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Abstract Methods reported in the literature for rock fracture simulations include ap-
proaches based on stochastic geometry, multiple-point statistics and a combination
of geostatistics for fracture density and object-based modelling for fracture geome-
tries. The advantages and disadvantages of each of these approaches are discussed
with examples. By way of review, the authors begin with the geostatistical indica-
tor simulation method, based on the truncated–Gaussian algorithm; this is followed
by multiple-point statistical simulation and then the stochastic geometry approach,
which is based on marked point process simulation. A new approach, based on pluri-
Gaussian structural simulation, is then introduced. The new approach incorporates in
the simulation the spatial correlation between different sets of fractures, which in gen-
eral, is very difficult, if not impossible, to accomplish in the three methods reviewed.
Each simulation method is summarised together with detailed simulation procedures
for each. A published two-dimensional fracture dataset is used as a means of assess-
ing the performance of each simulation method and of demonstrating the concepts
discussed in the text.

Keywords Stochastic rock fracture simulation · Indicator simulation · Marked point
processes · Multiple-point statistics · PluriGaussian simulation

P.A. Dowd (�)
Faculty of Engineering, Computer and Mathematical Sciences, University of Adelaide, Adelaide,
Australia
e-mail: peter.dowd@adelaide.edu.au

C. Xu · R.J. Fowell
School of Civil and Environmental Engineering, University of Adelaide, Adelaide, Australia

K.V. Mardia
Department of Statistics, University of Leeds, Leeds LS2 9JT, UK



698 Math Geol (2007) 39: 697–714

Introduction

The stochastic simulation of rock fractures provides a powerful means of investigat-
ing rock mass properties related to fractures and fracture networks. The applications
include rock engineering (Einstein and Stephansson 2000; Einstein 2003), water re-
sources engineering (Long and Witherspoon 1985), petroleum engineering (Odling
1992) and hazardous waste disposal programmes (Dershowitz et al. 1999; Outters
2003). In general, in these applications, extensive sampling is difficult or expensive
and the data available at the time of decision-making are scarce. For these reasons, the
only feasible approach is via stochastic models based on the limited available data.

The intuitive approach to the problem is via stochastic geometry and thus Boolean
models (or object-based models) and their extension, marked point process models,
are common in the literature—see, for example, Chilès and Delfiner (1999), Lantéjoul
(2002), Kulatilake et al. (1993), Lee et al. (1990), Stoyan et al. (1995). Approaches
using geostatistics can also be found but, in general, they are applied within the con-
text of Poisson modelling (Gringarten 1997; Long and Billaux 1987; Billaux et al.
1989; Wen and Sinding-Larsen 1997) where geostatistics plays only a small part in
the total simulation process (usually limited to the modelling of fracture density). To
the authors’ knowledge, fracture simulation using only standard two-point geosta-
tistics is very recent (Tomsett 2005). Multiple-point statistics (Bayesian modelling)
has also been attempted (Guardiano and Srivastava 1993), but the scope of the study
was limited. A Markov Chain Monte Carlo (MCMC) approach is currently being
developed and the early results are very encouraging (Mardia et al. 2007).

In this paper, we compare the performances of the three major approaches, sto-
chastic geometry, multiple-point statistics and the combination of geostatistics and
object-based models. Sequential indicator simulation using multiple-point statistics
is done within a Bayesian framework using a training image. The stochastic geometry
approach is investigated in the form of marked point processes. The third approach
is in the form of a proposed method based on the pluriGaussian algorithm, which
provides a means of accounting for the spatial correlation between different subsets
of fractures during the simulation. For completeness, sequential indicator simulation
using the truncated Gaussian algorithm is also included as it provides the founda-
tion for the pluriGaussian method and demonstrates why multiple-point statistics are
necessary to simulate complex structures such as fractures.

Although all methodologies described in this paper are readily applicable in 3D,
we have chosen to use a published two-dimensional dataset to demonstrate the con-
cepts. The dataset comprises mapped fractures from the Yucca Mountain nuclear
waste disposal project collected and reported by Barton and Larson (1985). It was
used extensively by Lee et al. (1990) for their hierarchical modelling in which frac-
tures are divided into subsets that are then modelled and simulated sequentially (with
imposed hierarchical relations) to mimic different stages of fracture formation. Fig-
ure 1a shows the original fracture map and the digitized fracture traces are shown
in Fig. 1b. Figure 1c shows the pixelated fracture traces, which can be viewed as an
indicator representation of the dataset. A black pixel at x corresponds to I (x) = 1,
meaning at least one fracture trace passes through the pixel centered on x. Depending
on the accuracy required, different resolutions can be used to pixelate the fractures.
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In our example, the resolution used is 200 pixels × 200 pixels. If the centroids of the
fractures are used to represent the locations of fractures, the point dataset shown in
Fig. 1d is obtained. The original geographical ranges covered (Fig. 1a) are [0,27] for
the horizontal axis and [0,21] for the vertical axis. In Figs. 1b–d, these ranges are
reduced to [1.5,25.5] and [2.5,20], respectively. These ranges also apply to Fig. 2b,
Figs. 3(a–d), Fig. 6(a), Figs. 8(a–b) and Fig. 9(a) and to all non-parametric density
models λ(x) shown in Table 1. Labels of the axes for these figures have been re-
moved for more effective usage of the space. Note that this is an exhaustive dataset
and the experimental model describing the fracture pattern can be directly estimated.
Such a dataset makes for a more rigorous assessment of the performances of different
simulation methods because model uncertainty can be kept to a minimum.

Truncated Gaussian Indicator Simulation

The indicator function for Fig. 1c is defined as

I (x) =
{

1 if x ∈ F

0 otherwise
(1)

where F is the random set of the pixelated fractures (black pixels in Fig. 1c). The
image thus defined is binary and can be viewed as consisting of two complemen-
tary geological facies. The (unconditional) simulation can then be performed by the
truncated Gaussian method (Galli et al. 1994). Three thresholds, (−∞, t1,∞), are
required for the simulation, where t1 = G−1(P1) and P1 is the proportion of pixels
in Fig. 1c with I (x) = 1, which is 19.84%, and therefore, t1 = −0.8472. The ex-
perimental variogram of I (x) is plotted as black triangles in Fig. 2a. This variogram
is used with least-squares fitting to derive the covariance model for the underlying
Gaussian field, Y(x), which is simulated and to which the thresholds are applied to
simulate the indicators. The relationship between the spatial covariance, C(h), of
I (x) and the spatial covariance, σ(h), of Y(x), is (Galli et al. 1994).

C(h) = 1

2π
√

1 − σ 2(h)

∫ t1

−∞

∫ t1

−∞
exp

[
−u2 + v2 − 2σ(h)uv

2(1 − σ 2(h))

]
dudv. (2)

Spherical models are assumed for both spatial covariances and the covariance model
for Y(x) derived from (2) has a range, a = 4 m. The theoretical variogram of I (x),
based on the derived covariance model, is shown as the solid line in Fig. 2a.

Once the Gaussian field, Y(x), is simulated (e.g., using sequential simulation,
Deutsch and Journel 1992), it is truncated to derive the realisation of I (x) by ap-
plying the rule

Î (x) =
{

1 if − ∞ < Ŷ (x) ≤ −0.8472

0 otherwise.
(3)

For one such realisation, the variogram of the simulated indicators is plotted using
solid circles in Fig. 2a and the simulation is shown in Fig. 2b, in which the propor-
tion of black pixels is 20.6%. Although the variogram model of I (x) is reproduced
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Fig. 1 a Fracture traces; b Digitised fractures; c Pixelated fractures; d Point data set

Fig. 2 a Variogram modelling; b A simulation of I (x)

reasonably well, the simulated image differs significantly in many respects to the
original image shown in Fig. 1. This confirms previously reported observations that
matching first and higher order properties of a random field does not necessarily re-
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sult in the identical random process (Baddeley and Silverman 1984). In this case, the
properties used for the simulation include the first order property of proportion and
the second order property of the variogram.

Indicator Simulation Using Multiple-Point Statistics

The use of only first and second order properties is clearly inadequate for simulat-
ing the complex structures of the example fracture set. Using higher order statistics
should improve the simulation although reconstruction of all the stochastic proper-
ties of the random field cannot be guaranteed (Baddeley and Silverman 1984). Infer-
ence of higher order spatial statistical models is difficult as they are based on spatial
configurations rather than the simple pairwise distances and orientations used in the
traditional forms of geostatistics. One approach is to use conditional probability for a
particular configuration to infer experimentally the spatial model to describe the ran-
dom field (Guardiano and Srivastava 1993; Strebelle 2002). For an indicator variable,
such as I (x) defined above, this conditional probability is equivalent to the condi-
tional expectation of the configuration.

The conditional probability that I (x) = 1, given n data events I (xi) = 0 or 1,
i = 1,2, . . . , n, can be expressed as the sum of the (2n + 1) terms as follows

Prob
{
I (x) = 1 | I (xi), i = 1,2, . . . , n

}
= λ0 +

n∑
i=1

λ
(1)
i I (xi) +

n∑
i=1

n∑
j>i

λ
(2)
ij I (xi)I (xj )

+
n∑

i=1

n∑
j>i

n∑
k>j

λ
(3)
ijkI (xi)I (xj )I (xk) + · · · + λ

(n)
ijkl...

n∏
m=1

I (xm) (4)

where λ(.)
... are 2n + 1 coefficients obtained by an extended simple kriging system;

see Guardiano and Srivastava (1993) for more details. The first (n + 1) terms can
be solved by kriging (unbiasedness condition and two-point statistics) and the other
terms describe multiple point statistical characteristics of order 3 to n. In practice,
inference of all the models of different orders to describe fully this conditional prob-
ability is almost impossible, especially when n is large. However, a reduced set of
this conditional probability can be used instead. This reduced set amounts to choos-
ing the situation for which I (xi) = 1, i = 1,2, . . . , n, one of the possible 2n joint
realisations of the n events. An experimental dataset (one realisation of the random
field) can then be used to evaluate this conditional probability by using the Bayesian
conditional probability postulate

Prob
{
I (x) = 1 | I (xi) = 1, i = 1,2, . . . , n

}
= Prob{I (x) = 1, I (xi) = 1 (i = 1,2, . . . , n)}

Prob{I (xi) = 1 (i = 1,2, . . . , n)} (5)

which, for an indicator variable, is equal to the conditional expectation of I (x) given
I (xi) = 1, i = 1,2, . . . , n. Once this conditional probability is inferred, I (x) can be
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Fig. 3 Multiple-point statistical simulations

simulated by Monte Carlo sampling. The inference is usually based on one or more
realisations of the random variable, which are referred to as training images. These
training images may be datasets or they may be postulated on the basis of expert
knowledge.

The four steps required for the sequential simulation of I (x) using the conditional
probability approach (Guardiano and Srivastava 1993; Strebelle 2002) are:

• Define a random path through the simulation grid.
• At each grid node, x, retain the nearest n indicator data, I (xi), i = 1,2, . . . , n

(conditioning data and previously simulated indicators). Scan the training image
for all (n + 1)-tuples that replicate the x plus n data configuration and evaluate
Prob{I (xi) = 1 (i = 1,2, . . . , n)} and Prob{I (x) = 1, I (xi) = 1 (i = 1,2, . . . , n)},
and hence obtain the conditional probability Prob{.} given in (5).

• Simulate I (x) based on Prob{..} using Monte Carlo sampling and then add I (x)

as a known datum event.
• Move to the next grid node and repeat.

The choice of n is critical as it determines the complexity of the structures that
can be adequately reproduced. Figures 3(a–d) show the simulation of the fracture
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Fig. 4 Two-point variogram
models for multiple-point
statistical simulation

example using n = 20, 16, 12 and 8, respectively. The figures clearly indicate that
for n ≥ 20 the simulation generates structures that are almost identical to the training
images used to construct the probability models. For n = 16, the simulated image
shows signs of fragmenting, which increases as n is further reduced until for n = 8,
the simulation shows no resemblance to the original image. Note, however, that the
proportion of black pixels does not change significantly from that of the training
image until n = 8 when the proportion is more than doubled.

It is difficult to evaluate the quality of the multiple-point statistical simulations
using the conditional expectation model in (4). We use here only the two-point var-
iogram models as a simple verification that the second-order correlations are repro-
duced, and the results are given in Fig. 4. As expected, the reproduction of the var-
iogram model is excellent for n ≥ 16 whilst there are significant differences when
n ≤ 12.

These simulations demonstrate clearly the importance of n as a parameter in
multiple-point statistical simulation and the need for a careful choice of its value,
which depends on the complexity of the structures to be simulated. In the example
given here, it can be reasonably concluded that values of n ≤ 12 are inadequate to
describe statistically the complexity of the structures.

The ability to model complex structures makes this simulation technique an attrac-
tive choice for rock fracture simulations. Another merit of the method is that it can
easily be extended for applications in higher dimensions (≥3). The major drawback
is the difficulty of inferring the probability models with the consequent need to (over)
rely on training images. It is noted that Guardiano and Srivastava (1993) made some
attempt to model partially the conditional expectation in (4).

Note that the indicator-based simulations described here are based on pixelated
fracture patterns and the simulation output is also in pixels. For subsequent analyses,
such as connectivity and flow assessment of the fracture network, geometric frac-
tures (continuous lines in two dimensions or continuous surfaces in three dimen-
sions) could be constructed from the pixelated image (a reverse pixilation process).
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This process is fairly simple provided the fracture pattern is adequately simulated,
such as that shown in Fig. 3(a).

Simulation Using Marked Point Process Models

In the context of marked point processes, in two dimensions, the simulation of frac-
tures is equivalent to the simulation of a line segment process (a special case of a fibre
process) and in three dimensions, it is equivalent to the simulation of a surface (poly-
gon) process (Stoyan et al. 1995; Dershowitz and Einstein 1988). In this approach,
the spatial location of each fracture, f , in the fracture set F (considered as a realisa-
tion of a stochastic geometry model F) is represented by a point x in space where x

usually coincides with a featured point in f , such as the centroid of a fracture plane
(or line). Properties associated with f (e.g., sizes, orientations) are then represented
using marks, m, assigned to point x. The collection {x} then forms a point pattern P

considered as a realisation from a point process model, ℘. The collection {x,m} is
considered to be a marked point pattern, M , which is realised from a marked point
process model, M, related to ℘. If M can be inferred for an application, the marked
point pattern can then be simulated, and hence a simulated fracture set can be gener-
ated.

It is common practice to classify rock fractures into sub-sets defined by ranges
of orientations, which in turn are defined by geological and/or geomechanical con-
siderations (Lee et al. 1990; Kulatilake et al. 1993). Lee et al. (1990) classified the
example dataset into two sub-sets and performed the simulation using a complex
hierarchical model. In our view, a better reconstruction (i.e., better reproduction of
the original structures) can be achieved by using more sub-sets together with simple
Boolean object simulation, provided each individual fracture sub-set can be satisfac-
torily modelled (refer to results below).

Figure 5 shows the rose diagram of the doubled azimuth angles of the fractures
in the example dataset. The data have been classified into five sub-sets according to
fracture orientation and each sub-set is modelled separately. The combination of all
individually simulated fracture sub-sets forms the final simulated fracture pattern.

The method comprises three steps:

• For each fracture sub-set, simulate the fracture locations from the corresponding
point intensity model λ(x), thus generating a realisation of the point process model
for each sub-set.

• For each point of the point realisation, simulate the marks, i.e., fracture properties
(length and orientation for this example) from their respective probability distrib-
ution function (PDF) using Monte Carlo sampling.

• Combine the simulations of all sub-sets to obtain the complete simulation (consid-
ered as a realisation of the underlying stochastic geometry model F).

A point density model, λ(x), and a PDF for each mark of each sub-set are required for
the simulation. For the example used, these models are given in Table 1 where λ(x)

is estimated by the kernel estimation method using the Epanechnikov kernel (Cressie
1993; Xu et al. 2007). Note that both non-parametric and parametric models can be
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Table 1 Models used for the marked point process simulation

established and used although only non-parametric models are used in this example.
The use of non-parametric models estimated directly from the dataset ensures more
accurate point process models for the simulations and the performances of the sim-
ulation method as a whole can be more easily assessed (without the complication of
model uncertainty).

Figure 6(a) shows a fracture pattern generated by this simulation technique. As
a quality check on the simulation, the inter-fracture distance function H(h) and the
analogous K-function, K(h), defined for a line segment process from the simulation
output and the data are compared. To calculate H(h) and K(h), each fracture is rep-
resented by a random point on the fracture and hence an associated point pattern is
created for each fracture realisation. Point process statistics for the converted point
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Fig. 5 Rose diagram of the doubled azimuth angles of the example dataset

Fig. 6 A simulated fracture pattern and statistical comparison with the dataset
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pattern are then used to characterize the properties of the underlying line segment
process (Parker and Cowan 1976; Stoyan et al. 1995). H(h) and K(h) are then cal-
culated, respectively, as the inter-event distance and the K-function of point process
statistics (Diggle 2003). H(h) therefore represents, loosely speaking, the statistics
of average spacing between fractures and K(h) represents their spatial correlations.
The functions for the simulation output and the dataset are given in Figs. 6(b) and (c).
Clearly, these statistics are very well reproduced in the simulated fractures. The func-
tions for spatially independent cases (i.e., Poisson line processes) are also plotted
with their 95% confidence envelopes based on the Monte Carlo test method (Diggle
2003). As expected, there are considerable differences between the functions, con-
firming that the modelled line segment process is non-homogeneous.

The marked point process is directly applicable to three-dimensional cases and
there is no additional complexity over the two-dimensional case. The marks of the
points are replaced by those describing the three-dimensional geometries of the frac-
ture planes (Poisson polygons). The annealing technique proposed by Xu et al. (2007)
can be used to include auto-correlations and cross-correlations between marks in the
simulations. If correlations between point locations of different sub-sets are relevant
to the application, then either the hierarchical approach proposed in Lee et al. (1990)
or the pluriGaussian approach, described below, can be used.

Rock Fracture Simulation by the PluriGaussian Method

In the marked point process it is very difficult to incorporate spatial correlations
among fracture sets. A relatively straightforward way of doing so is provided
by geostatistical pluriGaussian method. PluriGaussian simulations (Le Loc’h and
Galli 1996; Dowd et al. 2003) significantly extend the capabilities of the truncated
Gaussian method for the simulation of complicated structures (Armstrong and Dowd
1994; Xu et al. 2006). Here we use the method to simulate the locations of fractures.
The method, however, can also be applied directly to a pixelated fracture indicator
field.

For m sub-sets (m = 5 in the example) of fractures, we define m indicator variables
as follows

Ik(x) =
{

1 if x ∈ Fk

0 otherwise
k = 1, . . . ,m (6)

where Fk is the set of points representing the locations (e.g., centroids of fractures) of
the kth sub-set fractures (see Fig. 1d). If a complete mutual contact relationship is as-
sumed between the sub-sets, n = (m − 1) (n = 4 in the example) simulated Gaussian
fields can be truncated to obtain the simulated locations of the fractures. The spatial
auto-correlations of the fracture sets and the cross-correlations between the sub-sets
will be honoured indirectly by the n simulated correlated Gaussian fields.

The truncation of n Gaussian variables for m distinct partitions (representing m

defined indicator variables) in the combined n-dimensional Gaussian space, requires
three thresholds (hence, two partitions) for each Gaussian if the full contact relation-
ship is assumed. The thresholds are related directly to the proportions of each sub-set



708 Math Geol (2007) 39: 697–714

Table 2 Proportions, thresholds and Gaussian models for the simulation

Set 1 Set 2 Set 3 Set 4 Set 5

Pk (data) 0.0802 0.3755 0.1013 0.2531 0.1899

Pk (simulation) 0.0652 0.3728 0.1009 0.2682 0.1930

Pk (after erosion) 0.0729 0.3320 0.1296 0.2632 0.2024

t1 t2 t3 Model

Gaussian 1 −∞ −1.404 +∞ Exponential with a = 1.1

Gaussian 2 −∞ −0.228 +∞ Exponential with a = 2.0

Gaussian 3 −∞ −0.888 +∞ Exponential with a = 1.5

Gaussian 4 −∞ 0.18 +∞ Exponential with a = 1.4

of indicators. The proportion of the combined Gaussian space (≡1) comprised by the
kth partition of the space, representing the kth sub-set, is (Xu et al. 2006)

Pk =
∫ tk+1

1

tk1

∫ tk+1
2

tk2

· · ·
∫ tk+1

n

tkn

f (z1, z2, . . . , zn) dz1 dz2 · · · dzn (7)

where f (.) is the joint density of n Gaussian variables, and tkj → tk+1
j is the thresh-

old applied to the j th Gaussian to form the kth partition. Pk , k = 1, . . . ,m, can be
estimated from the data and thus so can all the thresholds. The auto- and cross-
covariances between pairs of indicators are directly related to the auto- and cross-
covariances between the Gaussian variables. For example, the covariance between
the ith and the j th indicators can be expressed using the covariance model of the
joint 2n-dimensional Gaussian distributions

Cij (h) =
∫ t i+1

1

t i1

∫ t i+1
2

t i2

· · ·
∫ t i+1

n

t in

∫ t
j+1
1

t
j
1

∫ t
j+1
2

t
j
2

· · ·
∫ t

j+1
n

t
j
n

f�(y1, y2, . . . , yn, z1, z2, . . . , zn) dy1 dy2 · · · dyn dz1 dz2 · · · dzn

(8)

where �, the covariance matrix for the 2n Gaussian variables, is defined by the co-
variance models of the Gaussian variables separated by distance h, and f�(.) is the
joint 2n-variate Gaussian density defined by �. See Armstrong et al. (2003, p. 60)
for an example of the form of � for the two Gaussian cases. Based on the established
relations, the experimental Cij (h) can then be used to estimate the Gaussian covari-
ance models required for simulating the n Gaussian fields (cf. Dowd et al. 2003; Xu
et al. 2006, for detailed implementations).

For the example used in this paper, the thresholds required for the truncations are
listed in Table 2. The auto- and cross-variograms of the indicators used in deriving
the covariance models (also listed in Table 2) for the four Gaussians used in the
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Fig. 7 Auto- and cross-variograms used in the pluriGaussian simulation

simulation are given in Fig. 7. Note that, for convenience, auto- and cross-variograms
are used instead of auto- and cross-covariances. In Fig. 7, black squares represent
experimental variograms, solid lines are the variograms calculated from the simulated
data and the broken lines are the theoretical models calculated from the Gaussian
models. The simulation was done on a 200 × 200 grid.

A few observations can be made of Fig. 7. First, all correlation structures are
satisfactorily reproduced, especially for the auto-correlations. Secondly, as the mag-
nitudes of the nugget variances and sill values of the variograms are, in general, sig-
nificantly greater than those of the cross-variograms, they have a much greater influ-
ence on the covariance models of the four Gaussian variables. Finally, not all cross-
variograms are used in the simulation; extremely noisy experimental variograms were
excluded from the modelling process so as to minimise distorting effects.
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Fig. 8 PluriGaussian simulations of fracture locations before and after erosions

The simulation comprises the combined set
⋃m

k=1 Fk (i.e.,
∑m

k=1 Pk = 1), which
is only a subset of the whole problem. The simulated image at this stage contains only
the five indicator values, as shown in Fig. 8(a). To simulate the final fracture locations,
this image is “eroded”. We propose here the use of a two step erosion process:

• Geostatistical erosion. Define a masking variable, N(x), using a grid size much
larger than the original simulation grid (200 × 200), which in the example results
in a masking grid of 16 × 12 cells. N(x) is defined as the number of fractures in-
side the larger grid cell centred at x. N(x) is then modelled from the known, or
conditioning, dataset. The model is then used to perform an unconditional simula-
tion of N(x) using any geostatistical simulation method (sequential Gaussian was
used in the example). Finally, the simulated N(x) is applied to

⋃m
k=1 Ik (Fig. 8(a))

and all Ik , k = 1, . . . ,m indicators within the larger grid cell for which N(x) = 0
are removed (eroded). The size for the large grid is normally chosen such that the
proportion of larger grid cells having at least one fracture is around 50%. Such a
choice is optimal in terms of retaining the spatial correlations of fracture locations.

• Monte Carlo erosion: For each large grid cell having at least one fracture and cen-
tred at x, retain N(x) fractures chosen at random Monte Carlo sampling is used in
this step.

The fracture locations remaining after the erosions comprise the final simulated
fracture locations. For the example dataset, the simulation result is given in Fig. 8(b).
These locations are then used with the PDF of fracture length and orientation shown
in Table 2 to simulate the final fracture pattern. One such simulated image is shown
in Fig. 9(a). The quality of the simulation is again tested by the inter-fracture distance
function and the line process K-function, which are shown in Figs. 9(b) and (c). The
inter-fracture distance function was satisfactorily reproduced by the simulation but
there are some differences in the line process K-function between the simulation and
the data. The simulated image is also a poorer reconstruction of the original image
compared with that achieved by the marked point process simulation. This exercise
does, however, demonstrate the feasibility of using the pluriGaussian method for rock
fracture simulations. The method, as proposed in the context of this application, is
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Fig. 9 PluriGaussian simulated fracture pattern and corresponding statistics

still at an early stage of development and further research is required to investigate
the sensitivity of simulations to the grid size and to the erosion (thinning) process.

The pluriGaussian method described here can also be directly applied to three-
dimensional applications without any modification. This simulation method intro-
duces correlations between different point sets (sub-sets fracture locations), which in
general is difficult to implement using only marked point process modelling.

Conclusions

As a final remark on the comparison of the four simulation methods, the simulated
images of Figs. 6(a) and 9(a) have been pixelated using the resolution of 200 × 200
pixels. The major statistical characteristics of the four simulations are compared with
those of the dataset in Table 3 and Fig. 10.

The following conclusions can be drawn from this study:

• Two-point indicator-based geostatistical simulation is inadequate for the simula-
tions of complex structures such as rock fractures.
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Table 3 Proportion of black pixels in the simulations

Data Indicator Multiple-point Marked point PluriGaussian

simulation statistics process

Proportion of black pixels (%) 19.84 20.60 19.26 21.11 19.02

Fig. 10 Variograms of the
simulations

• Rock fractures can be simulated satisfactorily by multiple-point statistical meth-
ods. Although the number of orders of statistics required for satisfactory simula-
tion depends on the complexity of the fracture pattern, on the basis of examples,
such as that reported here, it has been demonstrated the order must be at least 16
to obtain satisfactory results.

• The use of marked point processes for rock fracture simulation has been demon-
strated again to be a relatively simple method that will generate very good results
provided the fracture properties can be described accurately by marks. From com-
parisons with published simulations based on the same dataset, it has been found
that the use of more, smaller sub-sets will, in general, produce better results than
the use of fewer, larger sub-sets provided that all sub-sets can be satisfactorily
modelled.

• The pluriGaussian method can also be used for rock fracture simulations. The
method provides a means of introducing spatial correlations between different sub-
sets of fractures, which may be difficult to achieve using methods such as marked
point processes.

All the methods described can be readily applied to 3D fracture modelling and
simulations without major modifications.
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