = MD2(yi )

for i = 1, . . . , n. Here we have directly used the Moore-Penrose inverse matrix S+
y in

the expression of MD2(yi ), since in most statistical software packages it is directly
computable. Another equivalent possibility to prove above mentioned property is pre-
sented in Aitchison (1986, Property 5.6). Using Theorem 1 and the notation of (10),
we obtain

MD2(x(l)
i

) = MD2(x(D)
i

) = MD2(yi ) for l = 1, . . . ,D − 1,

which completes the proof. �

Proof of Theorem 3 Let x(D), y, and z be alr (last variable is chosen as ratio vari-
able), clr and ilr transformations, respectively, for composition x ∈ SD , see (1), (3),
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and (5). Then, from the proof of Theorem 2, x(D) = Fy and y = F+x(D). The rela-
tions y = Vz, V′V = ID−1 for a D × (D − 1) matrix V with orthogonal basis vectors
in its columns, follow immediately from the properties of isometric logratio transfor-
mation. Consequently,

x(D) = FVz and z = V′F+x(D)

are relations between alr and ilr transformations, with (D − 1) × (D − 1) matrices
FV and V′F+. The second relation was derived from y = F+x(D), multiplied with V′
from the left and using the above described properties. By substitution into the first
relation we obtain

x(D) = FVV′F+x(D),

and comparing both sides it immediately follows that FVV′F+ = I. Thus, V′F+ is
the inverse matrix of the nonsingular matrix FV (Harville 1997, p. 80, Lemma 8.3.1).
Using (8) and Theorem 1 results in

MD2(z) = MD2(V′F+x(D)
) = MD2(x(j)

)
for j = 1, . . . ,D. �
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