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Semi-Analytic Modelling of Subsidence1

Peter A. Fokker2 and Bogdan Orlic2

This paper presents a forward model for subsidence prediction caused by extraction of hydrocarbons.
The model uses combinations of analytic solutions to the visco-elastic equations, which approximate
the boundary conditions. There are only a few unknown parameters to be estimated, and, consequently,
calculations are very fast. The semi-analytic model is applicable to a uniform and layer-cake stratig-
raphy, with visco-elastic parameters changing per layer, and an arbitrary depletion pattern. By its
capabilities to handle a multi-layered visco-elastic subsurface, the semi-analytic model fills the gap
between the analytic single-layered elastic models available to date and the more elaborate numerical,
e.g. finite element, models.

KEY WORDS: subsidence, reservoir compaction, geomechanics, semi-analytic model, visco-
elasticity.

INTRODUCTION

Production of hydrocarbons reduces the reservoir pressure. This pressure change
affects the in-situ stress field through poro-elastic coupling. The reservoir may
compact, resulting in land subsidence or seabed subsidence. Classical examples
are the Wilmington oil field in California (Mayuga and Allen, 1969), the Ekofisk
oil field in chalk in the Norwegian sector of the North Sea (Nagel, 1998) and
the Groningen gas field in the northern part of the Netherlands (Doornhof, 1992;
Houtenbos, 2000).

Rate of compaction at reservoir level and surface subsidence are mutually
dependent. Forward modelling can be used if the amount of reservoir compaction
is known, or if it can be predicted to an acceptable confidence level, and when
existing or future subsidence has to be estimated.

Various authors have studied the subsidence caused by hydrocarbon extrac-
tion and proposed methods for subsidence prediction. Geertsma (1973) was the
first to apply an analytic, linear forward model, based on the nucleus of strain
concept, for a single-layer elastic subsurface. Others have expanded his formulae,

1Received 26 August 2004; accepted 8 December 2005; Published online: 2 November 2006.
2Netherlands Institute of Applied Geoscience TNO – National Geological Survey, P.O. Box 80015,
3508 TA Utrecht, The Netherlands; e-mail: peter.fokker@tno.nl; bogdan.orlic@tno.nl.

565

0882-8121/06/0700-0565/1 C© 2006 International Association for Mathematical Geology



566 Fokker and Orlic

or presented alternatives. Van Opstal (1974) included the effects of a rigid base-
ment. Fares and Li (1988) presented a general image method for a plane-layered
elastic medium, which involves infinite series of images. Both analytic solutions
are, however, limited to media with two interfaces and therefore to a two-layer
model of the subsurface.

A different approach is the use of numerical codes, such as finite elements
(Morita and others, 1989; Johnson and others, 1989; Fredrich and others, 1998;
Chin and Thomas, 1999). These enable simulation of the full relationship between
flow in the porous medium and geomechanics, taking into account complex struc-
tural geometry and heterogeneity of the subsurface (Settari and Walters, 2001). In
contrast to the analytical models, the numerical models of the subsurface usually
demand more time to be constructed and to be computed. There remains, however,
a gap between the fast single-layer and two-layer analytical models available to
date and the more elaborate finite-element models.

The present paper discusses a multi-layer linear visco-elastic model, of which
the elastic part was briefly presented earlier in Fokker (2001). The model presented
here is more sophisticated than the available single-layer and two-layer analytical
models and requires less computational effort than finite-element calculations.
The smaller computational requirements make the method suitable for inversion,
i.e. using subsidence data to increase knowledge about compaction at the reservoir
level.

A NEW MODEL FOR SUBSIDENCE PREDICTION

The new modelling approach combines elements of analytic and numerical
approaches (Fokker, 2001). The method combines a number of analytic functions
that satisfy the elasticity equations in such a way that the boundary conditions
are approximated. Such an approach makes the method more widely applicable
than analytical approaches, while the calculation times are much smaller than for
numerical (e.g. finite-element) simulators. It is typically 3 orders of magnitude
faster than finite-element calculations and much more flexible in the sense that
changes in the elasticity profile are easy to implement.

The method for subsidence prediction has been inspired by a similar concept
used by Fitts (1989) for calculation of the pressure field for Darcy flow in a
porous medium. Fitts started with the pressure solution of a flowing well in
the unlimited three-dimensional space and utilized fields of point sources and
sinks distributed around interfaces to fulfil the boundary conditions in a number
of selected points. His approach was followed by Fokker and others (2005) to
develop a fast model for the productivity prediction of horizontal wells in fractured
reservoirs.

The semi-analytic method is similar to boundary-element methods (Crouch
and Starfield, 1983). There are, however, a few differences. In the semi-analytic
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method singularities are distributed outside the domain, rather than on the bound-
aries of the domain. Then, the domain is split into multiple regions with different
elastic properties. Finally, a least-squares approach is used to approximate the
boundary conditions in a number of points rather than to honour them exactly, as
it is the case in the conventional boundary element approach. The model can be
viewed as belonging to the class of the method of fundamental solutions (MFS).
MFS has been reviewed by Fairweather and Karageorghis (1998). The quoted re-
view paper describes the development of MFS over the previous three decades and
presents several applications. Our extension is the application to multiple layers of
different elastic parameters and to viscoelasticity. Advantages of the approximate
solution method of the elasticity equations are that relatively few boundary points
and singularities are required, that it does not require elaborate discretization of
the boundaries, and that the approximation of the solution and of derivatives can
be evaluated directly at any given point. Implementation of the method is relatively
easy and computation times are kept low.

The forward model for linear elasticity will be presented first and then ex-
tended to linear visco-elasticity.

Elastic Model for Subsidence Above a Centre
of Compression

The two equations that are relevant in the theory of linear elasticity are
Hooke’s law and the equilibrium equation. Hooke’s law for linear elasticity, with
inclusion of poro-elasticity, reads:

σij = 2Gεij +
[

2G

1 − 2ν
εkk − αBiot�p

]
δij (1)

where σ ij is the stress tensor, εij is the strain tensor, �p is the change of pressure,
G is the shear modulus, ν is the Poisson’s coefficient, αBiot is the Biot’s constant
and δij is the Kronecker delta.

Equation (1) is used further for the difference with the undisturbed state,
which is possible due to its linearity. The equilibrium equation reads:

∂jσij = 0. (2)

The two equations are completed with the boundary and interface conditions. In
media with discrete homogeneous elasticity parameters, which are the type of
media treated here, the boundary conditions consist of vanishing tractions (σ i3) at
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the surface, and continuous tractions and displacements (ui) at interfaces:

surface (z = 0) : σi3 = 0

interfaces (z = −d1 · · · −dN ) :

{
σi3 = continuous
ui = continuous

(3)

Solutions to the equations can be conveniently formulated using potential functions
such as Galerkin stress functions. Galerkin stress functions, as defined in Mindlin
(1936), were used here, including a factor 2G in the definition. The factor 2G was
included for convenient extrapolation to linear visco-elasticity. With a Galerkin
vector F, the displacements and the stresses are given by:

ui = 2 [1 − ν] ∇2Fi − ∂i∂kFk

σij = 2G{(νδij∇2 − ∂i∂j )∂kFk + [1 − ν]∇2(∂iFj + ∂jFi)}.
(4)

In the absence of body forces, the Galerkin vector potential must satisfy the
biharmonic equation:

�2F = 0. (5)

The present study makes use of solutions originating from nuclei of strain. A
nucleus of strain refers to a well-defined singularity, for instance a force acting at
a single point. A centre of compression, or a centre of compaction, is a nucleus
of strain as well, and we use a distribution of these to represent the compacting
reservoir. For a nucleus of strain located at (0, 0, −d), the following Galerkin stress
functions are associated with a single force directed along the z-axis, a double force
(i.e. a single-force dipole), a centre of compression, and a centre-of-compression
dipole (also directed along the z-axis); k is the unit vector in the z-direction; R is
the distance to the nucleus, R =

√
x2 + y2 + (z + d)2.

Fsingle force = kAR (a)
Fdouble force = kB z+d

R
(b)

Fcentre of compression = kE log (R + z + d) (c)
Fdipole = kH 1

R
(d)

(6)

The constants A, B, E and H are the strengths of the associated nuclei. For a
volume dV in which the pressure is reduced by an amount dP, the strength E0 of
the associated centre of compression is given by:

E0 = −αBiot
1 − 2ν

2G (1 − ν)

dV dp

4π
= −cm

dV dp

4π
(7)
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in which the compaction coefficient cm has been expressed as a function of the Biot
constant αBiot . The compaction coefficient indicates how much a reservoir with
a large radius-to-thickness ratio would compact vertically per unit of reservoir
thickness and per unit of pressure decrease (it has the dimension of [1/Pa]).

The method employed for solving the elasticity equations with the appropriate
boundary conditions starts with the particular solution of the elasticity equations
around a centre of compression, embedded in a homogeneous unlimited three-
dimensional space, by using its Galerkin stress function (Eq. (6c)). The full solution
is applicable in the case of an infinite space with homogeneous properties. The
problem at hand, however, involves a subsurface with an unconstrained ground
surface and elasticity interfaces at the boundaries between the subsurface layers
of different stiffness. The boundary conditions at the ground surface and at the
interfaces in a layered subsurface are not honoured by the solution as defined by the
centre-of-compression function alone: the fields derived from the stress functions
depend on the shear modulus and the Poisson’s ratio, G and ν, respectively, and
are therefore discontinuous across elasticity interfaces (Figure 1A). The solution
originating from the centre of compaction is therefore complemented by other
solutions to the elasticity equations to correct for this. The centre of compression in
the horizontally layered subsurface, however, does preserve rotational symmetry.

The additional solutions should be chosen in such a way to create additional
discontinuities in the tractions and displacements at the layer interfaces and at
the ground surface. These solutions should contain free parameters that can be
used to fine-tune these discontinuities, so that they can be adjusted to let the re-
sulting complete solution approximate the boundary conditions, viz. continuity of
displacements and of tractions at interfaces and zero tractions at the ground sur-
face. Because of the rotational symmetry of the problem, a cylindrical co-ordinate
system can be used, and only the r and z-components need to be considered.

The additional solutions are taken as originating from auxiliary nuclei of
strain with rotational symmetry along the z-axis (Figure 1B). A number of these
nuclei are positioned at different distances from the interface along the z-axis.
The field of a nucleus below the interface is applied only above the interface, and
vice versa. In this way the singularity is kept outside the domain of application
of the elastic field and the solution is a real solution to the elasticity equations
in the full application domain. The piecewise application of additional fields
induces additional discontinuities in the tractions and displacements. These can
be influenced and optimised to meet the boundary conditions, by adjusting the
strengths of the nuclei. The set-up of Figure 1 is applicable for a multi-layer
subsurface: the fields of the auxiliary nuclei above an interface are applied at all
positions below the interface with which it is connected, across the interfaces
underneath, and similarly for nuclei below an interface of interest. Clearly, nuclei
close to the interface act rather locally, whereas those further away affect a larger
volume.
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Figure 1. Schematic representation of the conceptual model.
(A) The centre of compression of strength E0, located at (0,
0, −d0), causes stress and strain fields that are discontinuous
at the ground surface and at the interfaces between layers
of different stiffness. (B) With an auxiliary nucleus of strain
En1, Bn1, and Hn1, located in layer 2 at (0, 0, −dI −cn),
additional stress and strain fields are generated in layer 1.
These fields can be fine-tuned by adjusting the magnitude
of the free strength parameters En1, Bn1, and Hn1. Solution
procedure makes use of several auxiliary nuclei located at
different distances from the interface along the z-axis.

To determine the nuclei strengths, first a forward model is constructed with the
deviation from the required boundary conditions as outcome. The strengths of the
compaction source and of the auxiliary nuclei are input, the latter are unknowns.
As this model is linear, a generalized inverse method straightforwardly results in
the best estimate for the strengths of the auxiliary nuclei in the least-squares sense.
In the least-squares approach, the number of points where the boundary conditions
are evaluated exceeds the number of free strength parameters in the solutions of
the elasticity equations.
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Quality and Robustness of the Method

The quality and robustness of the approximation were tested in order to
determine the optimal way of determination of the strengths of the auxiliary
sources. Further tests were performed to optimize the number, position and type
of the auxiliary nuclei required to use in the model for subsidence prediction.

A first qualitative assessment of the quality of the approximation could be ob-
tained by judging the curves representing the tractions and the displacements at the
boundaries and the interfaces. These should be physically sensible: asymptotically
approaching zero at infinity; and having the maximum value (or the maximum
derivative) at the origin.

A more quantitative judgement of the quality of the approximation was ob-
tained by means of the summed squared deviation from the boundary and interface
conditions: the zero tractions at the ground surface, and the zero difference of trac-
tions and displacements at the layer interfaces. Various representations of summed
squared deviations were implemented and tested. The most robust scheme was
achieved when the strengths of the nuclei were adjusted to minimize the summed
squared deviations on a number of equidistant points. For each interface, the
equidistant points should extend in the radial direction, starting from the position
right on top of the compaction source (E0), up to 5 to 10 times the vertical distance
to it (Figure 2). A value of 7 has been implemented in the code.

The robustness of the approximation was assessed by testing the effect of
different elasticity profiles. This was done by judging the quality versus the varia-
tion in profile, but also by assessing the variation in the resulting maximum level
of subsidence and the variation in the volume of the subsidence bowl for a given
centre of compression.

Figure 2. Distribution of the equidistant points at which the inter-
face conditions are evaluated. The distribution extends to 7 times
the vertical distance to the compacting source E0.
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The sensitivities to the number of nuclei showed that a reasonable subsidence
profile was usually obtained with 6 nuclei for each side of each interface. For
elasticity profiles with relatively large contrast in stiffness, i.e. changes in elasticity
between adjacent layers larger than a factor of 2, more nuclei were required. 8 to
10 pairs of nuclei around each interface were usually sufficient to obtain accurate
results: using 10 pairs instead of 8 often resulted in a fit of better quality, but did
not change the resulting subsidence more than 1–2% in terms of depth and 2–5%
in terms of volume.

The sensitivities showed that it was absolutely necessary to position the
nuclei around the associated interface at distances of the same order of magnitude
as the vertical distance of this interface to the original source (i.e. the compacting
reservoir). Logarithmically spaced nuclei at distances to the interface of 0.3 to 8
times the distance to the compaction source (E0) usually gave optimal result. In
specific cases this logarithmic pattern of the auxiliary nuclei could be improved,
and in some cases it was not possible to achieve an acceptable quality. Such
instabilities in the model were usually associated with large contrasts in elastic
moduli (larger than a factor 10), large differences in layer thicknesses, or a short
distance between the compacting source and one of the interfaces. It is therefore
advisable to always check the quality of the approximation before proceeding with
the integration exercise.

The sensitivities to the type of the auxiliary nuclei of strain were tested
by using different combinations of nuclei types (Eq. (6)). The best results were
achieved with combinations of centres of compression, double forces and doublets
of centres of compression in the z-direction (Eqs. (6b), (6c), and (6d)). These types
of nuclei were also used by Mindlin (1936) to derive the analytical expression for
a homogeneous half-space. Including single forces (Eq. (6a)) gave worse results
as their fields damp out more slowly than the fields of a centre of compression.
Including the dipole (Eq. (6d)) was not strictly necessary but facilitated the same
quality of approximation with fewer nuclei. The combination of these three types
of nuclei provided sufficient flexibility for our type of problems with circular
symmetry around the z-axis. The associated equation for the stresses and the
displacements in, e.g., the uppermost layer reads:

σij = σij (E0) +
∑
m

[σij (Em) + σij (Bm) + σij (Hm)]

+
∑
n1

[σij (En1) + σij (Bn1) + σij (Hn1)] (8)

ui = ui (E0) +
∑
m

[ui (Em) + ui (Bm) + ui (Hm)]

+
∑
n1

[ui (En1) + ui (Bn1) + ui (Hn1)]
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where the summations over m are over nuclei above the surface and the summations
over n1 are over nuclei below the first interface.

Visco-Elastic Model

Most materials show a combination of elastic and viscous behaviour, depend-
ing on the time scale. The relaxation time for a visco-elastic material is defined
by the ratio between the viscosity (η) and the elastic modulus (E). The actual time
scale in relation to this relaxation time determines whether a material behaves in
an elastic or viscous way. The most general linear visco-elastic material is de-
scribed by a linear relationship between a combination of the stress and the stress
rate, and the strain and the strain rate tensors. We will assume that the material
starts immediately behaving in an elastic manner, and has a long-term viscous
reaction. This is known as the Maxwell model, which can be schematized as the
series combination of a spring and a dashpot. The tensor form of the constitutive
equation of an isotropic Maxwell body is (Ranalli, 1996):

σ̇ij + µ

η

(
σij − 1

3σkkδij

) = 2µε̇ij + λε̇kkδij . (9)

If the Maxwell viscosity η is infinite, the above equation reduces to Hooke’s law.
The stress and strain versus time, as described by Eq. (9), are typically slowly

varying, non-oscillating functions. In this case, solution with a Laplace transform
is the method of choice (Arfken, 1970), in contrast to oscillating functions which
are better treated with a Fourier transform. The transform of the time derivative of
a function is a linear function of the Laplace transform of the function itself. The
Laplace transforms of a function F(t) and of its derivative are given by:

L {F (t)} = f (s) =
∫ ∞

0
e−stF (t) dt

L{F ′ (t)} = sL {F (t)} − F (0) = sf (s) − F (0) .

(10)

At t = 0, the Maxwell body must obey the linear elastic equation:

σij (0) = 2µεij (0) + λεkk (0) δij . (11)

With the definition of the Laplace transforms of stress and strain by σ̄ (s) = L {σ }
and ε̄ (s) = L {ε}, the constitutive equation is then transformed to:

σ̄ij + µ

sη

(
σ̄ij − 1

3 σ̄kkδij

) = 2µε̄ij + λε̄kkδij (12)
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which can be rewritten in the form of the classical linear elastic equations
(Eq. (1)) with an equivalent shear modulus and Poisson’s ratio, which are now
functions of s:

G̃ (s) = µ

1 + µ/sη
= G

1 + G/sη

ν̃ (s) = λ + 1
3µ/sη · (2µ + 3λ)

2µ + 2λ + 2
3µ/sη · (2µ + 3λ)

= ν + 1
3G/sη · (1 + ν)

1 + 2
3G/sη · (1 + ν)

. (13)

The boundary conditions also need to be Laplace-transformed. The boundary
conditions at the interfaces and the ground surface remain the same, i.e. the
continuity of tractions and displacements at the interfaces and zero tractions at
the ground surface. The constant value of the nucleus of strain for the centre of
compression at the reservoir depth translates into a value of E0/s in the Laplace
domain.

The procedure described above can be used to determine the subsidence
profile as a function of s in Laplace space. For a number of suitably chosen
values of s, the subsidence profile is determined using the pertinent G̃(s) and
ν̃(s), and the transformed nucleus of strength of E0/s. What needs to be done
is the back-transformation to determine the subsidence profile as a function of
time.

A number of methods are available to transform function in Laplace space
back to the time domain. For oscillatory functions, complex values of the variable
s are usually used to obtain satisfactory behaviour. For non-oscillatory functions,
a direct inversion of the function in the real Laplace space is often sufficient
(Narayanan and Beskos, 1982). We have used a superposition of exponentials
as a trial function in the time domain, and we determined the strengths of these
contributions such that in the Laplace domain the error in the approximation is
minimized (Appendix A). We used the coordinate x as a parameter, because the
subsidence profile versus s is fundamentally given in terms of the nuclei strengths
and the profile can be calculated numerically at every position as wanted. We
consider upgrading the current inversion procedure with the more efficient Gaver-
Stehfest method or the Gaver-Whynn-Rho algorithm (Abate and Valkó, 2004;
Valkó and Abate, 2004) in our future work.

Integration

The solution obtained by using the method described above yields a sub-
sidence bowl originating from a centre of compression, which is the mathemat-
ical representation of an amount of compaction concentrated at a single point.
This subsidence bowl is rotationally symmetric. If visco-elasticity is present, the
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subsidence bowl is calculated for a number of time-steps. The solution is sub-
sequently used as an influence function or Green function in conjunction with
the reservoir data to arrive at the subsidence bowl for the whole reservoir that
is compacting. Indicating the influence function for vertical displacement at the
surface with g(r), the reservoir height with H(x, y), the pressure depletion with δp
and the compaction coefficient with cm, we have:

u3 (x, y) = cm

∫
reservoir

H (x ′, y ′) · δp(x ′, y ′) · g
(√

(x − x ′)2 + (y − y ′)2
)
dx ′dy ′.

(14)
For a reservoir with large area compared to its height H, the compaction (which
in this case would be purely vertical) would amount to cm·H·δp. The integration
breaks the rotational symmetry: a reservoir grid of arbitrary outline can be used.

If the reservoir pressures are available from reservoir simulations on dis-
cretized models, first the product δV·δP for the strength of the nucleus is calculated
for the centroid of each grid block in the reservoir. Then the integral of Eq. (14) is
replaced by a summation over all the active grid blocks in the reservoir:

u3 (x, y) = cm

∑
i

δVi · δpi · g
(√

(x − xi)2 + (y − yi)2
)
. (15)

The approximation of the influence function of a grid cell by the influence function
of a centre of compression in its centre is appropriate as long as the ground surface
is far enough away, i.e. the depth is more than 10 times the typical dimension of
the grid block. The mismatch is then typically less than 1%. For shallow reservoirs
like depleting aquifers, the influence function in Eq. (15) needs to be replaced by
a volume integral of the influence function over the grid block.

The new method is applicable to linear theories because it relies on the
superposition principle for solutions of the elasticity equations. It can be extended
to other linear elastic systems like transverse isotropy or orthotropy, but not to
non-linear theories as power-law creep with a coefficient different from unity.

Appendix B provides a detailed description of the algorithm for semi-analytic
forward modelling of subsidence.

MODEL VALIDATION

The presented method for calculating the subsidence above a centre of com-
pression has been compared with existing analytical and numerical methods. For
simple situations, the method should give results in accordance with solutions
that can also be obtained analytically. The approximations introduced at elasticity
interfaces call for comparison with a more rigorous technique like finite elements.
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The numerical integration over a reservoir grid is straightforward, as demonstrated
in an application case study.

Validation with Analytic Tools

We have performed validation exercises with analytical expressions for a
single-layer model and a two-layer model, including the limiting case of a two-
layer model with a rigid basement. Models with more than two subsurface layers
require validation against numerical modelling tools.

The elasticity profile of a two-layer model of the subsurface is used for
comparison with analytical techniques (Figure 3). A basement was introduced at
a depth of 1,200 m, while the compacting field was located at a depth of 1,000 m,
relatively close to the basement. The elastic modulus of the subsurface down to
1,200 m was set to 0.5 GPa and kept unchanged in calculations. The elasticity
modulus of the underlying layer, i.e. the basement, was varied.

We performed series of calculations with a two-layer model using the
Geertsma model, the model based on the rigid basement theory (Opstal, 1974)
and the semi-analytic model. The results of the homogeneous Geertsma model
should correspond to the results of the semi-analytic model for the profile without
elasticity contrast (i.e., an elastic modulus of 0.5 GPa for the basement), while
the rigid basement theory should correspond to the simulation with the rigid base-
ment. The new semi-analytic model was run with 8 nuclei of combined centres of
compression, double forces, and centre-of-compression dipoles above the ground
surface and around the layer interface, at logarithmically spaced distances of 0.4 to
6 times the distance to the centre of compaction. Three arrays of 8 auxiliary nuclei
with each 3 degrees of freedom make the total number of adjusting parameters 72.

Figure 3. Elasticity profiles of a two-layer elastic
subsurface, with varying stiffness of the basement,
for testing with analytic methods.
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Figure 4. Subsidence predicted by the new semi-analytic method. Elasticity profiles of a two-layer
subsurface presented in Figure 3, were used in calculations. The vertical scale is arbitrary since the
displacement is linearly dependent on the compacting volume.

A number of values of the basement elasticity have been evaluated with the
new method, four of which are presented in Figure 4. The analytical results for
the Geertsma model and for the rigid basement model coincide excellently with
the results using the new forward model (Figure 5). An average accuracy better
than 0.01% has been achieved. This is consistent with the quality judgement that
can be made using the form of the curve and the deviation from the boundary
conditions, as mentioned earlier. The important observation that can already be
made with this straightforward subsurface model is that a distinct effect on the
amount of subsidence is already noticed for relatively small stiffness contrasts:
when the basement is 20% deeper than the compacting source and its stiffness is

Figure 5. Validation of the new semi-analytic method for subsidence prediction with
available analytic methods. The rigid basement theory only provides dimensionless vertical
displacement u3.
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only 1.5 times larger than the stiffness of the upper layer, the maximum subsidence
increases by 20%. This is entirely due to a narrowing of the subsidence bowl. The
increase in maximum subsidence is accompanied by a decrease of the volume of
the subsidence bowl. If the basement is less stiff than the overburden, subsidence
decreases when compared to a homogeneous subsurface. Actually, the average
depth of the reservoir decreases for very small values of the elasticity of the
nearby basement.

For validation of the visco-elastic model, we use an analytic solution of the
Maxwell model, which is available for a single layer model of the subsurface
(Appendix C). The Geertsma method can be applied in the Laplace space and ana-
lytically transformed back to the time domain. The resulting vertical displacement
at the surface is:

u3 (r, t) = −2E0
d0(

r2 + d2
0

)3/2

{
1 + (1 − 2ν) exp

[
−2G

3η
(1 + ν) t

]}
. (16)

The agreement between the results of the analytic equation and the results of our
new method with numeric Laplace back-transformation is clearly excellent (Figure
6). The temporal development of the subsidence bowl can be viewed as a transition
of the immediate elastic response with the actual Poisson’s ratio to a final situation
in which the Poisson’s ratio is 0.5—the value associated with a flowing viscous
material. A rebound of the subsidence is observed, but the subsidence bowl is not
filled in completely because the gravity has not been taken into account.

Figure 6. Validation of the Laplace inversion method for calculation
of subsidence in a single-layer visco-elastic subsurface with analytic
method. Time is increasing, from bottom curve to top, from 0 to 33
times the relaxation time η/G (η—viscosity, G—shear modulus); (steps
at 0; 0.33; 0.72, 1.55; 3.33; and 33 times the relaxation time).
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Validation with a Numerical Tool

Simulations with a general-purpose finite-element simulator DIANA (1999)
were also used to validate the new semi-analytic model. Calculations were carried
out on a multi-layer model of the subsurface, with variation in elastic properties
in the overburden of the compacting field (Figure 7). An intermediate layer, with
deviating elastic properties with regard to the overburden, extends from a depth of
400 to 600 m, and the compacting field is located at a depth of 1,000 m. A rigid
basement is present at a depth of 5,000 m. This relatively simple scenario already
employs four interfaces, while available analytic approaches are limited to two
interfaces. A two-dimensional finite element mesh was extended from the ground
surface down to a depth of 5,000 m, with a lateral extension of also 5,000 m.

The nucleus of strain representing the compacting field was created in DIANA
by introducing a hollow sphere with a radius of 10 m in which the hydrostatic
pressure was negative. The elasticity of the first and the third layer in the overburden
was set to 1 GPa; the elasticity of the intermediate layer ranged from 0.1 to 10 GPa.
No displacements were allowed at the rigid basement and at the lateral boundary
of the model.

The resulting displacements at the ground surface, calculated with the finite
element simulator DIANA and with the new method, are in excellent agreement
(Figure 8 and Table 1). This demonstrates the validity of the method. In particular, it
shows that the approximation of continuity at the interfaces, rather than the rigorous
honouring of boundary conditions as in the finite element code, is allowed. For
elasticity contrasts larger than a factor 10, the new method may, however, become
less accurate.

All validation simulations with DIANA show a discrepancy at the
edge of the reservoir. This discrepancy, however, was to be expected due to the

Figure 7. Elasticity profiles of a multi-layer subsur-
face, with varying stiffness of the overburden, for
testing with the finite element simulator DIANA.
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Figure 8. Validation of the new semi-analytic method for subsidence prediction with
the finite-element simulator DIANA. Elasticity profiles of a multi-layer subsurface,
presented in Figure 7, were used in calculations.

zero-displacement boundary condition introduced in DIANA. Towards the bound-
ary of the model, the semi-analytic approximation can be regarded as more faithful.

For a less stiff intermediate layer (0.1 or 0.4 GPa), the vertical displacement
at the ground surface was larger than the reference case with equal moduli, but the
horizontal displacement was smaller. This resulted in a wider subsidence bowl.
The weak intermediate layer allowed a much larger displacement at the lowest
interface, most of which was accommodated by the weak layer. Displacement
was distributed laterally throughout this weak layer, resulting in the larger ex-
tension of the subsidence bowl at the second interface and at the surface, and in
a smaller horizontal displacement at the surface. For stiffer intermediate layers,

Table 1. Maximum Vertical Displacements Resulting from
DIANA Finite Element Simulations and from the New
Semi-analytic Method

Maximum subsidence (m)
Elasticity modulus,
E (GPa) DIANA New method

0.1 2.279 2.276
0.4 2.042 2.042
1.0 1.845 1.844
2.5 1.763 1.761
10 1.688 1.687

Note. Elasticity profiles of a multi-layer subsurface, pre-
sented in Figure 7, were used in calculations.
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Figure 9. Visco-elasticity profiles of a multi-layer
subsurface for testing with the finite element simu-
lator DIANA. The arrows indicate centres of com-
paction at the depths of 3,000 and 5,000 m.

both horizontal and vertical displacements at the ground surface were smaller than
for the reference case. The strong layer resists displacement. Consequently, the
difference between vertical displacement at the top and at the bottom is relatively
small.

Further validation runs have been performed using DIANA with the consti-
tutive material model of Fokker (1995), who implemented a power-law creep
model into the code to simulate salt behaviour. The creep model reduces to
a Maxwell model when a unit power-law coefficient is used. We have tested
two three-layer scenarios with the DIANA simulator. Both scenarios were run
on a multi-layered model of the subsurface, made of two linear elastic layers,
one visco-elastic layer in-between the elastic layers and a deep rigid basement
(Figure 9).

The first validation is with the centre of compression located in the centre
of the visco-elastic layer, at a depth of 3,000 m, and the second with the cen-
tre of compression in the lower linear elastic layer, at a depth of 5,000 m. With
the centre of compression located in the visco-elastic layer, we calculated subsi-
dence bowls versus time both with DIANA and with the new method. The results
show satisfactory agreement (Figure 10). The agreement between the simulations
for the centre of compression at a depth of 5,000 m is less satisfactory (Fig-
ure 11). This is probably related to the much wider extent of the subsidence bowl
and the level of accuracy that the new semi-analytic scheme is able to achieve.
The standard deviation becomes larger when the contrast between the (equiva-
lent) shear moduli of the layers becomes larger. This was already indicated in
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Figure 10. Validation of the new method for subsidence prediction with the
finite element simulator DIANA, using the visco-elastic profile presented in
Figure 9 and the centre of compression at a depth of 3,000 m. Profiles are
shown for zero time, 95 days, 440 days, and 950 days. Vertical displacements
are increasing with time, horizontal displacements are decreasing.

the Section on Quality and Robustness above. In the viscoelastic case, large con-
trasts develop with progressing time, as the viscous character of the salt layer
continuously reduces the effective shear modulus to smaller values. However,
the trend of a narrowing subsidence bowl in the course of time is faithfully
represented.

Figure 11. Validation of the new semi-analytic method for subsidence prediction
with the finite element simulator DIANA using the visco-elastic profile presented
in Figure 9 and the centre of compression at a depth of 5,000. Times are chosen
as in Figure 10. The subsidence bowl is deepening and narrowing with increasing
time.
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Figure 12. Elasticity profile for the Ameland gas field.

APPLICATION CASE STUDY

The modelling approach developed here was applied to the Ameland gas field
in the Northern Netherlands. The Ameland field is produced by NAM (Nederlandse
Aardolie Maatschappij B.V.), a joint venture between Shell and Exxon. The field
is situated at a depth of 3,350 m, in the Upper Slochteren sandstone, underneath
the island Ameland and the wetlands of the Wadden Sea. Having started at an
initial pressure of 557 bar, the field will be depleted in 2020 with an abandonment
pressure of circa 40 bar.

Over the past twenty years, subsidence in this closely monitored and well-
documented field has been modelled using many different techniques (NAM re-
port, 2000). This has resulted in a range of predictions as to what the maximum
subsidence will be in the year 2020.

The geomechanical properties of the subsurface in the Ameland region are
indicated in Figure 12. The new subsidence prediction model was used in con-
junction with this elastic profile to calculate a subsidence bowl for a centre of
compression. A two-dimensional grid of compaction coefficient, pressure deple-
tion and net reservoir height was available from reservoir simulation studies by
NAM (Figure 13). The profile resulting from the centre of compression was inte-
grated to obtain a subsidence bowl over the whole field, presented in Figure 14.
A comparison between Figures 13 and 14 demonstrates that the subsidence bowl
is much smoother than the compaction profile that causes it. This is due to a
large radius of influence of a centre of compression: at a radial distance equal to
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Figure 13. Contour map of the product of (cm H
dP [m]) for the Ameland gas field in the Nether-
lands. Cm—compaction coefficient, H—net reser-
voir thickness, dP—depletion pressure. The grid of
this product is the compaction source of the subsi-
dence.

Figure 14. Subsidence bowl above the Ameland field (cm)
calculated using the input grid of Figure 13 and the elastic
properties of Figure 12. The rectangle indicates the areal
extent of the reservoir compaction grid.
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the depth of the nucleus, the amount of subsidence is still about one third of the
maximum value in the centre of the subsidence bowl.

The maximum amount of subsidence due to the depletion of the Ameland
field, expected for 2020, is 0.22 m. This value showed a variation of 20% depending
on the elasticity parameters used in calculations. Three different NAM studies had
predicted a maximum subsidence of 0.27, 0.19, and 0.28 m. The present results
are apparently in line with the earlier NAM predictions.

CONCLUSION

The paper presents a new semi-analytic model for subsidence prediction
caused by hydrocarbon extraction. The forward model allows more complexity
than current analytical models with respect to the geometry of the model layers and
the constitutive behaviour of the geological materials. It is applicable to a uniform
and layer-cake stratigraphy, with visco-elastic parameters changing per layer, and
an arbitrary depletion pattern. The calculations are very fast and the model is
flexible, which makes the semi-analytic approach also suitable for development
of a model for inversion of subsidence data.
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APPENDIX A: BACK TRANSFORMATION
OF THE LAPLACE TRANSFORM

For the back transformation of the Laplace Transform, we use a superposition
of exponentials as a trial function in the time domain, and we determine the
strengths of these contributions such that in the Laplace domain the error in the
approximation is minimized.

The trial function we use in the time domain is:

F (x, t) = C0 (x) +
nb∑

k=1

Ck (x) e−bkt

= F (x, 0) −
nb∑

k=1

Ck (x) (1 − e−bkt ) (A1)
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in which it has been assumed that the function F(x,0) is given. Ck(x) are the
adjustable coefficients. The key in obtaining an acceptable approximation of F(x,
t) is a good set of values for the Laplace variable s and for the parameter bk . The
main time dependent effects occurred for values of the time around the relaxation
time of the viscoelastic medium, τ = η/G. For zero time, the elastic solution was
used; further values for the time were chosen ranging from τ /30 to 30τ . The best
coverage of s and bk to determine profiles for these times were between 30/τ and
1/30τ .

The Laplace transform of the function F(x, t) is given by:

sf (x, s) = C0 (x) +
nb∑

k=1

Ck (x)
1

1 + bk/s
=F (x, 0) −

nb∑
k=1

Ck (x)
bk

s + bk

. (A2)

When for a set of si the functions f (si) are given, a system of ns equations can be
formulated with nb unknowns Ck . This system is made over-determined by having
more equations than unknowns; i.e. by choosing more values for si than for bk (ns

> nb; ns is typically 20 and nb is typically 5).

nb∑
k=1

AijCk (x) = Bi (x)

Aik = bk

si + bk

(i = 1..ns)

Bi (x) = F (x, 0) − sif (si) . (A3)

This system of equations is solved approximately by minimizing its mean square
error. This procedure is used to derive a time-dependent value for the subsidence
at every position x of the subsidence profile. The error made with profiles typical
for the subsidence problem currently studied was less than 0.1%.

APPENDIX B: DESCRIPTION OF THE ALGORITHM FOR
SUBSIDENCE PREDICTION FOR A VISCO-ELASTIC SUBSURFACE

The forward model for subsidence prediction proceeds as follows:

• Perform a Laplace transformation on the elasticity equations and choose
appropriate values for the Laplace variable, ranging from 0.03 to 30 times
G/η, to perform the following actions:
– Determine the Galerkin stress function belonging to a nucleus of com-

pression at the reservoir depth in an infinite three-dimensional space
(Eq. (6c) with E0 = 1/s).
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– Formulate a number of Galerkin functions for nuclei above the ground
surface for evaluation of their stress and displacement fields underneath.

– Formulate a number of Galerkin functions for nuclei around each elas-
ticity interface.

– Evaluate the boundary conditions at a number of points, yielding a linear
set of equations with the strengths of the nuclei as unknowns.

– Determine the strengths of the auxiliary nuclei by solving the set of
equations in a least-squares sense.

– Evaluate the rotationally symmetric subsidence bowl from the combi-
nation of the source nucleus E0 and the auxiliary nuclei—this is the
influence function.

• Perform a numerical Laplace back-transformation on the influence func-
tions to obtain influence functions as a function of time.

• Use the influence function as a Green function and integrate its influence
over the compaction field.

APPENDIX C: ANALYTIC SOLUTION OF THE MAXWELL
MODEL IN A HOMOGENEOUS SUBSURFACE

The Galerkin stress function given in Equation (4) includes the factor 2G in
order to relate a centre of compression to a constant amount of fluid or material
extracted from the subsurface, even for viscoelastic material. An example for this
is a solution mine, where salt has been mined and the cavern has closed up by
creep. Without the factor 2G the stress would remain constant and the creep would
continue perpetually.

The Geertsma solution for subsidence above a centre of compression of
strength E0 in a homogeneous half-space reads:

u3 (r) = −4E0 (1 − ν)
d0(

r2 + d2
0

)3/2 . (C1)

In the Laplace-transformed space of the visco-elastic medium, the source E0 is
transformed to E0/s and the Poisson’s ratio is replaced by the equivalent Poisson’s
ratio:

ū3 (r, s) = −4E0

s
(1 − ν̃)

d0(
r2 + d2

0

)3/2

= −4E0

s

1 + 2
3G/sη · (1 + ν) − ν − 1

3G/sη · (1 + ν)(
1 + 2

3G/sη · (1 + ν)
) d0(

r2 + d2
0

)3/2
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= − 4E0d0(
r2 + d2

0

)3/2

1 − ν + 1
3G/sη · (1 + ν)

s
(
1 + 2

3G/sη · (1 + ν)
)

= − 2E0d0(
r2 + d2

0

)3/2

{
1

s
+ 1 − 2ν

s + 2
3G/η · (1 + ν)

}
(C2)

which can be transformed back analytically:

u3 (r, t) = −2E0
d0(

r2 + d2
0

)3/2

{
1 + (1 − 2ν) exp

[
−2G

3η
(1 + ν) t

]}
. (C3)
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