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Multivariate Spatial Modeling for Geostatistical Data
Using Convolved Covariance Functions1

Anandamayee Majumdar2 and Alan E. Gelfand3

Soil pollution data collection typically studies multivariate measurements at sampling locations,
e.g., lead, zinc, copper or cadmium levels. With increased collection of such multivariate geostatistical
spatial data, there arises the need for flexible explanatory stochastic models. Here, we propose a general
constructive approach for building suitable models based upon convolution of covariance functions.
We begin with a general theorem which asserts that, under weak conditions, cross convolution of
covariance functions provides a valid cross covariance function. We also obtain a result on dependence
induced by such convolution. Since, in general, convolution does not provide closed-form integration,
we discuss efficient computation.

We then suggest introducing such specification through a Gaussian process to model multivariate
spatial random effects within a hierarchical model. We note that modeling spatial random effects in
this way is parsimonious relative to say, the linear model of coregionalization. Through a limited
simulation, we informally demonstrate that performance for these two specifications appears to be
indistinguishable, encouraging the parsimonious choice. Finally, we use the convolved covariance
model to analyze a trivariate pollution dataset from California.

KEY WORDS: convolution, coregionalization, Fourier transforms, Gaussian spatial process, hierar-
chical model, Markov chain Monte Carlo, spectral density.

INTRODUCTION

In diverse fields such as environmental science, climatology, oceanography, ecol-
ogy, soil science and real estate market analysis there is growing interest in the use
of spatial processes to model collected data. Often observations are multivariate
in nature, i.e, we obtain vector responses at locations across space. For such data,
we need to model both association between measurements at a location as well as
association between measurements across locations.
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Let Y(s) = (Y1(s), . . . , Yk(s))T , be a k-dimensional multivariate spatial pro-
cess defined on a spatial region D, where D ∈ Rd (typically, we take d = 2
or 3). The objective here is to model Y(s) using a flexible class of processes.
If we assume the process is Gaussian, we only need to model the mean func-
tion and the cross-covariance function. Our focus here is on specification, for
every s, s′ ∈ D, of the k × k cross-covariance function C(s, s′) having entries
Cov(Yi(s), Yi ′(s′)) ≡ Cii ′(s, s′), i, i ′ = 1, 2, . . . , k. In order that Cii ′(s, s′) be valid,
it must be such that for any finite set of locations, (s1, . . . , sn), the nk × nk ma-
trix with elements ((Cii ′(sj , sj ′ )))i,i ′,j,j ′ produces a valid, i.e., positive definite
covariance matrix for the random vector Y = (Y(s1), . . . , Y(sn))T .

There is considerable literature on multivariate spatial process modeling.
The book of Wackernagel (2003) provides a current overview. Commonly used
constructive approaches include (i) separable forms as proposed in Mardia and
Goodall (1993), (ii) the linear model of coregionalization (Wackernagel, 2003,
p. 175–176) as advocated in Gelfand and others (2004) for model building (in-
cluding a spatially varying version), and (iii) a moving average (kernel convolution
approach) as suggested in Ver Hoef and Barry (1998) as well as Higdon (2001).
There is also a substantial earlier literature on multivariate spatial prediction or
cokriging which is not concerned with full distributional specification but rather
“optimal” linear prediction in the context of a kernel cross covariogram specifi-
cation. See,e.g., Stein and Corsten (1991), Myers (1991) and, more recently, Xie,
Myers, and Long (1995, Part I and II). If we confine ourselves to Markov random
field models, there is further multivariate spatial modeling. In this regard, see,
for example, Gelfand and Vounatsou (2002), Sain and Cressie (2002) and, more
recently, Daniels, Zhou, and Zou (2004).

Our contribution, motivated by Gaspari and Cohn (1999), is to introduce, in
the stationary case, a novel covariance structure for multivariate spatial processes.
This is done by selecting k stationary one-dimensional covariance functions and
convolving them with each other to generate cross-correlation structure. Our the-
oretical results show that such cross-covariance specifications are valid. We also
offer a comparison between the correlation functions thus created and the original
correlation functions used as “building blocks.”

Two remarks are appropriate here. First, we are convolving covariance func-
tions as opposed to kernel convolution of processes (as in Ver Hoef and Barry,
1998 or in Higdon, 2001). Second, the linear model of coregionalization also
begins with k stationary one-dimensional covariance functions but works at the
process level, creating the cross covariance function associated with an arbitrary
linear transformation of k independent Gaussian processes having these respective
covariance functions. Again, we cross convolve these functions to obtain a cross
covariance function.

In the customary spatial modeling framework we consider the multivariate
responses to arise as a sum of a mean process, a mean-zero spatial process, and a
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pure error process. This is the inference framework we develop in the modeling
section, followed by a section discussing computational aspects. The convolution
models introduced in this paper result in k(k + 1)/2 indefinite integrals from the
“pairwise” convolution to produce C(s, s′). With a sample of n locations, we
obtain n(n − 1)/2 such block matrices in the overall covariance matrix. To ease
computation of this large number of integrals, transformation followed by Monte
Carlo integration is proposed.

To illustrate model performance in a case where we know the truth, we use
a simulation example. We also work with an environmental data set provided by
the California Air Resources Board (CARB) which involves three-dimensional
spatial observations. In both cases we set the model within a Bayesian framework
to avoid any questionable asymptotics in the associated inference and employ a
MCMC procedure to fit the models. We fit the data with our convolved covariance
model and compare the results with those from a linear model of coregionaliza-
tion. A concluding section summarizes our work and indicates future research
possibilities.

CROSS CONVOLUTION OF COVARIANCE FUNCTIONS:
THEORETICAL RESULTS

Consider real-valued point referenced multivariate spatial data, Y(s), associ-
ated with locations in Rd . We employ a Gaussian spatial process model to specify
the joint distribution for observations from an arbitrary number of and arbitrary
choice of locations in some region of interest D ⊂ Rd . We work exclusively with
real stationary covariance functions denoted by C(s − s′).

Suppose that C1, . . . , Ck are real valid covariance functions defined on Rd .
Define functions on Rd , Cij (s) = (Ci � Cj )(s) ≡ ∫

Rd Ci(s − t)Cj (t)dt, i �= j and
Cii(s) = (Ci � Ci)(s) ≡ ∫

Rd Ci(s − t)Ci(t)dt i, j = 1, . . . , k. Our main result is
that, under fairly weak assumptions, the collection of Cij ’s and Cii’s provide
a valid cross-covariance structure for a k dimensional multivariate spatial process,
i.e., Cov(Yi(s), Yj (s′)) = Cij (s − s′). Since the Ci are arbitrary, a rich framework
for modeling multivariate spatial processes is achieved as we elaborate in the
modeling section below. If all covariance functions in question are isotropic, we
redefine C(r) as C(||r||). Note that if an isotropic covariance function C has the
spectral density f , then f is isotropic as well, in which case we shall denote f (w)
as f (||w||). Furthermore, from Gaspari and Cohn (1999, pp. 739) we have

LEMMA 1. If Ci and Cj are isotropic functions, then so is Ci � Cj .

Next, using Bochner’s Theorem (Stein, 1999), we can find the corresponding
spectral density functions, f1(w), . . . , fk(w) on Rd , corresponding to C1, . . . , Ck ,
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i.e., fi(w) = ∫
Rd e−iwT sCi(s)ds, i = 1, . . . , k. We note that

fij (w) =
∫

Rd

e−iwT sCij (s)ds

=
∫

Rd

∫

Rd

e−iwT sCi(s − t)Cj (t)dtds

=
∫

Rd

∫

Rd

e−iwT (s−t)Ci(s − t)e−iwT tCj (t)dtds

Letting v = s − t we obtain fij (w) = fi(w)fj (w).

Remark 1. and only if it is a positive definite function. In fact, Cii is pos-
itive definite if and only if its spectral density is positive (Bochner’s Theorem,
(Stein, 1999). From above, the spectral density corresponding to Cii is fii and
fii = fi

2. This shows that fii is a positive function on Rd . Hence, there exists
processes Y1(s), . . . , Yk(s) on Rd , for which the covariance functions are given
by C11, . . . , Ckk , respectively. However, this does not prove that, if we define
Cov(Yi(s), Y ′

i (s′)) = Cii ′(s − s′), the resulting cross-covariance matrix is valid.

Formally, let

C(r) =

⎛

⎜
⎝

C11(r) . . . C1k(r)
...

. . .
...

Ck1(r) . . . Ckk(r)

⎞

⎟
⎠ . (1)

Now, consider any finite set of points s1, . . . , sn in Rd . Let C̃ be an nk × nk

matrix with k × k blocks C̃ij = C(si − sj ). For all w ∈ Rd , define A(w) as

A(w) =

⎛

⎜
⎝

f11(w) . . . f1k(w)
...

. . .
...

fk1(w) . . . fkk(w)

⎞

⎟
⎠ (2)

where the fij (w)’s are as defined above. Then A(w) = f (w)f (w)T where f (w)T =
(f1(w), . . . , fk(w)).

Define T (w) to be an nk × nk matrix with the (i, j )th block Tij (w) =
e−{i(si−sj )T w}A(w) of dimension k × k. Then T (w) = B(w) ⊗ A(w) where
B(w)ij = ei(si−sj )T w, A(w) = f (w)f (w)T and ⊗ represents the Kronecker product.
Let l(w) = (1, ei(s2−s1)T w, . . . , ei(sn−s1)T w) with adjoint l(w)∗ = (1, e−i(s2−s1)T w, . . .,
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e−i(sn−s1)T w). Then, l(w)l∗(w) = B(w), i.e., [l(w)l(w)∗]ij = ei(si−s1)T w e−i(sj −s1)T w

= ei(si−sj )T w = (B(w))ij .
Hence,

T (w) = (l(w)l(w)∗) ⊗ (f (w)f (w)T )

= (l(w) ⊗ f (w))(l(w)∗ ⊗ f (w)T ) (3)

= G(w)G(w)∗

where G(w) = l(w) ⊗ f (w). From (3) is clear that T (w) is non negative definite.
Since Cij (s) = 1

(2π)d eiwT sfij (w)dw, we have

C̃ =
∫

Rd

1

(2π )d
T (w) dw (4)

and therefore

LEMMA 2. C̃ is positive definite if and only if T (w) is positive definite on a
set of positive Lebesgue measure in Rd .

Proof: Let x be a vector of length nk. Then

xT C̃x =
∫

Rd

1

(2π )d
xT T (w)xd(w).

Since T (w) is nonnegative definite, the necessary and sufficient condition follows
from this expression.

LEMMA 3. If s1, . . . , sn are distinct points, and there exists a set A ∈ Rd with
nonzero Lebesgue measure such that for all w ∈ A, we have fi(w) > 0, for each
i, then T (w) is a positive definite matrix on A.

Proof: Since Ci, i = 1, . . . , k are real we can replace ei(si−sj )T w with cos((si−
sj )T w). To prove the Lemma, we show that, if x is a real vector of length nk, then
the expression xT T (w)x is positive on A. Let xT = (x11, . . . , x1k, . . . , xn1, . . . ,

xnk). We have xT T (w)x = xT G(w)G(w)∗x which is nonnegative everywhere. We
only need to show that if xT G(w) = 0 almost everywhere on A, then x = 0. Sup-
pose we have xT G(w) = ∑

i=1

∑
j=1 xijfi(||w||)cos

(
(sj − si)T w

) = 0. Clearly
G(w) ∈ A spans the nk Euclidean space and so x = 0. Finally, we have the main
result:

THEOREM 1. If Ci are covariance functions, and s1, . . . , sn are distinct points
in Rd , and there exists a set A ∈ Rd with nonzero Lebesgue measure such that for
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all w ∈ A, we have fi(w) > 0, for each i, and if Cij = Ci � Cj , i, j = 1, . . . , k,
then C as in (1) defines a valid cross-covariance structure.

Proof: The proof follows from Lemma 1, 2 and 3.

Remark 2. In the above we could define the spectral densities fi associated
with the covariance functions Ci to be with respect to any σ -finite measure µ on
Rd . That is, suppose the real covariance function Ci is given by

Ci(s) =
∫

Rd

1

(2π )d
ei(sT w)fi(w)dµ(w).

Suppose µ is absolutely continuous with respect to Lebesgue measure and g is
the associated Radon-Nikodym derivative. Then

Ci(s) = 1

(2π )d

∫

Rd

ei(sT w)fi(w)g(w)d(w).

All of the foregoing results will still be valid replacing fi by f̃i(s) = fi(s).g(s)
1
2 .

Next, we turn to the correlation functions corresponding to the covariance
and cross-covariance functions given by Cij . Note that if ρi is the correlation
function corresponding to the covariance function Ci , we could attempt to define
ρij through convolution of ρi and ρj . However, ρi(0) = 1 but ρii(0) = ∫

ρi(t)2dt is
at most 1. In fact, if ρi is a parametric function, then Cii(0) = V ar(Yi(s)) depends
on these parameters. Suppose instead we define ρij (s) by the following relation

ρij (s) = Cij (s)

(Cii(0)Cjj (0))
1
2

. (5)

Then ρii(0) = 1. Next, let DC be a diagonal matrix with entries (DC)ii = Cii(0). If
R(s) = DC

−1/2C(s)DC
−1/2 then R(s) is a valid cross-correlation function and, in

fact, if Dσ
1/2 = diag(σ1, . . . , σk), σi > 0, we can take as a valid cross-covariance

function Cσ = Dσ
1/2R(s)Dσ

1/2. In this parametrization, V ar(Yi(s)) = σi
2. How-

ever, it is still the case that Cov(Yi(s), Yj (s)) = σiσj
Cij (0)√

Cii (0)Cjj (0)
and will depend on

the parameters in Ci and Cj . In order to simplify the parametrization, we can take
the Ci to be correlation functions and hence Cov(Yi(s), Yj (s′)) = σiσjCij (s − s′).

The following result shows that, under (5), ρii(s) may be looked upon as a
“correlation function” and ρij (s) as a “cross-correlation function.”

LEMMA 4. |ρij (s)| ≤ 1; equality holds if i = j and s = 0.
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Proof:

|Cij (s)| ≤
∫

Rd

|Ci(s − t)Cj (t)|d(t)

≤
(∫

Rd

(Ci(s − t))2dt
) 1

2
(∫

Rd

(Cj (t))2dt
) 1

2

=
(∫

Rd

Ci(t)2dt
∫

Rd

Cj (t)2dt
) 1

2

= (Cii(0)Cjj (0))
1
2

The second line of the proof is due to the Cauchy-Schwartz inequality, and here,
equality occurs if Ci = Cj and if s = 0. The equality in the third line follows from
the translation invariance of Lebesgue measure.

Is there any order relationship between Ci and Cii , or, equivalently, between
ρi and ρii? If so, since the decay parameter of the correlation function is related to
the range of the process, we have an order relationship in the associated process
ranges. We have the following result.

THEOREM 2. If ρ(s) has the property that, for α > 0, ρ(αs) is decreasing in α

for all s and ρ(s) is log-concave in s, then ρ � ρ(s) ≥ ρ(s).

Proof: Since − log(ρ(s)) is a convex function, we have − log(ρ(2(s −
t))) ≤ − log(ρ(s)) − log(ρ(−t)) which in turn gives ρ(2(s − t)) ≥ ρ(s)ρ(t). Since,
ρ(αs) ≥ ρ(s) for α ≤ 1 , so we have ρ(s − t) ≥ ρ(2(s − t)). Hence it follows
that ρ(s − t) ≥ ρ(s)ρ(t) and thus we obtain ρ(s − t)ρ(0) ≥ ρ(s)ρ(t). Finally, this
implies

∫
ρ(s − t)ρ(t)dµ(t)
∫

ρ(t)2dµ(t)
≥ ρ(s)

ρ(0)

giving the result ρ � ρ(s) ≥ ρ(s).

Remark 3. If ρ(s) is a valid correlation function, then so is ρ2(s) since it is the
characteristic function of U1 + U2 where U1 and U2 are i.i.d with characteristic
function ρ. By contrast with Theorem 2, ρ2(s) ≤ ρ(s).

EXAMPLE 1. (Powered exponential covariance functions). The powered ex-
ponential correlation function, ρ(s) = e−φ||s||α , 0 < α ≤ 1 is isotopic and strictly
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decreasing. Moreover, log(ρ(s)) = −φ||s||α is a concave function in s so the the-
orem applies.

EXAMPLE 2. (Matérn covariance functions). The Matérn correlation func-
tion is isotropic with smoothness parameter ν and scale parameter α is given by
ρ(r) = π1/2

2ν−1 �(ν + 1/2)α2ν(α|r|)νκν(α|r|), for ν > 0 and α > 0 where κν is a mod-
ified Bessel’s function (Abramowitz and Stegun, 1965, p. 374–379). The Matérn
function is only available explicitly in the case where ν = q + 1

2 , q an integer
≥ 0. It is easy to verify log concavity in these cases. Moreover, though we have
not proved it formally, plotting the log of the Matérn function against |r| for a fine
grid of ν’s reveals a concave function in each case, suggesting that the Matérn
correlation functions are log concave for each ν. So, Theorem 2 can be applied in
this case as well.

In Examples 1 and 2, the range associated with ρ � ρ will be greater than that
associated with ρ. In particular, when the correlation function is exponential with
ρ(s) = e−φ||s||, the associated range is essentially 3

φ
. Following (5), we seek the

approximate relationship between the range and φ when the correlation function
is ρ�ρ(s)

ρ�ρ(0) . After some calculation, we find ρ � ρ(s) = e−φs

φ
+ e−φss. We note that

ρ � ρ(0) = 1
φ

. Hence, ρ�ρ(s)
ρ�ρ(0) = e−φs(1 + φs). Solving for the range we obtain

≈ 4.5
φ

.

THE MODEL AND ASSOCIATED DISTRIBUTION THEORY

We work with a customary modeling form incorporating a mean, a spatial
component, and a pure error term. Hence,

Y(s) = µ(s) + w(s) + ε(s) (6)

where Y(s) is as above and µ(s) = (µ1(s), . . . , µk(s))T is the mean of the under-
lying process. w(s) = (w1(s), . . . , wk(s))T is the multivariate spatial component
of the response, modeled using a multivariate Gaussian process with mean 0,
and covariance of wi(s) and wj (s′) given by σiσjCi � Cj (s − s′), as below (5).
Finally, we have a pure error vector given by ε(s) = (ε1(s), . . . , εk(s))T for which
we assume that εj (s) indep

∼ N (0, τj
2), j = 1, 2, . . . , k.

In the sequel we set (µ(s))j = µj and ρj (s) = e−φj ||s||, yielding a 4k × 1 pa-
rameter vector θ where θT = (µ1, . . . , µk, σ1

2, . . . , σk
2, φ1, . . . , φk, τ1

2, . . . , τk
2).

Suppose we collect data at locations si , i = 1, 2, . . . , n. Collecting the Y(si) into
a nk × 1 data vector, Y, the resulting likelihood is

L(Y; θ ) ∼ |�|− 1
2 exp(−{Y − 1 ⊗ µ}�−1{Y − 1 ⊗ µ}/2) (7)
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where µ collects the µj ’s into a vector, � is an nk × nk matrix defined by
� = (C̃ + In×n ⊗ diag( 1

τ1
2 , . . . ,

1
τk

2 )), C̃ is defined below(1), and ⊗ denotes a
Kronecker product.

We assume weak priors for µ1, . . . , µk , normal with mean 0 and variance =
100. We adopt inverse gamma IG(ατj

2 , βτj
2 ) priors for the τj

2, gamma priors
G(αj , βj ) for the decay parameters φj and inverse gamma priors IG(α2

σj
, β2

σj
),

for the σj
2 j = 1, . . . , k, in all cases making the priors fairly weak by assuming

very large variances. In implementing an MCMC algorithm, the full conditional
distributions for the parameters in θ need to be sampled. For (µ1, . . . , µk) we
obtain a k-variate normal, for the τj

2’s an inverse gamma. For the remaining
parameters in θ , the full conditionals are nonstandard distributions so we employ
Metropolis Hastings steps to sample them.

The likelihood in (7) is marginal in that we have integrated out the spatial
random effects, w(s). However, in practice, we will be interested in learning about
the collection of spatial surfaces w(s), s ∈ D and corresponding collection of
Y(s). Since f (w|Y) = ∫

f (w|Y, θ )f (θ |Y)dθ , given posterior samples of θ , we
can sample w = (wT (s1), . . . , wT (sn))T by composition. For each θ , we just draw
w from the multivariate normal distribution, f (w|Y, θ ).

How does this multivariate process specification compare to, say, the linear
model of coregionalization, as in e.g., Gelfand and others (2003)? Such a model
writes w(s) = Av(s) with A lower triangular and the vj (s) independent spatial
processes with correlation functions ρj , j = 1, . . . , k, respectively. Hence, k +(
k+1

2

)
parameters are devoted to modeling w(s). In the convolution model given

below (5) we require 2k parameters for modeling w(s). Evidently, the convolution
model is more parsimonious. In particular, we have k = 2 for the simulation
example below and k = 3 for the CARB data example below, resulting in 1 and
3 fewer parameters, respectively, for the convolution model compared with the
coregionalization model.

COMPUTATIONAL ISSUES

In practice Cij (s) = ∫
Rd ρi(s − t)ρj (t)d(t) will have no closed form and yet

will be needed for all of the entries in the nk × nk matrix C̃. To address this
computational problem we employ Monte-Carlo integration over a suitably large
rectangle B in Rd such that B = [−δ, δ] × · · · × [−δ, δ]. Since the ρ’s we use
decay with increasing separation vector, for a given set of s’s, restriction to B

will provide adequate approximation. But then, if we generate L random samples
t1, . . . , tL from a uniform distribution over B we can approximate Cij (s) with∑

l ρi(s − tl)ρj (tl)/L.
Reparametrization can provide an alternative form for Cij (s) which may lend

itself to more attractive Monte-Carlo integration. We describe the idea below in
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the case for the pair of isotropic correlation functions ρ1 and ρ2 defined on Rd .
Then, C12(||s||) = ∫

R
. . .

∫
R

ρ1(||s − t||)ρ2(||t||) dt1 . . . dtd . Let ||t|| = r and t1 =
r sin θ1, t2 = r cos θ1 cos θ2, . . . , td−1 = r cos θ1 cos θ2 . . . cos θd−1. This gives

C12(s) =
∫ 2π

θ1=0
. . .

∫ 2π

θd−1=0

∫ ∞

r=0
ρ1(||(s1 − r sin θ1, . . . , sd − r cos θ1 . . . cos θd−1)||)

× ρ2(r)r dr dθd−1 . . . dθ1 (8)

= (2π )d−1
∫ 2π

θ1=0
. . .

∫ 2π

θd−1=0

∫ ∞

r=0
ρ1(||(s1 − r sin θ1, . . . , sd − r cos θ1 . . .

cos θd−1)||){ρ2(r)r er}e−r dr
1

2π
dθd−1 . . .

1

2π
dθ1.

So, using samples (θ1 l , . . . , θd−1 l , rl), l = 1, 2, . . . , L such that θi l
i.i.d.

∼
Unif(0, 2π ) and rl

i.i.d.

∼ exp(1), the Monte Carlo integration is

C12(s) ≈ (2π )d−1

L

L∑

l=1

e−φ1||(s1−r sin(θ1 l ),...,sd−r cos(θ1 l )... cos(θd−1 l ))|| exp(−(φ2 − 1)rl)rl

(9)

We employ this Monte-Carlo integration approximation for the examples in the
sections below.

Finally, suppose we define the Fourier transforms of the covariance functions
ρi as ρi(s) = ∫

Rd e−i(sT w)fi(w)dµ(w) where µ is a proper probability measure.
Suppose g, the Radon-Nikodym derivative of µ with respect to Lebesgue measure
on Rd exists. By generating i.i.d. samples wl , l = 1, . . . , L, having density g, we
can approximate C12(s) using a Monte-Carlo integration C12(s) ≈ 1

L

∑L
l=1 ρ1(s −

wl)ρ2(wl).

A SIMULATION EXAMPLE

We undertake a modest simulation study in order to see how well our modeling
and fitting using cross-convolution specification works. We also compare it with
the linear model of coregionalization (Gelfand and others, 2004).

First, we examine the posterior inference resulting from fitting a cross-
convolution model when, in fact, a cross-convolution model is true. In this
regard, the first simulation (denoted by Simulation 1(CO)) generates samples
from a two dimensional spatial process Y(s) = (Y1(s), Y2(s))T having an underly-
ing cross-convolution covariance specification with parameters µ1 = 0, µ2 = 0,
σ1

2 = 1, σ2
2 = 1, τ1

2 = 0.1, τ2
2 = 0.1, φ1 = 3, φ2 = 2.5. For assessing model
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performance, we first find the posterior predicted fit of the data surface and com-
pare it with the original data surface and then obtain exact posterior predictive
intervals for three randomly chosen locations that were left out of the analysis.

Next, we investigate the robustness of the proposed cross-convolution model.
To this end, another simulation (denoted by Simulation 2(CR)) is undertaken. This
generates samples from a two- dimensional process Y(s) = (Y1(s), Y2(s))T when
the underlying model is the linear model of coregionalization. The data is then
fitted using a convolution model. To specify the coregionalization model, recall
that, in (6), we write w(s) = Av(s). Taking k = 2, let (A)l,l′ = all′ be the elements
of the coregionalization matrix. We set a11 = 1 (which makes the variance of the
first component process of the bivariate process vector Y(s) equal to 1, and hence
we could visualize this as having σ1

2 = 1). We also set a21 = 0.5 and a22 = 1
(which makes the variance of the second component process of the bivariate
process vector Y(s) equal to (0.5)2 + 1 = 1.25 (we could consider this as having
σ2

2 = 1.25). In addition, we set τ1
2 = 0.1 and τ2

2 = 0.1. We adopt exponential
correlation functions and set the decay parameter of the first component of v(s)
as ψ1 = 3 and the decay parameter of the second component of v(s) as ψ2 = 2.
Finally, we set µ1 = 0, µ2 = 0.

Since the notion of the range is not tied to a specific choice of correla-
tion function, we can compare the estimated range under the cross-convolution
specification with the true range under the coregionalization specification. Under
coregionalization, using exponential correlation functions, with k = 2 the first
component has range = 3/ψ1 = 1. The range for the second component solves
a2

21 exp(−ψ1d)+a2
22 exp(−ψ2d)

a2
21+a2

22
= .05 for d and obtains d = 1.42. Using cross-convolution

with exponential correlation functions, as we showed below Example 2 above, the
ranges are 4.5/φ1 and 4.5/φ2 where the φj are the decay parameters in the cross-
convolution model.

For this study we generate n = 40 points under each of the two simulations.
The spatial locations are selected at random from the [0, 10] × [0, 10] square. In
Table 1 we show the results of fitting a cross-convolution model to Simulation
1(CO) and a coregionalization model to Simulation 2(CR). Happily, the posterior
inference is well behaved in both cases. Next, we fitted a coregionalization model
to the Simulation 1 data and a cross-convolution model to the Simulation 2 data.
Figures 1 and 2 compare for each component, the sampled surfaces with the fitted
surfaces in Simulations 1 and 2, respectively. The surfaces are shown as choropleth
maps obtained from the observed data and from kriged estimates (following the
discussion below (7)) using the spatial package in R. The displays suggest that
the models perform similarly in their predictions and that both seem to recover the
true surface reasonably well given a sample of only 40 points. Figure 3A and B
make more quantitative comparison showing sample prediction for three randomly
chosen hold-out points under Simulation 1 and under Simulation 2, respectively,
using both the CO and the CR models. That is, two component predictions by three
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Table 1. Posterior Summaries of the Parameters Compared with True Values

Quantiles for Simulation 1 Quantiles for Simulation 2

Parameter 0.025 0.5 0.975 (true) 0.025 0.5 0.975 (true)

µ1 −0.147 −0.008 0.135 (0) −0.120 0.021 0.197 (0)
µ2 −0.128 0.014 0.131 (0) −0.159 −0.000 0.166 (0)
σ1

2 0.848 0.882 0.962 (1)
σ2

2 0.851 0.870 0.983 (1)
a11 0.894 0.933 1.095 (1)
a21 0.489 0.598 0.676 (0.5)
a22 1.006 1.059 1.110 (1)
τ1

2 0.057 0.083 0.142 (0.1) 0.083 0.099 0.118 (0.1)
τ2

2 0.059 0.084 0.120 (0.1) 0.084 0.100 0.120 (0.1)
φ1 2.678 2.729 3.066 (3) 2.916 3.030 3.447 (3)
φ2 2.454 2.520 2.592 (2.5) 1.989 2.005 2.023 (2)

Note. Simulation 1 under CO model, Simulation 2 under CR model.

points for each of two models accounts for the twelve interval estimates in these
figures. We conclude from these figures that the predictive performance of the two
models is essentially equivalent. Finally, we return to the range comparison. Recall
that under either simulation, the range for Y1 is 1. Under Simulation 1, the interval
estimates for the range of Y1 using the CO model and the CR model respectively
are (0.98 1.12) and (0.96 1.10). Under Simulation 2, the interval estimates for the
range of Y1 using the CO model and the CR model respectively are (0.90 1.04)
and (0.87 1.02). All of the above analysis encourages consideration of the lower
dimensional cross-convolution model.

ANALYSIS OF THE CALIFORNIA DATA

In this section we apply the model in (6) to an illustrative dataset obtained
for a collection of monitoring stations in California. The data, which was used by
Schmidt and Gelfand (2003), were obtained from the California Air Resources
Board (CARB). The authors chose to analyze the daily average of carbon monoxide
(CO), nitrous oxide (NO), and nitrogen dioxide (NO2) based on hourly measure-
ments on July 6th, 1999. They considered only the sites which have measurements
for all three pollutants, resulting in data from 68 monitoring stations, and they held
out 5 locations for validation. The ensuing analysis is primarily intended to show
the fitting of the cross-convolution model (rather than a coregionalization model)
to a setting where the true model is not known. The analysis is purely illustrative,
not definitive.

Figure 4 shows the locations of these 68 monitoring sites and 5 hold-out
sites on a degrees latitute by degrees longitude scale. For the sampling area, 1◦
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Figure 1. Simulation 1: A. True Y1 surface, B. Predicted Y1 surface under CO model, C. Predicted
Y1 surface under CR model, D. True Y2 surface, E. Predicted Y2 surface under CO model, F. Predicted
Y2 surface under CR model.

of latitude ≈65 km while 1◦ of longitude ≈110 km. The observed correlations
between these pollutants were 0.46 (CO and NO), 0.56 (CO and NO2), 0.77
(NO and NO2), revealing the need for a multivariate process model. Following
Schmidt and Gelfand (2003), in order to achieve approximate normality, we use the
logarithm of the daily average of each of these variables. There was no information
on potential covariates, such as temperature or wind direction, at these gauged sites.
Therefore, we fit a model with a constant mean structure, with likelihood as in (7).
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Figure 2. Simulation 2: A. True Y1 surface, B. Predicted Y1 surface under CO model, C. Predicted
Y1 surface under CR model, D. True Y2 surface, E. Predicted Y2 surface under CO model, F. Predicted
Y2 surface under CR model.

We let Y1(s) denote the log(CO) process, Y2(s) the log(NO) process, and
Y3(s) the log(NO2) process. Following the discussion on priors below (7), we
assumed that µ1, µ2, µ3, were independent and normally distributed a priori,
centered at the empirical mean of the log(CO), log(NO) and log(NO2) data, re-
spectively, with large variances. For each σ 2

j and each τ 2
j we used the inverse

Gamma having infinite variance with mean equal to the ordinary least squares
estimate. For the φj parameters we use Gamma priors arising from a mean of the
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Figure 3. Confidence Intervals for prediction at three held-out
points. A. Sim 1(CO), B. Sim 2(CR). See text for details.

associated range of one half the interlocation distance, based on the relationship
φ = 4.5/drange, and with large variance. Again, the priors were “data-centered”
with large uncertainty. Table 2 presents the results of the model fitting. Corre-
sponding to the original scale the median level for log(CO) is −0.937 with .95
interval estimate (−1.079,−0.794). For log(NO) we have median level −5.326
with .95 interval estimate (−5.575,−5.081) and for log(NO2) we have −4.446
with .95 interval estimate (−4.724,−4.173). We note that the variability for the
log(CO) and log(NO2) processes is very similar with that for log(NO) being
slightly greater. Perhaps, more importantly, the spatial explanation dominates the
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Figure 4. Locations of the 68 monitoring stations for CARB data. The hold out points used for
prediction are the solid black circles.

Table 2. The Posterior Sample Summaries of the Parameters in
CARB Data Under Convolution Model

Parameter 2.5% Median 97.5%

µ1 −1.079 −0.937 −0.794
µ2 −5.575 −5.326 −5.081
µ3 −4.724 −4.446 −4.173
σ1

2 0.173 0.217 0.254
σ2

2 0.292 0.322 0.353
σ3

2 0.196 0.197 0.199
τ1

2 0.025 0.066 0.163
τ2

2 0.049 0.104 0.217
τ3

2 0.009 0.021 0.053
φ1 4.625 4.719 4.819
φ2 1.883 2.037 2.182
φ3 1.174 1.300 1.397
range CO 0.933 0.953 0.972
range NO 2.062 2.209 2.389
range NO2 3.221 3.461 3.833
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pure error explanation; not surprisingly the spatial modeling is important. Also,
we note very different ranges for the three pollutants. The range for log(NO2) is
nearly four times that of log(CO). In Figures 5 and 6, we present the real and the
estimated log(CO), log(NO) and the log(NO2) surfaces, respectively. It is apparent
that the pattern of spatial variation is very different for the three surfaces, and the
estimated surfaces are good representations of the real surfaces. Again, our goal
here is not to attempt to interpret these surfaces but rather to reveal the ability of
the cross-convolution model to capture spatial pattern that differs across the pollu-
tants. Finally, we turn to the five held-out data points, and make predictions using
the convolution model. These predictions are displayed in Table 3. We see large
uncertainty in these predictions with anticipated skewness to the right. Finally, for
the five held-out sites, all 15 of our predictive intervals contain the observed value.

DISCUSSION AND CONCLUDING REMARKS

We have provided a new class of cross-covariance specifications for multi-
variate process modeling and have developed associated properties and shown how
to introduce such specifications in a flexible fashion into a general multivariate
Gaussian process model. Fitting such models within a Bayesian framework, we
have included the computational details. Finally, we have illustrated the use of such
specifications in the context of both real and simulated data. A condition for the
method to work is that the collection of correlation functions ρj must be stationary.
An important potential advantage of the cross-covariance modeling is parsimony.
For k dimensional vectors at locations, the dimension of the cross-covariance
specification increases in order k under the cross-convolution specification com-
pared with order k2 for coregionalization. In this regard cross-convolution may be
viewed as a competitor to the moving average approach of Ver Hoef and Barry
(1998). The latter introduces k kernel functions rather than k correlation functions.
Cross-covariance modeling through convolution enables the analytical behaviors
presented in the theoretical section of the paper. The associated interpretation of
the cross-covariance function through Cσ given below (5) and the attenuated rate
of decay in association given by Theorem 2 may be attractive and, in any event,
are not properties of the coregionalization or moving average approaches. Also,
the product representation of C̃ in Fourier space given through (3) and (4) may
have computational advantages for larger datasets.

Future work can proceed on three fronts. First, we can move away from
Gaussian distributions for the spatial and pure error effects using mixture processes
including t-processes. Second, in the spirit of Diggle, Tawn, and Moyeed (1998),
we can allow some of the Yl(s) to be, say, binary or count variables. This can be
accommodated since the multivariate spatial process for w(s) is introduced at the
second stage of the modeling. Finally, we can envision a spatio-temporal setting
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Figure 5. Real surfaces (lighter is higher). A. log(CO), B.
log(NO), C. log(NO2).
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Figure 6. Predicted surfaces (lighter is higher). A. log(CO), B.
log(NO), C. log(NO2).
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Table 3. Prediction at 5 Held-out Points of the CARB Data

Site Mean 2.5% Median 97.5% Observed

A Prediction of CO
1 −0.915 −1.858 −0.901 −0.030 −0.891
2 −0.927 −1.849 −0.950 −0.020 −0.798
3 −0.929 −1.815 −0.929 −0.052 −0.980
4 −0.934 −1.799 −0.911 −0.021 −1.673
5 −0.933 −2.486 −0.930 −0.014 −2.302
B Prediction of NO
1 −3.654 −6.673 −3.650 −1.133 −6.502
2 −3.650 −6.671 −3.649 −1.128 −6.502
3 −5.328 −6.411 −5.339 −4.258 −5.449
4 −5.340 −6.483 −5.342 −4.211 −4.753
5 −5.316 −6.465 −5.319 −4.098 −5.521
C Prediction of NO2

1 −4.422 −5.275 −4.419 −3.503 −4.906
2 −4.448 −5.327 −4.453 −3.549 −4.342
3 −4.450 −5.371 −4.440 −3.509 −4.585
4 −4.442 −5.334 −4.446 −3.610 −4.100
5 −4.441 −5.386 −4.428 −3.590 −4.342

with multivariate measurements recorded both at locations and times. Now we
need to formulate cross-convolution specifications to model w(s, t). The results in
this paper using convolution of covariance structures provide a general foundation
for future extensions and applications.
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