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Abstract This paper presents two object models with corresponding simulation al-
gorithms, which aim to condition well data correctly while still converging in reason-
able time. The first model is devoted to fluvial channels and the second one is mainly
intended for smaller objects. To verify the conditioning, a method for validating well
conditioning algorithms for object models is given. The purpose is to determine the
extent to which the well conditioning introduces a bias in the models. To do this,
we check that the double expectation of a parameter conditioned to wells is equal to
the unconditional expectation. This method is applied to two different object models.
Both the conditioning algorithms presented here give good results using this test.

Keywords Stochastic modelling · Object model · Well conditioning ·
Metropolis–Hastings

Introduction

Modelling of heterogeneous reservoirs is often done by including a facies model, and
then adding different petrophysical properties for the different facies types. Different
facies will typically have very different levels of porosity and permeability. The idea
is that the facies model captures the dominating heterogeneity, so simple and smooth
models can be used for the petrophysics within each facies. A common tool for mod-
elling of facies is an object model where one facies is set as the background facies
and objects of other facies are added on the top of this.
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Traditionally, the main concern with conditioning of object models to well obser-
vations has been to get objects to match the observations. Correct conditioning of the
well data is important since it has a major impact on flow properties. By exact condi-
tioning, we mean not only that the facies is correct, but also that other properties like
connectivity and size distributions for observed objects are preserved.

In full 3D, where wells are taken to be continuous, the approaches which assume
that a randomly placed object has a positive probability of fitting a well observation
will not work. The reason is that the edge is an observation of a continuous distri-
bution, and the probability of drawing the exact location is zero. This means that
algorithms like the ones described in Lantéjoul (1997) cannot be used directly. To
a certain degree, this can be overcome by discretizing the reservoir and wells into
a grid, as in Deutsch and Wang (1996), but correct conditioning is still very time
consuming if the grid resolution used is not very rough.

We discuss two object models with the corresponding Metropolis–Hastings based
algorithms where we specifically place objects at the well observations. A similar
approach was used in Syversveen and Omre (1997). Whereas this solves the problem
of perfect matching of well observations, a bias may be introduced in other aspects
of the model. This bias may be introduced either by the approximations made in
the algorithm or by the lack of convergence. The latter will occur if the algorithm
converges too slowly for practical use. The idea of placing objects directly in the
wells was also used non-iteratively in Viseur et al. (1998), but the algorithm used
there does not focus on the correct conditioning.

We also suggest a simple test for bias in critical observators. This test relies on the
double expectancy and may be applied to any object-based algorithm. When check-
ing for the bias in this paper, we particularly consider three observators which are
important for the flow in the reservoirs:

(1) The number of well penetrations of an object. Note that even if the object is
completely eroded in the well location, the well is still considered to penetrate
the object.

(2) The mean size of an object as a function of the number of penetrations.
(3) The global net/gross distribution, which is taken here as the volume ratio of ob-

jects to background.

The first point on this list is an obvious aspect to check, as it relates directly to the
well conditioning and has major influence on the flow properties of the reservoir. It
is also obvious that the size distribution of the penetrated objects has influence on
the flow. Since large objects are more likely to be penetrated, the mean size should
increase with the number of penetrations. Finally, if there is something wrong with
the conditioning algorithm, this will often show up in the net/gross distribution as too
much or too little sand in the vicinity of the wells. Although the true values for these
parameters are not known in the real world, we can find them in our synthetic test
case and use to check the validity of the algorithms.

Models and Geometry

Two models are considered in this paper. One is a fluvial channel model, while the
other is a more general object model. Mathematically, they are very similar. The only
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difference is that the fluvial model has a net/gross indicator term instead of the tra-
ditional intensity term in point processes. Except for the inclusion of an interaction
term, the general object model is a Poisson point process. The general model is typi-
cally used to generate smaller objects. This difference leads to different conditioning
algorithms used for the two models.

In a typical facies modelling setting, we have well data w given as paths through
the reservoir along which the facies is known. We also assume that if objects of the
same facies are stacked, the border between them is known, but have no information
whether observations in different wells belong to the same object. The well obser-
vations are taken to be exact. In addition, we have net/gross information γ for the
fluvial model, which is given as a range that the net/gross must be within. The gen-
eral object model does not use net/gross directly, but requires an intensity estimated
from the net/gross. Finally, we may have inverted seismic data, which are correlated
to the local facies probability. The model for a realisation r in the fluvial model is
then

π(r | s,w,γ ) = cfM(r)fS(s | r)fI(r)fW (r)I (r | w,γ ), (1)

whereas the general object model with intensity λ is given by

π(r | s,w,λ) = cfM(r)fS(s | r)fI(r)fW (r)I (r | w)fN(r | λ). (2)

Each f -term is a likelihood which describes a certain aspect of the model. The
term fM describes the object geometry, fS is the seismic likelihood and fI covers the
interaction between objects. One object may condition several well observations, and
there may be a prior distribution on the probability of this happening, given by fW(r).
For the general object model, the term fN is the distribution for the number of objects.
Finally, I is an indicator function, which in the fluvial model is 1 if the net/gross is
within desired limits and all wells are correctly conditioned, and 0 otherwise. In the
general model, I is only a well indicator since the net/gross is handled through the
intensity.

The geometry of the reservoir is described by the term fM. This is the distribution
for object shapes and sizes, and it is included the main geological part of the model.
Interaction between the objects, handled by fI, is also based on the geological input.
The rest of the terms relate to data and describe how likely the well data, seismic data,
well coupling interpretations and observed net/gross is, given the current realisation.
For more details on these terms and the models, see Holden et al. (1998) for the
fluvial model, and Lia et al. (1997) for the general model.

In this paper, we are not concerned with the terms fS, fI and fW . The first and
last of these terms can be relatively easily added on top of what is presented here,
and would only lead to unnecessary complications. Although the term fW is related
to well couplings, it only provides weighting of the probabilities found in this paper.
The main problem is to get the couplings correctly based only on the geometry. In-
teraction does pose a problem for the conditioning algorithm for the general object
models, but it may be approximated. For the fluvial algorithm, the interaction is easily
included.

This leaves us with the geometry term fM and the indicator. The geometry of the
objects is assumed to be independent. The unconditional likelihood for a realisation
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r = (n, b1, . . . , bn), where n is the number of objects and bi is the ith object, is then

fM(r) = n!
n∏

i=1

fMB(bi),

where fMB(bi) is the likelihood for the geometry of body bi . The factorial term is
included since the numbering of bodies is irrelevant. By sorting the bodies by depth,
each realisation has a unique representation, and the likelihood must be scaled with
the number of possible permutations.

The fluvial channel is given by a straight line defining the expected channel lo-
cation and its direction and four Gaussian fields defining the thickness (VT), width
(HW), and vertical and horizontal displacements from the line (VD and HD). In ad-
dition, two 2-dimensional Gaussian fields are added, one at the top and one at the
bottom of the channel. The channel is parameterized by observing these parameters
in planes perpendicular to the line, equally spaced along it. This is shown in Fig. 1.
Between these planes, which we call sections, linear interpolation is used to deter-
mine the channel location. The 2-dimensional Gaussian fields are sampled on finer
grids and superimposed on the channel. Figure 2 shows a complete channel.

For the general object model, the objects are defined by a general basic shape.
Each object has this shape, but it is scaled by length, width and thickness parameters,

Fig. 1 Basic geometry of the fluvial model showing the channel line and sections (on the left) and a
section view (on the right)

Fig. 2 Example of channel
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Fig. 3 Basic geometry of the general model shown in the xy-plane (on the left) and a plane parallel with
the z-axis (on the right)

and also a rotation and dip angle are assigned. This is shown in Fig. 3. The shape
may also depend on some stochastic parameters that differ between objects; this is
not important for the conditioning algorithm. What is important is that these objects
do have 2-dimensional Gaussian fields added to the top and bottom.

Conditioning Algorithms

For both models, we use Metropolis–Hastings (MH) algorithms (Hastings 1970),
which means that objects are iteratively proposed and then accepted or rejected until
convergence is reached. This is time consuming, but allows correct handling of well
observations, which is very difficult in any direct sampling scheme.

An important reason for including both algorithms in this paper is that they are
very different. The fluvial algorithm is based on an idea of maximum utilisation of
information, and thus has slow, but hopefully efficient iterations, whereas the algo-
rithm for the general object model is more brute force, relying on many but fast
iterations. This difference in philosophy is based on the fact that the fluvial channels
in general are larger than the objects modelled by the other algorithm. Larger objects
are closer to more wells, and therefore more difficult to get correct by trial and error.

Fluvial Algorithm

The fluvial algorithm is based on simulated annealing. Both the net/gross term and
partially the well conditioning term are annealed. During the simulation, channel
facies cannot be placed where the wells have background, whereas the lack of chan-
nels in well observations is controlled by an annealing term. This allows to use an
empty reservoir as the initial state. The indicator term I (r | w,γ ) in (1) is replaced
by J (r | w,γ,T ), where T is the annealing temperature. As T → 0, J → I . Further-
more, J = 1 if I = 1, otherwise less than 1, and J = 0 only when r gives objects



388 Math Geol (2007) 39: 383–398

where the wells say there are none. A standard MH algorithm is used, with an ad-
vanced proposal function heavily influenced by the well data.

The MH algorithm is designed to simulate from any distribution and does not re-
quire the normalizing constant of the distribution to be known. It generates a Markov
chain with the desired stationary distribution. A candidate state rp is drawn from a
proposal distribution q(rp | r), where r is the current state. The new state is then
accepted with the acceptance probability

α(j | i) = min

(
1,

π(rp)q(r | rp)

π(r)q(rp | r)
)

. (3)

Any q can be used, but a proposal function q(rp | r) ≈ cπ(r), where c is a constant,
will increase the acceptance probability and the rate of convergence.

In each step of our MH algorithm, we propose to add one channel, to remove one
channel, or to change one of the existing channels. Of these three actions, the most
complicated is to add a new channel. Let i be the current state, j be the proposed
state with an object added, and n be the number of objects in state j . Furthermore,
let β(i | j) be the last term in (3). We have

β(j | i) = π(j)q(i | j)

π(i)q(j | i)

= c · n!∏n
k=1 fMB(bk)J (rj | w,γ,T )prem/n

c · (n − 1)!∏n−1
k=1 fMB(bk)J (ri | w,γ,T )paddg(bn)

= fMB(bn)premJ (rj | w,γ )

g(bn)paddJ (ri | w,γ )
,

where padd and prem are the probabilities of suggesting to add or to remove, and g(b)

is the likelihood of proposing the object b for addition. The p and J terms can be
easily computed; the difficulty lies in the ratio fMB(bn)/g(bn).

Our proposal function g(bn) is given by the following algorithm.

(1) Draw a channel line. With probability po, this line is drawn close to one of the
currently unconditioned well observations, if such exists.

(2) Find all sections where there are wells close to the channel line. Identify ob-
servations in these wells that may be conditioned by this channel. Observations
where the channel may be completely eroded are treated as if there was no well
observation there.

(3) Choose one of these sections and a direction randomly. Draw the channel position
in this section conditioned on all well observations that are closer to this section
than any other.

(4) Choose a direction at random. Move along the sections in this direction, and draw
the channel location in all sections close to wells. This is done from a distribution
conditioned on the previously drawn sections and the well observations.

(5) The probability of including unconditional observation is approximated accord-
ing to the part of the channel drawn so far.

(6) When the end of the channel is reached, proceed from the starting section and
draw all the conditioning sections in the opposite direction.



Math Geol (2007) 39: 383–398 389

(7) When drawing is conditioned on wells, compute the ratio between the condi-
tional probability used and the unconditional probability of the channel loca-
tion. The product of these ratios and the ratio computed in step 1 give the ratio
fMB(bn)/g(bn).

The idea here is to cancel out the more complicated terms in the ratio fMB(bn)/

g(bn), as it is rather inconvenient to compute the likelihood of Gaussian fields. We
want g(bn) ≈ fMB(bn), with bn avoiding all background observed in wells, and a
significant probability of bn passing through unconditioned well observations. The-
oretically, any choice of g will do as long as the ratio can be computed, but the
convergence could be extremely slow. For further details on our approximation, see
Skorstad et al. (1999). The point here is that this algorithm enables us to compute the
ratio.

When the edge of an object is observed, one or more of the parameters are de-
terministically determined, and thus there is a difference in dimension between the
likelihood in the prior and the likelihood in the proposal function. However, this does
not constitute a problem, as the imbalance here is compensated by the well condition-
ing indicator, which is substituted with a simulated annealing term. The ratio of the
J -terms balances the acceptance probability for channels conditioning observations.

With the probability for adding a channel in place, the rest is straightforward. The
acceptance probability for the removal depends on the inverse ratio, and since the
channel has already been generated, the term fMB(b)/g(b) has already been com-
puted. This factor is stored with the channel and does not need to be computed again
for the removal. Finally, a change is only a simultaneous addition and removal, and
does not give rise to any new complications.

This algorithm depends on many parameters. Although the algorithm assures con-
vergence for nearly any choice of these, the convergence speed may be seriously
affected. There are two annealing terms that need to be scaled against each other and
the rest of the model. Furthermore, the probability po of starting a channel based on
an observation, the probability of including an observation in a channel and the prob-
ability for which edge is seen in a well (top, bottom, right or left) can all be chosen
freely. The two latest parameters should intuitively be as close to the correct value as
possible. For the other parameters, the choice is not so obvious, it is based more on
trial and error, which makes validation important.

General Object Model Algorithm

The algorithm for the general object model handles the well conditioning by an ini-
tialising step. This step places objects in all well observations. Thus, in the main
algorithm, the well conditioning term I (r | w) is always satisfied. This has the ad-
vantage of avoiding the annealing term and its associated parameters which occurred
in the previous algorithm. The drawback is that the interaction in the model cannot
be handled completely correctly, since the observed objects are placed before unob-
served ones are added.

The initialising step draws one unconditioned observation at random and runs a
MH algorithm to generate an object covering this observation. This is repeated until
all observations are conditioned. Note that since one object may condition several
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observations, the number of MH loops is generally less than the number of observa-
tions.

When only one object is changed, the likelihood for all other objects cancel out in
the acceptance probability (3). This means that it does not matter whether the other
objects are already generated or not, so we can fill the reservoir object by object.
However, since all wells must be conditioned, a problem arises when a proposed
object covers observations different from the current one. This implies that some
other objects must also be changed, and so complicates the acceptance probability.
We solve this problem by computing an approximate correction for these cases, based
on the likelihood of having objects conditioning the observations that are not covered
by both the current and proposed object.

The initialising algorithm is as follows.

(1) Draw at random one unconditioned observation oi .
(2) Run a MH loop to find an object for this observation:

(a) Draw the position x from the distribution gx(x | oi).
(b) Let ω be the marks except for the Gaussian fields. Draw ω from the distrib-

ution gω(ω | x, oi).
(c) Identify all wells that the object may pass through (since the top and bottom

Gaussian fields are not drawn yet, not all intersections are certain).
(d) For each of these wells, draw whether the object should avoid the well or

condition an observation in the well. This probability can be chosen freely,
but should be close to the correct probability, and thus depend on x, ω and the
observation. Let the product of the probabilities for the outcomes be denoted
by p(h | x,ω), where h denotes all observations conditioned by this object.
Note that passing through a well completely eroded is counted as avoiding
the well.

(e) Compute the conditioning likelihood for the top and bottom Gaussian fields,
lc = fz(z | h,wa), where wa are the wells the Gaussian field must avoid.

(f) Compute

ts = lcλ(x)fg(ω | x)

p(h | x,ω)g(x | oi)gg(ω | x, oi)

∏

j∈o

j �=i

l(oj )
−1, (4)

where l(oj ) is the likelihood of an object conditioning only the observa-
tion oj .

(g) Accept the new proposal with probability min(1, ts/tc), where tc = 0 ini-
tially. If it is accepted, set tc = ts .

(3) Continue until all the observations will be conditioned.

The Step 2g is a MH acceptance step. The ratio in the expression for ts is the ratio
of the prior likelihood of the newly generated object to the likelihood with which
it was suggested, as in standard MH. The product term is due to the possibility of
comparing objects which condition different sets of observations.

In the fluvial case, we avoided this problem by including a simulated annealing
term. Here, we do an approximation by comparing the sets of objects which cover
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the same observations. Let hc and hs be the observations conditioned by the current
object bc and the suggested object bs , respectively. The ratio in (4) becomes

ts

tc
= f (bs)

∏
j∈hs\hc

l(oj )g(bc)p(hc | xc,ωc)

f (bc)
∏

j∈hc\hs
l(oj )g(bs)p(hs | xs,ωs)

, (5)

where f is the combined prior likelihood, g is the combined proposal likelihood and
hs\hc is the observations that are in hs but not in hc. We see here that this is the
acceptance probability when the state has been extended to include objects so that
the same set of observations is covered by multiplying in the likelihood of having
single objects in the remaining observations.

These likelihoods are given by

l(oi) =
∫

X

∫

�

λ(x)fg(ω,x)Ioi
(ω, x | w)fz(z | ω,x, oi)dω dx,

where x is the location of the object, z denotes the top and bottom Gaussian fields,
and ω is the rest of the parameters needed to describe the object. The indicator Ioi

is 1 if the object conditions observation oi and no other observations and is not in
conflict with any other well observation, and 0 otherwise. This can be computed by
stochastic integration. By using these likelihoods instead of actual objects, we avoid
the problem of generating these objects for each iteration, and we can also accept the
generated object regardless of what will be added here later.

However, in the acceptance step we have explicitly stated that the observations in
hc\hs and hs\hc should not be coupled with any other observation. This is not part of
the model, since that would severely restrict our state space. Instead, we view this as
an approximation, which is good if the probability of having isolated objects is large
compared to the probability of having couplings in these observations.

The exact acceptance probability for our full state space could be found by sub-
stituting

∏
j∈hs\hc

l(oj ) in (5) with the likelihood for all remaining unconditioned
observations not in hs , and by a similar operation in the denominator. However, this
likelihood is too difficult to compute, and the number of such likelihoods is also much
larger than the number of observations. Therefore, we choose to use this approxima-
tion which will tend to favour large couplings.

After the initialising step is done, the remaining objects are added by another MH
algorithm. As for the fluvial model, this works by adding, removing or changing one
object in each iteration. The significant difference is that all wells are now correctly
conditioned at all times. This implies that if an object which conditions well obser-
vations is changed, the new object must condition exactly the same observations.
Furthermore, observed objects can never be removed, only changed. This means that
all couplings are decided by the initialising algorithm. The main reason for the ability
to change observed objects is to better satisfy the interaction term.
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Test Design and Results

Testing of the self-consistency of an algorithm can easily be done by using the prin-
ciple of double expectation

E
(
E

(
f (π) | o)) = E

(
f (π)

)
.

The double expectation of a stochastic variable is the same as the unconditional ex-
pectation value, given that the observations actually come from the correct distribu-
tion.

This gives us the following algorithm for consistency checking:

(1) Generate an unconditional reservoir.
(2) Drill synthetic wells at fixed locations in this reservoir.
(3) Generate a reservoir conditioned to these wells.
(4) For both reservoirs, compute and store the properties which we are checking.
(5) Repeat from Step 1 until the desired samplesize is reached.
(6) Compare the observed properties from the unconditional realisations with those

of the conditional. They should be equal.

The point is that by generating new well observations for each conditional realisation,
the observations are sampled from the model, and we get the double expectation cor-
rect. Using fixed well locations is especially effective for the net/gross error checking,
since moving the wells around would make average maps unusable to detect net/gross
bias around wells.

Note that this is a check of the self-consistency of the algorithm. It checks whether
the algorithm samples from the correct conditional distribution, where the uncondi-
tional distribution is defined by the algorithm run without wells. This means that
this setup can be used to check any algorithm for generating objects, whether it is
model based or not. For model based algorithms, the main problem is to implement
well conditioning. In this case, the unconditional algorithm will sample from the
model distribution, and this test checks whether the conditional algorithm satisfies
the model.

We applied this consistency check to our two model algorithms, and checked the
properties mentioned in the introduction, that is well couplings, net/gross distrib-
ution, and size distributions. Table 1 shows some of the key parameters we used
for the fluvial algorithm. The consistency checking algorithm given above was run
for 100 iterations, generating one conditional and one unconditional realisation for
each iteration. Our well information was gathered at 20 vertical well locations,
concentrated in the upper left area of the reservoir. This leaves large areas with-
out wells, making it easier to see if the net/gross distribution is perturbed by the
wells.

The relative average net/gross map for our conditional realisations, together with
the well locations, is shown in Fig. 4. The main channel direction is clearly visible, as
the variance along this direction is small compared to the variance across. This map
is the average net/gross map for the conditional realisations divided by the same map
for the unconditional realisations, so a value of 1.2 means that there was 20% more
net/gross at this location in the conditional realisations than in the unconditional ones.
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Table 1 Key parameters used
when testing the fluvial
algorithm

Reservoir size 26 500 m by 15 000 m

Mean direction 130°

Mean width 700 m

Mean thickness 4 m

Net/gross 0.38

Fig. 4 Ratio of the mean net/gross in conditional realisations to that of unconditional ones for the fluvial
model

This is more stable than the conditional net/gross map, due to the correlation between
conditional and unconditional simulation in the wells. Ideally, this map should be 1
everywhere, but due to the small number of realisations used for the average, some
variance must be expected.

Looking at this map, we see that there is no large bias in the net/gross. Most values
are rather close to 1, and although there is some over-representation of high values in
the well area, patches of values below 1 are also found in the same area, as well as
high value areas far away from the wells. The discrepancy between conditional and
unconditional net/gross is never above 30%. In a single unconditional realisation,
the expected net/gross map value for these simulations is 0.38, with the standard
deviation of 0.20. The average over 50 of these has the same expectation, but the
standard deviation of 0.028. A ratio of 1.3 between such average maps occurs if they
move two standard deviations in opposite directions. With 5000 nodes in the map,
this is not very unlikely, but it should not happen often. Thus, the map indicates that
while the algorithm is not a perfect sampler, it is good.

The number of couplings in the conditional and unconditional realisations is
shown in the histogram in Fig. 5. The number of unobserved channels is 10 977 in
the conditional realisations, compared to 10 374 in the unconditional ones. These
numbers were not included on the graph, as they are too large compared to the rest.
Again, the match is good. There may be a slight tendency towards creating too large
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Fig. 5 Number of well penetrations per object in conditional and unconditional realisations for the fluvial
model

couplings in the conditional reservoirs, but not on a scale that could be detected in a
single realisation.

The width distribution is plotted against the number of well penetrations in Fig. 6.
As expected, the width increases with the number of penetrations, since wide chan-
nels are more likely to get penetrated. The correspondence between conditional and
unconditional realisations is very good here; the main discrepancies occur for large
couplings where the sample-size is small. This is also a good indication of conver-
gence, as no special care is taken in the proposal function to recreate this distribu-
tion.

We do not believe that the discrepancies between conditional and unconditional
results are due to a lack of convergence here, as these results are equivalent to those
of an earlier simulation with fewer iterations. That is, increasing the number of it-
erations did not alter the results. To the extent that the errors are outside normal
variations, as may be the case with the coupling probabilities, the most likely ex-
planation lies in our approximations. Our approximations seem to slightly overesti-
mate the probability of suggesting an observed channel, thereby making it harder
to accept and easier to remove. This will pull towards fewer observed channels
and more couplings. However, the error is not large; the number of observed chan-
nels in the conditional realisations is less than 10% lower than in the unconditional
ones.
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Fig. 6 Width of channels against the number of penetrations in conditional and unconditional realisations
for the fluvial model. The rightmost column is the average width over all channels

Table 2 Key parameters used when testing the general algorithm

Reservoir size 1000 m by 1000 m by 100 m

Object shape Rectangular

Mean width 300 m

Mean length 300 m

Mean thickness 10 m

Net/gross 0.065

The main reservoir model parameters for the general object model are shown in
Table 2. The net/gross specified in the table is the average value obtained in the un-
conditional realisations, since the model uses an intensity parameter to control the
number of objects. With this algorithm, 500 realisations were made of both the un-
conditional and conditional reservoir. Each pair of realisations took about 20 minutes
to generate.

We placed 25 vertical wells randomly in the reservoir, as shown in Fig. 7, which
also shows the relative net/gross map for these realisations. The map indicates a good
match, with all conditional values within 25% of the corresponding unconditional
ones. There are a couple of areas far from the wells, the lower left corner and middle
of the upper edge, which both have low ratios. A low ratio indicates that there is
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Fig. 7 Ratio of the mean net/gross in conditional realisations to that of unconditional ones for the general
model

less net/gross in the conditional realisations than in the unconditional ones. This may
indicate a slight tendency to put too many objects close to the wells.

The number of couplings is shown in Fig. 8. Again the match is good, especially
for the real couplings, that is, objects with two or more penetrations. For 0 and 1
penetrations, there is a small bias towards observed objects, consistent with what
was seen on the net/gross map. This is due to a large number of completely eroded
penetrations, with 462 in the conditional realisations compared to 215 in the uncon-
ditional ones. It is difficult to believe that this discrepancy could be due to the lack
of convergence, and there is no obvious link to the approximation used in the MH
acceptance. The most probable explanation is that the approximated probability for
being completely eroded is biased.

The width distribution of the objects in Fig. 9 shows that it is correctly reproduced
even for the large couplings where observations are scarce. Since the objects used
here are more rigid than the channels, the variance in size at a given coupling is
smaller and decreasing with coupling size.
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Fig. 8 Number of well penetrations per object in conditional and unconditional realisations for the general
model

Discussion and Conclusions

Correct conditioning of object models on well data is complex. Theoretically, the
problem can be solved by a Metropolis–Hastings algorithm, but it is difficult to design
an algorithm which can place likely objects in the well observations and compute the
correct acceptance probability. In addition, some measure of convergence must be
used to make sure that the algorithm has run to convergence.

The algorithms proposed here use approximations, and hence do not simulate from
the correct distribution. An exact algorithm could be made by substituting the com-
plex proposal function in the fluvial algorithm with the simple proposal function of
the general algorithm. However, this could dramatically decrease the acceptance rate,
and a low acceptance rate, together with simulated annealing, would give severe con-
vergence problems.

In practical use, the consistency and CPU time are under consideration. Although
not theoretically perfect, these algorithms do reproduce important reservoir features
in a reasonable time, and hence the approximations do not seem to introduce signif-
icant bias. The bias is smaller than the uncertainty in the model, the parameters and
the understanding of multi-phase flow in highly heterogeneous reservoirs. Since the
unconditional realisations are correct samples from our model, the algorithms pre-
sented do sample from the conditional model for all practical purposes. The tests can
also be used to check convergence. Although a mathematical convergence is probably
not achieved here, the satisfaction of these tests (and the fact that they do not change
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Fig. 9 Width of objects against the number of penetrations in conditional and unconditional realisations
for the general model. The rightmost column is the average width over all objects

when the number of iterations is increased) indicates that the convergence is good
enough for practical use.
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