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A Fixed-Path Markov Chain Algorithm for
Conditional Simulation of Discrete Spatial Variables1

Weidong Li2

The Markov chain random field (MCRF) theory provided the theoretical foundation for a nonlinear
Markov chain geostatistics. In a MCRF, the single Markov chain is also called a “spatial Markov
chain” (SMC). This paper introduces an efficient fixed-path SMC algorithm for conditional simulation
of discrete spatial variables (i.e., multinomial classes) on point samples with incorporation of interclass
dependencies. The algorithm considers four nearest known neighbors in orthogonal directions. Tran-
siograms are estimated from samples and are model-fitted to provide parameter input to the simulation
algorithm. Results from a simulation example show that this efficient method can effectively capture
the spatial patterns of the target variable and fairly generate all classes. Because of the incorporation
of interclass dependencies in the simulation algorithm, simulated realizations are relatively imitative
of each other in patterns. Large-scale patterns are well produced in realizations. Spatial uncertainty is
visualized as occurrence probability maps, and transition zones between classes are demonstrated by
maximum occurrence probability maps. Transiogram analysis shows that the algorithm can reproduce
the spatial structure of multinomial classes described by transiograms with some ergodic fluctuations.
A special characteristic of the method is that when simulation is conditioned on a number of sample
points, simulated transiograms have the tendency to follow the experimental ones, which implies that
conditioning sample data play a crucial role in determining spatial patterns of multinomial classes.
The efficient algorithm may provide a powerful tool for large-scale structure simulation and spatial
uncertainty analysis of discrete spatial variables.

KEY WORDS: Markov chain random field, spatial Markov chain, transiogram, multinomial classes,
interclass relationship, nearest known neighbor.

INTRODUCTION

Conditional simulation is widely recognized and increasingly used, not only for
prediction of spatial distribution but also for spatial uncertainty analysis through
stochastic imaging (i.e., generating alternative conditional realizations) and prob-
ability mapping of discrete spatial variables (Deutsch and Journel, 1998, p. 119–
191). Conventional geostatistics for conditional simulation of discrete variables
usually use auto-covariance models and indicator kriging simulation algorithms
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(Goovaerts, 1997, p. 376–378). The Markov chain random field (MCRF) theory
recently proposed by Li (2006a) supports a non-linear Markov chain geostatistics.
A MCRF refers to a random field of a single Markov chain. In a MCRF, the
single Markov chain is also called a “spatial Markov chain” (SMC). The MCRF
theory uses transiograms (i.e., transition probability diagrams) (Li, 2006b) to repre-
sent spatial self-dependencies (i.e., auto-correlations) and interdependencies (e.g.,
cross-correlations, juxtapositions, and directional asymmetries) of classes and thus
requires using transiogram models to serve continuous transition probability input
to Markov chain simulations. SMC models are potentially efficient in computation
and capable of dealing with many classes, because they have explicit solutions for
conditional probability functions of the unknown locations to be estimated. At the
meantime they do not suffer from the constraints of existing multi-chains-based
multidimensional (multi-D) Markov chain conditional simulation models (e.g.,
Elfeki and Dekking, 2001; Li and others, 2004) such as the small-class underes-
timation problem (relative to large-class overestimation). Particularly, interclass
dependencies are naturally incorporated by cross-transiograms in a simulation.
Directional asymmetry of class occurrence sequences may be incorporated by
using cross-transiograms estimated unidirectionally.

1-D Markov chains (or transition probabilities) have long been used in the
geosciences; see Carle and Fogg (1997) and Li, Li, and Shi (1999) for some re-
views in geology and soil science, respectively. Multi-D Markov chain models
can be traced to Krumbein (1968) and Lin and Harbaugh (1984) in geology for
modeling lithological (or sedimentological) structures. However, earlier Markov
chain models could not do conditional simulations, and it has long been a diffi-
culty to condition a Markov chain to observed data, even more than one boundary
(Koltermann and Gorelick, 1996, p. 2630–2632). Carle and Fogg (1997) developed
3-D continuous-lag Markov chain models by interpolating transition rate matri-
ces established for three principal directions, but conditional simulation has to
be performed through indicator kriging approaches and simulated quenching (see
Weissmann and Fogg, 1999). Attempts in using multi-D Markov chains for condi-
tional simulation of discrete variables appeared only in recent years; see Elfeki and
Dekking (2001) for simulating lithofacies from well logs and Li and others (2004)
for simulating soil types from survey line data, with the latter incorporating the
idea of the former. Zhang and Li (2005) further applied the method of Li and oth-
ers (2004) to spatial uncertainty assessment of land cover classes. However, these
multi-D Markov chain conditional simulation models have some constraints. For
example, they have the tendency of underestimating small classes because of exclu-
sion of unwanted transitions caused by using multiple chains and the full indepen-
dence assumption (Li, 2006a), and conditioning to point samples is also a difficulty.
The MCRF theory theoretically eliminates unwanted transitions because there is
only one chain in one random field, no matter how many dimensions are involved.
For other related approaches that use transition probabilities (but not Markov
chains) for conditional simulations, see Carle and Fogg (1996) and Norberg and
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others (2002). The former used transition probability models to replace variograms
in indicator kriging. The latter applied a Markov random field (MRF) model to
conditional simulation on sparse data through simulated annealing.

It should be noticed that here I do not review the vast literature in MRF
simulations in other fields such as image restoration although an investigation
was made. Because MRF models consider only adjacent cliques (i.e., groups of
pixels) and have to use iterative updating algorithms in simulation (e.g., Geman
and Geman, 1984; Besag, 1986), they are unable to condition a simulation di-
rectly on sparse samples through distant interactions. Thus, they are not practical
in conditional simulation from sparse samples and reproduction of large-scale
patterns of categorical variables; see related review and attempt in Tjelmeland
and Besag (1998), related attempt and discussions in Norberg others (2002), and
related reviews in Qian and Terrington (1991) and Wu and others (2004). That
is probably why MRFs are seldom used in practice in geospatial modeling. As a
special subclass of MRFs, Markov mesh models (sometimes also called Markov
chain models in image processing) were developed for image analysis and efficient
reproduction of large-scale image patterns (e.g., Abend, Harley, and Kanal, 1965;
Qian and Terrington, 1991; Wu and others, 2004). Markov mesh models are still
cliques-based, but use asymmetric neighborhoods and generate realizations by a
one-pass way. However, so far it is infeasible to use Markov mesh models for
conditional simulation on samples.

While the MCRF theory provides the theoretical foundation for conditional
1-D to multi-D Markov chain simulation, how to use it in practice depends on
the development of practical simulation algorithms. Using four nearest known
neighbors in orthogonal directions to estimate the unknown point is the central
idea of the Markov chain model implemented in Li and others (2004), which
show that considering only four nearest known neighbors in orthogonal directions
is feasible for generating 2-D fields of categorical variables. The MCRF theory
also proved that the conditional independence assumption is correct for nearest
known neighbors in cardinal directions in a Pickard random field (Pickard, 1980)
in the sparse data situation. Therefore, the simulation algorithm proposed in this
paper for working with point data is based on the four-nearest-known-neighbors
idea. The practicality of the proposed algorithm is demonstrated by conditional
simulations on two soil type datasets – a dense one and a sparse one from the same
study area. Note that in this paper the word class refers to category generally.

SIMULATION METHODS

SMC Models

A MCRF is defined as the random field of a SMC that moves or jumps in
a space, obeying the different (or same) transition probability rules in different
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directions, with its state changes entirely depending on its nearest known neighbors
found in different directions. The MCRF theory provides a general solution to
the conditional probability distribution of a discrete random variable Z at an
unsampled location u as

Pr(Z(u) = k | Z(u1) = l1,�,Z(um) = lm) =
∏m

i=2 pi
kli

(hi) · p1
l1k

(h1)
∑n

f =1

[∏m
i=2 pi

f li
(hi) · p1

l1f
(h1)

]

(1)

(Li, 2006a), where pi represents the transition probability in the ith direction;
u1 represents the neighbor from or across which the SMC moves to the current
location u; m represents the number of nearest known neighbors; k, li , and f all
represent classes in the state space S = (1, . . . , n); hi is the distance from the
current location to the nearest known neighbor ui . With increasing lag hi from
zero to a certain distance, pi

kli
(hi) forms a transiogram (a continuous transition

probability diagram) from class k to class li in the ith direction.
If we only consider four orthogonal directions – 1, 2, 3, and 4, Eq. (1) becomes

Pr(Z(u) = k | Z(u1) = l, Z(u2) = q, Z(u3) = m, X(u4) = o)

= p1
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where k represents the state of the unsampled location to be estimated, and l, q, m,
and o represent the states of the four nearest known neighbors in corresponding
directions. Here 1, 2, 3, and 4 may represent the leftward, rightward, upward, and
downward directions, respectively in any sequence.

Equation (2) is the principal SMC model to be used in the algorithm. For
outer boundary simulation, the number of nearest known neighbors in orthogonal
directions is less than four. So Eq. (2) has to be simplified to allow less than four
nearest known neighbors. For example, if there are three nearest known neighbors,
we have

Pr(Z(u) = k | Z(u1) = l, Z(u2) = q, Z(u3) = m)

= p1
lk(h1) · p2

kq(h2) · p3
km(h3)
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f =1

[
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f q(h2) · p3

f m(h3)
] (3)

If there are two nearest known neighbors, we have

Pr(Z(u) = k | Z(u1) = l, Z(u2) = q) = p1
lk(h1) · p2

kq(h2)
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[
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] (4)



Fixed-Path Markov Chain Simulation Algorithm 163

If there is one nearest known neighbors, we have

Pr(Z(u) = k | Z(u1) = l, ) = p1
lk(h1)

∑n
f =1 p1

lf (h1)
= p1

lk(h1) (5)

Normally, a SMC has at least one nearest known neighbor, that is, its pre-
vious stay location. The only possible exceptional case is the initial location in
a simulation, which occasionally may have no known neighbors in orthogonal
directions. If so, we can randomly choose one state for it from the stationary
probabilities—proportions of all involving classes.

Simulation Algorithm

Consider we simulate the spatial distribution of n mutually exclusive classes,
which is conditional to a sample dataset at N grid nodes. The n classes may be in
any random sequence, denoted as any labels 1, 2, . . . , n or A, B, C, . . . . Monte
Carlo sampling is used to draw labels from the cumulative conditional probability
distribution for each node. The simulation algorithm proceeds as follows (Fig. 1):

• First connect peripheral observed points in the study area into simulated
lines using the aforementioned SMC models – depending on the numbers
of nearest known neighbors found in the orthogonal directions, which may
be 1, 2, or 3 for different nodes (a corresponding Eqs. (5), (4), or (3) can
be chosen as the SMC model). If these simulated lines do not overlay with
outer boundaries of the study area, the outer boundaries can be simulated
by conditioning on the already simulated lines.

• Connect all close pairs of observed data points that have not been con-
nected in the first step, into simulated lines using the four-nearest-known-
neighbors SMC model given in Eq. (2) by following a symmetric (or quasi
symmetric) path. These simulated lines form a network composed of many
meshes with known (already simulated) boundaries.

• In each mesh, simulate each unknown nodes using the four-nearest-known-
neighbors SMC model given in Eq. (2) by following a symmetric (or quasi
symmetric) path.

Figure 1. Illustrating the simulation process from netting to mesh-filling.
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Such a simulation procedure includes a netting process and a mesh-filling
process. In this study the alternate advancing (AA) path suggested in Li and others
(2004) was used as the quasi symmetric path. The AA path may be regarded as
an adaptation of the herringbone method suggested by Sharp and Aroian (1985)
for solving the directional effect (i.e., pattern inclination) problem in simulation
of multi-D autoregressive processes. Such a path means that simulation has to
be conducted line by line alternately along opposite directions from one side to
the other side within the simulation area. To calculate the conditional probability
distribution for each unsampled node, transiograms are used to acquire the needed
1-D transition probabilities. Note that order relation problems suffered by indicator
kriging do not exist in multi-D Markov chain simulation.

A visual interactive software system will be developed in the future so that
simulation can be conducted interactively. For example, after users click on any
two neighboring observed points the software will save the point pair (or all
the nodes crossed by the line connecting the point pair); after all of these pairs
of observed points (or all the nodes crossed by planned lines) are selected and
saved, a network can be generated by connecting each pair of observed points
into a simulated line during a simulation process. Based on the network, then the
software simulates the other unknown locations. The interactive software also can
allow users to choose specific simulation paths and directions at different steps
and sections of the study area.

TRANSIOGRAM AND TRANSIOGRAM MODELING

In conditional Markov chain simulation, transition probabilities in one to
multiple spatial steps are needed. If line data (continuous borehole logs or ex-
haustive observations of survey lines) are available, both one-step and multi-step
transition probabilities can be easily estimated. However, estimation of transition
probabilities from sparse point samples has long been a difficulty. Carle and Fogg
(1996) used the transition rate matrix method (Krumbein, 1968) to infer continu-
ous transition probability models from one-step transition probabilities and mean
boundary spacings (e.g., mean lengths of facies) so that transiton probabilities at
any needed lags can be acquired. Elfeki and Dekking (2001) and Li and others
(2004) implicitly used the more conventional one-step transition probability ma-
trix (TPM) method to calculate n-step transition probabilities by applying a power
of n to a one-step TPM. These two methods generate similar results. They are
simple but not widely applicable in practice. One reason is that directly estimating
one-step transition probabilities from point samples is not feasible. While line data
may be obtained from continuous borehole logs or field line survey for some vi-
sually observable variables, point sample data are widely available on the surface
and in horizontal dimensions in the subsurface. The second reason is that they are
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based on the first-order stationary Markovian assumption and thus have an intrin-
sic constraint that assumes boundary spacing (e.g., class polygon lengths) to be
exponentially distributed. However, it may not be suitable to assume exponential
distribution of class polygon sizes in many cases. For example, the thicknesses
of lithofacies and alluvial soil textural layers usually tend to be lognormally dis-
tributed (Potter and Blakely, 1967; Li and others, 1997). The third reason is that the
non-Markovian property (or called the high-order Markovian property) of sample
data cannot be reflected on transition probability diagrams derived from one-step
transition probabilities based on the first-order stationary Markovian assumption.
Considering these reasons, Li (2006b) proposed the transiogram concept and sug-
gested estimating continuous transition probability diagrams directly from sample
data. Transition probability diagrams derived from one-step transition probabilities
based on the first-order stationary Markovian assumption were thus called ideal-
ized transiograms (Li, 2006b), which are not widely available and have limited
use.

A transiogram is defined as a two-point transition probability diagram over
the distance lag h (Li, 2006b):

pij (h) = Pr(Z(u + h) = j | Z(u) = i) (6)

Here the random variable Z is assumed spatially second-order stationary, that is,
pij (h) is only dependent on the lag h and not dependent on the specific location
u. pii(h) represents the auto-transiogram of class i, and pij (h)(i �= j ) represents
the cross-transiogram from class i to class j . When cross-transiograms are esti-
mated unidirectionally (e.g., east-to-west), we normally have pij (h) �= pij (−h).
Therefore, they can be used to deal with directional asymmetry of class patterns.
When cross-transiograms are estimated omni-directionally, we normally still have
pij (h) �= pji(h). This means that juxtaposition relationships, such as class A fre-
quently occurs beside class B but class B has more chances to occur beside class
C, still can be captured.

Similar to estimation of variogram models in kriging geostatistics, estimation
of transiogram models from sample data involves two steps: first estimate exper-
imental transiograms from sample data and then infer transiogram models from
experimental transiograms. Because transiograms are transition probability–based
spatial dependence measures, they are different from variograms. For example,
compared with indicator variograms, transiograms change (decrease or increase)
along opposite directions with increasing lag h and their sills are theoretically
equal to the proportions of the related tail classes (i.e., j in pij (h)). Further, tran-
siograms are always positive and for exclusive classes they should have no nuggets
theoretically and physically.

The basic mathematical models that are used in variogram modeling (Deutsch
and Journel, 1998, p. 25) may be adapted to fit experimental transiograms. For
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fitting experimental auto-transiograms, two basic models are adapted as follows
(also see Ritzi, 2000):

a) Exponential model

pii(h) = 1 − (1 − pi)[1 − exp(−3h/ai)] (7)

b) Spherical model

pii(h) = 1 − (1 − pi)[1.5(h/ai) − 0.5(h/ai)
3]; h < ai

(8)
pii(h) = pi ; h ≥ ai

For fitting experimental cross-transiograms, these two basic models are adapted
as:

a) Exponential model

pij (h) = pj [1 − exp(−3h/aij )] (9)

b) Spherical model

pij (h) = pj [1.5(h/aij ) − 0.5(h/aij )3]; h < aij

(10)
pij (h) = pj ; h ≥ aij

In above models, ai represents auto-correlation ranges, aij represents cross-
correlation ranges, and pi and pj are proportions of corresponding class i and
j , respectively. The sills of these models are explicitly set to the proportions of
corresponding tail classes. To effectively fit the complex features of experimental
transiograms, more complex models, such as a linear combination of basic models,
may be necessary.

Given a fixed lag h, all transition probability values from the head class i to
itself and all other classes should sum to 1, that is,

n∑

j=1

pij (h) = 1 (11)

To meet this condition in model fitting of experimental transiograms, one experi-
mental transiogram pik(h) among those involving the same head class i should be
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left unfitted and its model can be calculated by

pik(h) = 1 −
n∑

j=1
j �=k

pij (h) (12)

To guarantee the non-negative and well-fitting of the transiogram model
calculated by Eq. (12), other fitted transiogram models may need to be repeatedly
adjusted.

When available sample data are too few and it is difficult to estimate reliable
experimental transiograms from samples, expert empirical knowledge is needed
to determine the sill, range, and shape of a transiogram model.

CASE STUDY

Datasets

The case study was conducted in a small area of 4 × 1.7 km with seven soil
classes (here mean soil series) (Li and others, 2004). The physical meaning of the
soil classes is not a concern here. The area was discretized into an 80 × 34 grid
with a pixel size of 50 × 50 m. In this study we used raster data so that all of our
data could be processed by GIS software. Two datasets were used for conditional
simulations. A dense sample dataset consisted of 136 points (5% of total pixels),
and a sparse sample dataset consisted of 45 points (1.6% of total pixels). Samples
were distributed regularly.

Estimated Transiogram Models

Experimental transiograms were estimated from the 136 points and fitted by
exponential and spherical models (with seven left ones calculated by Eq. (12)).
Normally the most complex experimental transiograms were left to simplify the
modeling process. The fitted transiogram models were used for simulations with
both datasets. The sparse dataset of the 45 points was too small to estimate reliable
experimental transiograms of seven classes (it was just used to demonstrate that the
algorithm could work with very sparse data). Considering the dense dataset was
still small, the transition frequencies in the four orthogonal directions were pooled
together to get only one set (i.e., 49) of experimental transiograms. This means
that anisotropies and directional asymmetries were not specifically considered in
the case study. Because raster data were used, the lag h was represented as the
number of pixels (i.e., grid units), not the exact distance.
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Figure 2. A subset of experimental auto/cross-transiograms and fitted models related
with the same head class—class 3. Experimental transiograms (dots) are estimated
from the dense dataset (136 regular points). Sills of transiogram models (line) are set
to the proportions of the corresponding tail class.

Figure 2 illustrates a subset of experimental auto/cross transiograms that share
the same head class (i.e., soil class 3) and their fitting models. It can be seen that
most of these experimental transiograms can be approximately fitted by an expo-
nential or spherical model, with the proportion of the corresponding tail soil class
serving as the model sill. In Figure 2, the experimental cross-transiogram p31(h)
is the left one, modeled by Eq. (12). Normally if other experimental transiograms
are model-fitted appropriately, the left one should also be well-fitted.
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Experimental transiograms have apparent fluctuations that are difficult to fit
using the two basic models. This may be caused by the insufficiency of observed
data and the non-Markovian effect of the real data (note that idealized transiograms
based on the first-order stationary Markovican assumption are smooth curves).
Fitted transiogram models capture only part of the features of experimental tran-
siogams, depending on the complexity of the mathematical models used. Using
composite hole-effect models (see Ma and Jones (2001) for composite hole-effect
models for auto-variograms) may capture more details, such as periodicities, of
experimental transiogams.

Simulated Results and Analysis

100 realizations were simulated for each dataset. Occurrence probability
maps and the maximum occurrence probability map were estimated from each set
of simulated realizations. Based on the maximum occurrence probability map for
the corresponding dataset, an optimal prediction map was generated. A prediction
map also represents the optimally interpolated result of a sparse sample dataset.
Simulated results are displayed in Figures 3, 4 and 5.

Figure 3 shows the data used, prediction maps and two realizations for each
dataset. It can be seen that all seven soil classes are well captured based on the
observed data. Small soil classes such as class 2 and class 4, are well produced,
even with the sparse dataset, in response to their occurrences in observed data
and their correlation situations. An interesting and probably significant charac-
teristic of simulated realizations is that large-scale soil patterns are generated as
polygons, instead of fragmentary pixels as usually seen in simulated realizations
of conventional geostatistical methods. Different realizations based on the same
conditioning dataset show similar patterns. This should be attributed to the in-
corporation of interclass relationships (i.e., cross-correlations and juxtaposition
relationships here) among different soil classes and the nonlinearity of the SMC
estimator.

Occurrence probability maps are very useful in spatial uncertainty analysis
of spatial data, which is actually one of major purposes of conditional simulation
and has also been a central topic in geographical information science for two
decades (Zhang and Li, 2005). Occurrence probability maps of single soil classes
are displayed in Figures 4 and 5, respectively for the dense dataset and the sparse
dataset. The maps clearly show where and with how much probability a soil class
tends to occur in the study area. A dark area in an occurrence probability map
means that the soil class has a high probability to occur at that place as a polygon.
The gradual transition from a dark color to the background color implies the loca-
tional uncertainty of a polygon boundary. Maximum occurrence probability maps
(Figs. 4 and 5, top left) indicate the robustness of the corresponding prediction
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Figure 3. Conditioning datasets and simulated results. The first row shows the two datasets: the
dense one has 136 points and the sparse one has 45 points. The second row shows prediction maps
based on maximum occurrence probabilities. The third and forth rows show simulated realizations.
Simulated results in each column are based on the corresponding dataset at the top of the column.

maps, that is, where the predicted result has lower quality and where it has higher
quality. Particularly, the transition zones (or uncertain boundaries) between differ-
ent soil classes may be revealed in a maximum occurrence probability map. The
shallow grey stripes in the two maximum occurrence probability maps indicate
the transition zones, which imply approximate class boundary locations and the
locational uncertainty of boundaries.

Figure 6 shows a subset of transiograms with the same head class—soil
class 1, estimated from the first realizations of the two simulations. Surprisingly, it
can be seen that simulated transiograms conditioned on the dense dataset strongly
follow the experimental transiograms, rather than the input transiogram models.
This means that simulated realizations are more strongly affected by the condi-
tioning data, from which the experimental transiograms are estimated, than by the
input transiogram models. When data are relatively abundant, conditional Markov
chain simulations seem not very sensitive to the transition probability input, as
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Figure 4. Occurrence probability maps estimated from 100 simulated realizations conditioned on
the dense dataset.

also indicated in Li and others (2004). Simulated transiograms conditioned on the
sparse dataset is more deviated from corresponding experimental transiograms
and transiogram models. This may be because the experimental transiograms
estimated from the dense dataset do not effectively reflect the spatial variation
structure of the sparse dataset. Figure 7 shows simulated results of three dif-
ferent auto/cross-transiograms (p11(h), p51(h), and p45(h)), estimated from the
first 10 simulated realization maps conditioned on each of the two datasets. Ap-
parently, the 10 simulated auto/cross-transiograms fluctuate normally around the
corresponding experimental transiogram estimated from the dense conditioning
dataset. Such fluctuations are called ergodic fuctuations in geostatistics, which is
normal because of the limited extent of the spatial domain (Deutsch and Journel,
1998, p. 128–132). The small size of the study area (compared to the average
polygon size of the seven soil classes) may be one reason leading to the obvious
deviations of some simulated transiograms, especially those conditioned on the
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Figure 5. Occurrence probability maps estimated from 100 simulated realizations conditioned on
the sparse dataset.

sparse dataset, because the soil distribution in a small area should be strongly
non-stationary.

The tendency that simulated transiograms based on the dense dataset follow
corresponding experimental transiograms is understandable, because the simu-
lation is directly conditioned on the dataset used to estimate the experimental
transiograms. With the incorporation of interclass relationships, close sample data
are apparently more decisive in determining the state of an unknown location in a
SMC simulation than in a kriging simulation. As a non-linear estimator, the SMC
does not necessarily behave similarly as kriging—the linear optimal estimator.
This may be why simulated patterns by the SMC algorithm show clear polygons
and different realizations are more imitative (but still have locational uncertainty).

Figure 8 demonstrates that p17(h) �= p71(h), no matter in original data and
simulated realizations. This is always true for every class pair. This means that not
only cross-correlations, but also juxtaposition tendencies, are also incorporated in
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Figure 6. Comparison of simulated transiograms (thick line and dashed line) with experimental tran-
siograms (dots) and input models (thin line) related with the same head class—class 1. Experimental
transiograms are estimated from the dense dataset. Simulated transiograms are estimated from the
first realizations based on the dense dataset and the sparse dataset, respectively.

the simulations. If transiograms are estimated uni-directionally (e.g., west-to-east,
which normally needs a large number of observed data), there will be p17(h) �=
p17(−h) and directional asymmetries of class patterns can be incorporated into a
simulation; then simulated results should be better.
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Figure 7. Some auto/cross-transiograms estimated from the first 10 simulated realizations
conditioned on the dense dataset (left column) and sparse dataset (right column).
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CONCLUSIONS

A simple and efficient fixed-path SMC algorithm for stochastic simulation
conditioned on point samples has been presented. The MCRF theory provided
an explicit solution for the conditional probability function of an unknown lo-
cation with different nearest-known-neighbor structures. The major power of the
algorithm lies with its nonlinear estimator and its capability of incorporating in-
terclass relationships of multinomial classes, which is not well accomplished in
conventional geostatistical methods. Therefore, the algorithm is more capable of
structure-imitating. Not only can large-scale patterns be produced as polygons,
the simulated patterns in different realizations also look similar (but with obvious
locational uncertainty reflected in occurrence probability maps). The computa-
tional efficiency makes the algorithm well-suited to spatial uncertainty analysis of
multinomial classes by generating a large number of realizations and estimating
occurrence probability maps.

Using transiogram models to provide transition probabilities at any lags
constitutes an advantage of the algorithm in incorporating complex features of
spatial variations of discrete variables that a first-order stationary 1-D Markov
chain model (e.g., a TPM or a transition rate matrix) cannot capture. But how to
effectively model experimental transiograms remains an issue to explore in the
future.

The simple algorithm has basically indicated the applicability of the MCRF
theory in dealing with discrete variables. More complex and effective algorithms
based on this theory may be expected. For example, the data in the off-orthogonal
directions may be conditioned in a simulation by using a suitable path. The case
study in this paper is just a simple simulation on regular data to demonstrate the
practicability and potential of the SMC algorithm and the MCRF theory. The long-
term goal is to develop a visual interactive software system to fulfill the mission
so that users have a full control on each step of the simulation process.
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