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Block Kriging for Lognormal Spatial Processes1

Noel Cressie2

Lognormal spatial data are common in mining and soil-science applications. Modeling the underlying
spatial process as normal on the log scale is sensible; point kriging allows the whole region of interest
to be mapped. However, mining and precision agriculture is carried out selectively and is based on
block averages of the process on the original scale. Finding spatial predictions of the blocks assuming
a lognormal spatial process has a long history in geostatistics. In this article, we make the case that a
particular method for block prediction, overlooked in past times of low computing power, deserves to be
reconsidered. In fact, for known mean, it is optimal. We also consider the predictor based on the “law”
of permanence of lognormality. Mean squared prediction errors of both are derived and compared both
theoretically and via simulation; the predictor based on the permanence-of-lognormality assumption
is seen to be less efficient. Our methodology is applied to block kriging of phosphorus to guide
precision-agriculture treatment of soil on Broom’s Barn Farm, UK.

KEY WORDS: geostatistics, MSPE, permanence of lognormality, phosphorus, precision agriculture,
spatial prediction.

INTRODUCTION

There have been quite a few publications in the past on geostatistics for lognormal
data. The themes of these papers (Dowd, 1982; Journel, 1980; Marechal, 1974;
Matheron, 1974; Rendu, 1979; Rivoirard, 1990; Roth, 1998) draw on the very best
traditions of geostatistics: determine types of variogram models for lognormal
data; decide whether to do inference on the original scale or the log scale; choose
an optimality criterion for kriging; derive the kriging equations according to the
optimality criterion; consider the cases of known or unknown mean (on the log
scale); and consider whether knowing just the variogram (on the log scale) is
enough to do kriging.

The purpose of this article is to take a fresh look at geostatistics for lognor-
mal data, build on the results of the earlier papers, and develop new results in
light of the statistical literature on linear models and transformations. We shall
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vigorously pursue two of the many possibilities, chosen based on the following
principles:

• The original scale is for optimality criteria (including unbiasedness) but
the log scale is for linear statistical analysis.

• Some form of stationarity is needed for estimation of spatial dependence
but it is not needed for spatial prediction (i.e., kriging).

• Kriging is an empirical-Bayes methodology that requires efficient estima-
tors of unknown parameters to be “plugged into” kriging equations.

Notice that “permanence of lognormality” (e.g., Rivoirard, 1990) is not one
of our principles. In fact, one of the spatial predictors we consider is based on
permanence and one is not, and in this article we give a set of recommendations
(based on both geostatistical theory and a carefully designed simulation study)
as to when assuming permanence is a reasonable thing to do. In a related paper,
Cressie and Pavlicova (2005) find a way to correct the inherent bias in the predictor
based on permanence, but still find it to be inefficient.

When discussing lognormality for geostatistical processes, two quite different
issues have often arisen together. One has been the development and use of the
de Wijsian variogram (Matheron, 1962) for modeling spatial dependence (the
variogram has logarithmic shape), and the other has been lognormal kriging.
de Wijs (1951) developed a simple model that split an orebody randomly into
two halves, one with grade proportionately above average and the other with
grade proportionately below average. If this is successively repeated and Xi is the
random grade of one of the halves at the ith split, then after k splits, the grade of
any one of the 2k pieces is distributed as

∏k
i=1 Xi . As k → ∞, the central limit

theorem implies convergence in distribution to a lognormal random variable. This
rather specialized model also gives rise to a variogram that is logarithmic in shape
(Matheron, 1962), but it is clear that lognormal genesis can also happen in other
ways (e.g., Brown and Sanders, 1981). It is the lognormality that we discuss in this
article, and there is no requirement here that variograms be of de Wijsian form.

A very influential piece of writing on lognormal kriging has been the un-
published 43-page “note” by Matheron (1974). Matheron’s approach is to look at
the problem from all sides, with many calculations drawn from Matheron (1962)
but no definitive conclusions. His writing touches on all the geostatistical themes
given earlier. At the time it was written, the statistical influences of linear models,
efficient parameter estimation, prediction theory, and workstation computing were
not yet felt in geostatistics.

Some notation is needed for what follows in this article. Let the process
{Z(s) : s ∈ D} denote a lognormal spatial process defined on a domain D ⊂ R

d

such that it has a positive d-dimensional volume |D|. That is, the process:

Y (s) ≡ log Z(s); s ∈ D, (1)
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is a Gaussian process defined by its first two moments:

µY (s) ≡ E(Y (s)); s ∈ D, (2)

CY (u, v) ≡ cov(Y (u), Y (v)); u, v ∈ D. (3)

Consequently, from (1), Z(s) = exp{Y (s)} > 0; s ∈ D, and from Aitchison and
Brown (1957),

µZ(s) ≡ E(Z(s)) = exp{µY (s) + (1/2)CY (s, s)}; s ∈ D, (4)

CZ(u, v) ≡ cov(Z(u), Z(v)) = µZ(u)µZ(v)[exp{CY (u, v)} − 1]. (5)

From (4), µZ(s) ≥ exp{µY (s)}, giving rise to a potential source of bias when trans-
forming back to the original scale. This is to be expected: Because of Jensen’s
inequality, E(exp{Y (s)}) ≥ exp{E(Y (s))}. The presence of the mean terms as mul-
tipliers in (5), the covariance on the original scale, is sometimes called the propor-
tional effect.

The spatial dependence in a spatial process Z(·) can be characterized by the
covariance function or by the variogram,

2γZ(u, v) ≡ var(Z(u) − Z(v));

we call γZ(u, v) the semivariogram. Now the variogram on the log scale can be
written as,

2γY (u, v) = CY (u, u) + CY (v, v) − 2CY (u, v),

and the same is true for 2γZ(u, v). Hence, a formula for 2γZ(u, v) can be derived
in terms of µY (s) and CY (u, v) via (4) and (5).

Matheron (1974) investigated whether µY (s) ≡ µY and 2γY (u, v) ≡ 2γ ∗
Y (u −

v) (i.e., intrinsic stationarity on the log scale) implied something similar on the
original scale. In general, it does not, but if we assume further that CY (s, s) ≡ σ 2

Y ,
then

2γZ(u, v) = exp
(
2µY + 2σ 2

Y

)
[1 − exp{−γ ∗

Y (u − v)}],

which is a function of u − v. However, following the principle that linear statistical
analysis is done on the log scale, 2γZ is of less interest than 2γY .

The spatial (lognormal) data are defined as the (n × 1) vector,

Z ≡ (Z(s1), . . . , Z(sn))′, (6)
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where {s1, . . . , sn} are known spatial locations. Then the transformed data,

Y ≡ (Y (s1), . . . , Y (sn))′ (7)

are normally distributed and will be used to estimate unknown parameters in µY (s)
and CY (u, v), as well as to predict an unknown value Y (s0); s0 ∈ D.

The prediction problem is sometimes called point kriging, and from Cressie
(1993, Chapter 3) we see that the minimum mean squared error predictor Y ∗(s0)
is given by,

Y ∗(s0) ≡ E(Y (s0)|Y) = µY (s0) + cY (s0)′�−1
Y (Y − µY ), (8)

where cY (s0) ≡ (CY (s0, s1), . . . , CY (s0, sn))′, �Y ≡ var(Y), and µY ≡ (µY (s1),
. . . , µY (sn))′. Notice that

var(Y (s0)|Y) = CY (s0, s0) − cY (s0)′�−1
Y cY (s0), (9)

which does not depend on Y.
It is well known (e.g., Cressie, 1993, Section 3.4.5) that (8) is also the best

heterogeneously linear predictor assuming that the mean function and the covari-
ance function of Y (·) are known; this is called simple kriging in the geostatistics
literature. In what follows in this section, we shall assume these first two moments
are known unless specified otherwise. When they are unknown, as in the second
section, they are estimated efficiently and plugged into the optimal predictor; that
is, we take an empirical-Bayes approach to the construction of efficient spatial
predictors. Cressie (1993, Section 3.4.5) shows that such an approach can in fact
yield ordinary kriging and universal kriging for Y (·).

Scientific interest is in the process Z(·); hence, to predict Z(s0) based on
data Z, classical prediction theory says that the optimal predictor is obtained by
minimizing the mean squared prediction error,

E(Z(s0) − p(Z; s0))2,

with respect to the predictor p. The theory further tells us that the best predictor
is (e.g., Cressie, 1993, p. 108):

Z∗(s0) ≡ E(Z(s0)|Z). (10)

Calculation of (10) is not always possible, which explains why geostatisti-
cians compromise with the best linear predictor. Because Z(·) is lognormal, it is
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unwise to use such a compromise here; in what follows, we evaluate (10):

Z∗(s0) = E(exp{Y (s0)}|Y)

= exp{E(Y (s0)|Y) + (1/2)var(Y (s0)|Y)},

where the last equality is true because the conditional distribution of Y (s0) given
Y is normal. From (8) and (9),

Z∗(s0) = exp{Y ∗(s0) + (1/2)CY (s0, s0) − (1/2)cY (s0)′�−1
Y cY (s0)}

= exp{Y ∗(s0) + (1/2)var(Y (s0)) − (1/2)var(Y ∗(s0))}. (11)

Clearly, the optimal predictor (11) is loglinear in the data and unbiased. The last
expression shows that another way to obtain the optimal predictor E(Z(s0)|Z),
would be to start with the optimal predictor on the log scale and transform back
to the original scale, with an adjustment to preserve unbiasedness. A version of
these calculations that incorporates measurement error is given in Appendix A.

An important problem in lognormal kriging is the spatial prediction of block
values,

Z(B) ≡
∫

B

Z(u)du/|B|, B ⊂ D; (12)

in the example given in the third section, where phosphorus in soil is studied, the
application of a soil treatment is made on blocks (not at individual locations), and
hence interest centers on predicting Z(B) based on data Z. The rest of this article is
devoted to this problem. This article makes new contributions to lognormal block
kriging by considering nonstationary means and covariances, by modeling trend
as linear in known covariates (such as functions of spatial location), by allowing
for the possibility of measurement error, and finally by deriving and comparing
mean squared prediction error formulae for the kriging predictors considered.

The following section develops two spatial predictors for Z(B) under the
assumption that Z(·) is a lognormal process, and it derives their mean squared
prediction errors (kriging variances). The third section applies the methodology of
the second section to a data set consisting of the phosphorus content in the soil of
Broom’s Barn Farm, UK. A designed simulation experiment is used in the fourth
section to compare the two spatial predictors (one of which relies on permanence
of lognormality). Discussion and conclusions are given in the fifth section. Three
technical appendices are given to allow a more concise presentation of the theory
in the body of the article.
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PREDICTION OF BLOCK VALUES FOR LOGNORMAL PROCESSES

Recall that Z(·) = exp(Y (·)), where Y (·) is a Gaussian process, and for the
moment we assume that the first two moments µY (·) and CY (·, ·) of Y (·) are
known (section “Prediction when Parameters are Known”). This is in line with the
principle that kriging is an empirical-Bayes methodology that involves parameter
estimates being plugged in at the final stage of construction of the spatial predictor
(section “Prediction when only Covariance Parameters are Known”).

Prediction when Parameters are Known

The block value Z(B) is the average of Z(·) over a given block B ⊂ D; see
(12). The mean squared prediction error of a predictor p(Z; B) is

E(Z(B) − p(Z; B))2; B ⊂ D, (13)

and its minimization with respect to p yields the optimal predictor,

Z∗(B) = E(Z(B)|Z);

compare this to Eq. (10). Hence,

Z∗(B) =
∫

B

E(Z(u)|Z)du/|B|

=
∫

B

Z∗(u)du/|B|, (14)

where Z∗(·) is given by (10). The result (14) is general; when Z(·) is lognormal,
we obtain from (11) the optimal predictor,

Z∗(B) =
∫

B

exp{Y ∗(u) + (1/2)CY (u, u) − (1/2)cY (u)′�−1
Y cY (u)}du/|B|. (15)

The predictor Z∗(B) was not used in the past because of a comment from
Matheron (1974) that it “is too heavy to be used effectively in practice”; Rivoirard
(1990) says it “would be possible but difficult” to compute, but Cressie (1993,
p. 136) proposes it without comment about difficulties. In fact, vast increases in
computing power in recent times have made quadrature of the integrand in (15) a
trivial exercise.

A good deal of the literature on kriging for lognormal data has been devoted
to a predictor based on an assumption of “permanence of lognormality” (e.g.,
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Rivoirard, 1990). The idea is very simple: If Z(·) is a lognormal process, then
log Z(B) is normally distributed, provided the block is not too large. None of the
articles referred to at the beginning of the first section says what “not too large”
actually means in practice. However, intuitively, the approximation of permanence
makes a lot of sense.

The simple model of splitting referred to in the first section (de Wijs, 1951)
gives rise to any one of the 2k pieces at the kth split being distributed as

∏k
i=1 Xi .

Upon aggregating rather than splitting, one obtains pieces given at the (k − 1)th
split and hence with distribution

∏k−1
i=1 Xi . As k → ∞, both converge to a log-

normal distribution. At some level of aggregation, the (approximate) lognormality
will break down. In this article, we see that positive spatial dependence allows the
blocks where approximate lognormality holds to be larger. Furthermore, in a small
side study, where negative spatial dependence (in R

1) was also assumed, we found
that under aggregation the lognormality approximation improved for increased
negative dependence, but then deteriorated rapidly as the negative dependence
went from moderate to strong.

It is worth noting here that although the lognormal distribution is infinitely
divisible (Thorin, 1977), it is not stable. That is, the weighted sum of two log-
normals is no longer lognormal, and hence from a mathematical point of view,
permanence is not possible. However, our simulations in the fourth section show
that in many cases it is a very appropriate approximation.

In what follows, we present a predictor based on permanence. This allows
comparison to the optimal predictor (15), both theoretically and through simula-
tion. And, through the results of the simulation, specific recommendations as to
when the permanence approximation is appropriate, are given.

Suppose that we wish to predict Y (B) ≡ ∫
B

Y (u)du/|B| based on data (on
the log scale) Y. The predictor of choice is

Y ∗(B) ≡ E(Y (B)|Y) = µY (B) + cY (B)′�−1
Y (Y − µY ), (16)

where µY (B) ≡ ∫
B

µY (u) du/|B|, cY (B) ≡ (CY (B, s1), . . . , CY (B, sn))′, and
CY (B, v) ≡ ∫

B
CY (u, v)du/|B|. One possible ad hoc predictor of Z(B) is Z+(B) ≡

exp{Y ∗(B) + k+}, where k+ is an adjustment for bias. This approach is explored
further in Cressie and Pavlicova (2005). In what follows, we give the predic-
tor based on the permanence-of-lognormality assumption, a predictor that also
depends on Y ∗(B).

First observe that we can write

Z(B) = E(Z(U)), (17)

where the expectation is with respect to U, a uniform random variable on B,
independent of Z(·). Then E(Z(B)) = E(Z(U)) = E(exp{Y (U)}), and assuming
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permanence of lognormality,

E(Z(B)) = E(exp{Y (U)})

 exp{E(Y (U)) + (1/2)var(Y (U))}

= exp

{∫

B

µY (u)du/|B| + (1/2)var(Y (U))

}

,

where the “
” would be “=” if the permanence assumption were true. Now,

var(Y (U)) = E[var(Y (U) | Y (·))] + var[E(Y (U)|Y (·))]

= E

[∫

B

(Y (u) − Y (B))2du/|B|
]

+ var(Y (B))

=
∫

B

CY (u, u)du/|B| +
∫

B

(µY (u) − µY (B))2du/|B| .

Thus, an (approximately) unbiased predictor of Z(B), based on the permanence
assumption, is Z@(B) = exp{Y ∗(B) + k@}, where

Z@(B) = exp{Y ∗(B) + (1/2)
∫

B

CY (u, u)du/|B|

+ (1/2)
∫

B

(µY (u) − µY (B))2du/|B| − (1/2)cY (B)′�−1
Y cY (B)} . (18)

To our knowledge, this formula has not appeared before and, inspired by the
representation (17), it offers a new way to consider the permanence of lognormality.

Comparing the predictors (15) and (18), we see that both are unbiased (actu-
ally (18) only approximately so), both require computation of kriging predictors
on the log scale, and both involve quadrature of quantities involving the first
two moments µY (·) and CY (·, ·). A version of these calculations that incorporates
measurement error is given in Appendix A. In the next section, we invoke the
empirical-Bayes principle of plugging in an efficient estimator for the unknown
mean function.

Prediction when only Covariance Parameters are Known

In this presentation, we shall assume that the mean function µY (·) ≡ µY , a
constant independent of location. The case where µY (s) = x(s)′β is considered in
Appendix C. In contrast to the previous subsection, it is now assumed that µY is
unknown and has to be estimated.
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Return to the problem of predicting Z(s0) and note that Z∗(s0) given by (11)
depends on µY through

Y ∗(s0) = µY + cY (s0)′�−1
Y (Y − µY 1) ,

where 1 ≡ (1, . . . , 1)′ is an (n × 1) vector of 1s. This simple kriging predictor
becomes an ordinary kriging predictor when the generalized least squares estimator
for µY , µ̂Y ≡ (1′�−1

Y 1)−11′�−1
Y Y, is plugged in for the unknown µY (Cressie,

1993, p. 173):

Ŷ (s0) = µ̂Y + cY (s0)′�−1
Y (Y − µ̂Y 1). (19)

Following the principle that the predictor should be unbiased on the original scale,
we obtain the unbiased predictor,

Ž(s0) ≡ exp{Ŷ (s0) + (1/2)var(Y (s0)) − (1/2)var(Ŷ (s0))}
= exp{Ŷ (s0) + (1/2)σ 2

Y,k(s0) − m(s0)}, (20)

where Ŷ (s0) ≡ �n
i=1λi(s0)Y(s0) is the ordinary kriging predictor given by (19);

λ(s0) ≡ (λ1(s0), . . . , λn(s0))′ and m(s0) solve the ordinary kriging equations,

�Y λ(s0) = cY (s0) + 1m(s0)

1′λ(s0) = 1;

and the kriging variance is

σ 2
Y,k(s0) = CY (s0, s0) − λ(s0)′cY (s0) + m(s0) .

The predictor (20) can be found in Matheron (1974), Journel (1980), Rivoirard
(1990), and Cressie (1993, p. 135).

Analogously to the definition of the optimal predictor (15), we define its
empirical-Bayes version:

Ž(B) =
∫

B

Ž(u)du/|B| , (21)

where Ž(·) is given by (20). This will be compared with the empirical-Bayes
version of the predictor based on the permanence approximation, which we now
derive.
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The predictor (18) takes the form exp{Y ∗(B) + k@}, where k@ is chosen to
(approximately) correct for bias; recall that

Y ∗(B) = µY + cY (B)′�−1
Y (Y − µY 1) ,

which becomes an ordinary kriging predictor when µ̂Y ≡ (1′�−1
Y 1)−11′�−1

Y Y is
plugged in for the unknown µY (Cressie, 1993, p. 173):

Ŷ (B) = µ̂Y + cY (B)′�−1
Y (Y − µ̂Y 1) (22)

≡ �n
i=1λi(B)Y (si) .

We shall now derive a predictor of the form, Z̃(B) ≡ exp{Ŷ (B) + k̃}, where k̃ is
chosen to (approximately) correct for bias.

From the previous subsection, under the assumption of permanence of log-
normality and for a constant mean µY ,

E(Z(B)) 
 exp{µY + (1/2)var(Y (U))}

= exp{µY + (1/2)
∫

B

CY (u, u)du/|B|} .

Also,

var(Ŷ (B)) = λ(B)′�Y λ(B) ,

where λ(B) ≡ (λ1(B), . . . , λn(B))′. Upon noting that Ŷ (B) is normally distributed
and combining these last two results, we see that an approximately unbiased
predictor of Z(B), based on the permanence assumption, is:

Z̃(B) ≡ exp{Ŷ (B) + (1/2)
∫

B

CY (u, u)du/|B| − (1/2)λ(B)′�Y λ(B)}

= exp{Ŷ (B) + (1/2)
∫

B

CY (u, u)du/|B| − (1/2)
∫

B

∫

B

CY (u, v)dudv/|B|2

+ (1/2)σ 2
Y,k(B) − m(B)} , (23)

where Ŷ (B) = λ(B)′Y is the ordinary kriging predictor, λ(B) and m(B) solve the
ordinary kriging equations,

�Y λ(B) = cY (B) + 1m(B)

1′λ(B) = 1,
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and the kriging variance is

σ 2
Y,k(B) =

∫

B

∫

B

CY (u, v)dudv/|B|2 − λ(B)′cY (B) + m(B) .

The equality that yields the predictor Z̃(B) given by (23) is proved in Appe-
ndix B.

The two lognormal kriging predictors (21) and (23) of Z(B) can be compared
through their respective mean squared prediction errors. We expect (21) to do better
than (23), since it is developed from the optimal predictor. This is borne out in the
simulation experiment described in the fourth section.

We now derive mean squared prediction error formulae associated with the
predictors (21) and (23); we see in the fourth section that these theoretical ex-
pressions give an excellent match to the simulation-based (true) mean squared
prediction errors. First consider (21), the unbiased, empirical-Bayes version of the
optimal predictor; its mean squared prediction error is

E(Z(B) − Ž(B))2 =
∫

B

∫

B

cov(Z(u) − Ž(u), Z(v) − Ž(v))dudv/|B|2, (24)

where Ž(·) is given by (20). From (4), (5), (19), and (20), we establish that the
integrand of (24) is given by

(exp{µY + (1/2)CY (u, u)})(exp{µY + (1/2)CY (v, v)})(a − b − c + d), (25)

where

a = exp{CY (u, v)}
b = exp{(cY (u) + 1m(u))′�−1

Y cY (v)}
c = exp{(cY (v) + 1m(v))′�−1

Y cY (u)}
d = exp{(cY (u) + 1m(u))′�−1

Y (cY (v) + 1m(v))} .

In practice, the integrals in (24) are approximated with finite summations.
Now consider (23), the (approximately) unbiased, empirical-Bayes version

of the predictor based on the permanence assumption; its mean squared prediction
error is

E(Z(B) − Z̃(B))2 

∫

B

∫

B

cov(exp{Y (u)}, exp{Y (v)})dudv/|B|2
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+ var(Z̃(B)) − 2
∫

B

cov(exp{Y (u)}, Z̃(B))du/|B|

≡
(∫

B

∫

B

f dudv/|B|2
)

+ g − 2

(∫

B

h du/|B|
)

, (26)

where the approximation is due to the predictor having approximately zero bias.
Now (23) is based on a bias adjustment of the ordinary-kriging predictor on the
log scale; it is of the form exp{Ŷ (B) + k̃}, where

k̃ ≡ (1/2)
∫

B

CY (u, u)du/|B| − (1/2)
∫

B

∫

B

CY (u, v)dudv/|B|2

+ (1/2)σ 2
Y,k(B) − m(B) . (27)

Thus, from (26), (27), and properties of the lognormal distribution, we obtain:

f = (exp{µY + (1/2)CY (u, u)})(exp{µY + (1/2)CY (v, v)})(exp{CY (u, v)} − 1)

g = (exp{2̃k})(exp{2µY + λ(B)′�Y λ(B)})(exp{λ(B)′�Y λ(B)} − 1)

h = (exp{̃k})(exp{µY + (1/2)CY (u, u)})(exp{µY + (1/2)λ(B)′�Y λ(B)})
× (exp{λ(B)′cY (u)} − 1) .

In practice, the integrals in (26) are approximated with finite summations. Compu-
tationally, it is not more or less intensive than the finite-summation approximation
to (24).

It is difficult to compare (24) and (26) analytically. For the spatial models used
in the simulation in the fourth section, we computed their values and compared
them to each other (as well as to their simulation-based versions). In the fourth
section, it is seen that (24) is generally smaller, leading us to choose the lognormal
block kriging predictor Ž(B) given by (21).

BLOCK PREDICTION OF PHOSPHORUS: BROOM’S BARN
FARM, UK

In the late 1950s, Broom’s Barn Farm covered 77 ha near Bury St. Edmunds,
Suffolk. Its crop was sugar beet, but yields were small. A soil-nutrient survey was
carried out by J. A. P. Marsh and S. N. Adams to find ways to improve and even out
the variability of the soil properties on the farm. Webster and McBratney (1987)
describe how the data on pH, exchangeable potassium, and available phosphorus
were taken, which resulted in 435 values for pH and potassium and 433 values
(two missing values) for phosphorus. Data were on a square grid with grid spacing
of 40 m; see Figure 1.
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Figure 1. Broom’s Barn Farm phosphorus data on a 40 m × 40 m grid. Small (large) values are
colored light (dark) gray; (a) shows {Z(si )}; and (b) shows {log Z(si )}.

Before we describe the geostatistical analysis and block kriging, it is worth
discussing a little the possibilities of precision agriculture. In the past, most crop-
production inputs (e.g., fertilizers, pesticides, water) were applied at uniform rates
within a field. In recent times, agricultural practices have begun to exploit within-
field heterogeneity to avoid either over-application or under-application of inputs.
The result has often been higher yielding crops and more environmentally friendly
fertilizer- and pesticide-application schemes. Global positioning systems (GPSs)
installed on modern farm equipment can measure the application of fertilizer
and insecticide down to meters, and they provide similarly precise data on crop
yields. The possibility of characterizing within-field heterogeneity of a multitude
of variables (e.g., here, phosphorus) has made precision agriculture an emerging
area of agribusiness.

Phosphorus (P) is an important component in the development of plant re-
productive parts; in particular, it is essential for seed formation. It is strongly held
by soil particles so is not as easily lost as nitrogen. Soil erosion is a major factor
contributing to its heterogeneity and, as a consequence, we expect it to exhibit
spatial dependence.

Since the phosphorus data {P (si)} are highly skewed, we add 0.05 to each
datum (as did Webster and McBratney, 1987):

Z(si) ≡ P (si) + 0.05; i = 1, . . . , n,
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Figure 2. Histograms of 433 values of: (a) {Z(si )}; and (b) {log Z(si )}.

and then we take logs (to the base e):

Y (si) ≡ log(Z(si)); i = 1, . . . , n.

Figure 2 shows the histograms of {Z(si)} and {Y (si)}.
Variography indicated no preferred direction of spatial dependence, nor was

any rescaling necessary. Figure 3 shows the isotropic empirical semivariogram
based on the data Y and a superimposed fitted spherical semivariogram, γ (0)

Y (h; θ̂),
where

γ
(0)
Y (h; θ ) ≡

⎧
⎪⎨

⎪⎩

0; h = 0

σ 2
Y [ν + (1 − ν)((3/2)(h/R) − (1/2)(h/R)3)]; 0 < h < R

σ 2
Y ; h ≥ R,

σ 2
Y ≥ 0, 0 ≤ ν ≤ 1, and R ≥ 0. The parameters θ ≡ (σ 2

Y , ν, R)′ were estimated
by weighted least squares (Cressie, 1985) to be θ̂ = (0.5717, 5.58%, 246.81 m)′.
Note that in terms of the factors of the simulation experiment described in the
fourth section, σ 2

Y ∈ (0.1, 0.7), ν ∈ (0%, 10%), and DR ∈ ( 1
8 , 1

4 ).
Application of fertilizer is made in units of the spreader dimension and the

equipment’s response to the farmer’s spreading instructions. In this application,
we set the blocks of interest to start at 16 m × 16 m, whose linear dimension is
roughly that of the width of a spreader. We then increased this to 24 m × 24 m,
32 m × 32 m, . . . , 80 m × 80 m, to gauge the effect of block size on the block
predictions. This leads to supports SR (in units of range; see the fourth section) of
0.4, 0.6, . . . , 2.
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Figure 3. Empirical semivariogram estimates (dots) γ̂
(0)
Y (h) as a function of lag distance

h (in meters). Superimposed is the weighted-least-squares-fitted spherical semivariogram
model (solid line) γ

(0)
Y (h; θ̂).

Based on the covariance function,

C(0)(h; θ̂ ) ≡ σ̂ 2
Y − γ (0)(h; θ̂) ,

we performed block kriging using Ž(B) given by (21) and Z̃(B) given by (23). The
predictors for 40 m × 40 m blocks are shown in Figure 4(a) and (b). Figure 4(c)
shows the difference between the two predictors and Figure 4(d) shows the ef-
ficiency ratio (24)/(26). Observe from Figure 4(d) that the efficiency of Z̃(B) is
always less than or equal to 1.

To see the effect of block support on the efficiency ratio, we chose nonover-
lapping blocks of given sizes within the region of interest and plotted the ratio as
a function of block size (support). The result is given in Figure 5 and provides a
graphic illustration of the worsening efficiency of Z̃(B) as block size increases.

Our conclusion from this case study is that the predictors Ž(B) and Z̃(B) are
often quite similar, but their mean squared prediction errors, M̌SPE and M̃SPE,
can be quite different. The superiority of Ž(B), as quantified by its smaller M̌SPE,
is apparent. In the next section, we use simulation to arrive at the same conclusion,
and to show that the theoretical quantities M̌SPE and M̃SPE match their empirical
(true) versions very closely.
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Figure 4. Boxplots of lognormal kriging predictors: (a) Ž(B); and (b) Z̃(B), where B is a 40 m × 40
m block varying over the Broom’s Barn Farm region illustrated in Figure 1; (c) shows the differences,
Ž(B) − Z̃(B); (d) shows the efficiencies of Z̃(B) relative to Ž(B), as measured by the ratio (24)/(26).

BLOCK PREDICTION: A SIMULATION EXPERIMENT

A simulation experiment was conducted in order to compare the two log-
normal kriging predictors (21) and (23); we use the terminology of experimental
design, implementing a factorial design with a number of factors and varying lev-
els within factors. We expect (21) to have better performance than (23), since it is
developed from the optimal predictor, but a quantitative verification is important.
And the question remains how close the two predictors are in practice, since (23)
has been used a lot in past applications of lognormal kriging.

We generated a spatially dependent Gaussian process Y (·) on a 32 × 32
square with 33 × 33 nodes, each one unit apart; see Figure 6. The Gaussian process
had µY = 0, and an isotropic covariance function CY (u, v) = C

(0)
Y (‖u − v‖) ≥ 0,

given by the spatial moving average described in Cressie and Pavlicova (2002).
Different parameters were varied.
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Figure 5. Boxplots of the efficiencies (24)/(26) of Z̃(B) relative to Ž(B) as a function of
B, where B ∈ {16 × 16, . . . , 80 × 80} varies over the Broom’s Barn Farm region. Units on
the horizontal axis are in the linear dimension of B.

• Sill: C
(0)
Y (0) ≡ σ 2

Y ∈ {0.1, 0.7, 2.5}.
• Nugget effect: limh→0{C(0)

Y (0) − C
(0)
Y (h)}/C

(0)
Y (0) ≡ ν ∈ {0%, 10%,

30%, 50%}.
• Range: R ≡ arg inf{h: CY (h′) = 0, h′ ≥ h} ∈ {8, 16, 32, 64}.

The sill values were chosen to give a representative range of coefficients
of variation, CV = (exp{σ 2

Y } − 1)1/2 ∈ {0.32, 1.01, 3.34}. The nugget effect is
anywhere up to 50% of the sill, and the linear dimension of the 32 × 32 square
is anywhere between four times (weak spatial dependence) and half (very strong
spatial dependence) the range.

Although observations on Y (·) were simulated at each grid node {ui : i =
1, . . . , 33 × 33}, only a subset {si : i = 1, . . . , n} were used to generate data for
the experiment.

• Data: Z(si) ≡ exp{Y (si)}; i = 1, . . . , n, where n ∈ {4, 25, 81}; the data
were nested according to Figure 6. Notice that for n = 4, the data are
16 units apart, for n = 25, the data are 8 units apart and for n = 81, the
data are 4 units apart.
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Figure 6. Spatial configuration of the simulation experiment. Small dots show the sim-
ulation grid, large dots show the data locations and dashed lines show the small (6 × 6),
medium (16 × 16), and large (30 × 30) blocks.

Lognormal kriging is carried out on blocks of varying supports
since the permanence assumption is likely to be better for smaller
blocks.

• Support: Predict Z(B) on blocks B ∈ {2 × 2, 4 × 4, 6 × 6, . . . , 32 × 32},
centered on the center of the 33 × 33 grid {ui} and nested. Small sup-
port (6 × 6), medium support (16 × 16), and large support (30 × 30) are
featured.

Finally, the responses of the factorial experiment are based on the two fundamental
properties of a predictor: bias and mean squared prediction error. The responses
are then used to compare (21) and (23) at the specified levels of the factors: Sill,
Nugget effect, Range, Data, and Support. Consider a generic predictor Z†(B). Let
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Z(�)(·) denote the �th simulation of the log Gaussian process with specified σ 2
Y , ν,

and R; � = 1, . . . , L, and Z(�)†(B) is the generic predictor of Z(�)(B). Then the
(estimated) bias of the generic predictor Z†(B) is:

BIAS ≡ (1/L)
L∑

�=1

{Z(�)†(B) − Z(�)(B)} , (28)

and the (estimated) mean squared prediction error of Z†(B) is:

MSPE ≡ (1/L)
L∑

�=1

{Z(�)†(B) − Z(�)(B)}2 , (29)

where any integrals in Z(�)†(B) or Z(�)(B) are approximated as sums based on
the finest grid spacing. The value L = 6400 was chosen to guarantee accuracy
of results to the second decimal place, where that digit is conservatively plus
or minus 2; see Aldworth and Cressie (1999) for the relevant calculations that
determine L.

When Z†(B) is Ž(B) given by (21), theory tells us that the BIAS should be
zero and the MSPE is given by (24). When Z†(B) is Z̃(B) given by (23) and based
on the permanence assumption, theory tells us the BIAS is approximately zero
and the MSPE is approximately given by (26). Thus, the simulation experiment
not only allows direct comparison of the true moments of Ž(B) and Z̃(B), it also
tells us when the permanence assumption is appropriate.

A basic analysis of the data coming from the simulation experiment allows
us to conclude:

• Z̃(B) is approximately unbiased for all B; see Figure 7. The slight negative
bias for some of the factor combinations and the 6 × 6 block is due entirely
to the large-sill case of σ 2

Y = 2.5.
• The first and second theoretical moments of both Ž(B) and Z̃(B) are

approximately equal to their true moments [estimated from the simulation
according to (28) and (29)]. Hence, their theoretical and true mean squared
prediction errors are approximately equal; see Figure 8.

• The quantity (BIAS)2 obtained from (28) is only a fraction (no more than
0.20%) of MSPE obtained from (29). This is true for both Ž(B) and Z̃(B);
see Figure 9.

• The MSPE for Ž(B) is smaller than (and sometimes equal to) the MSPE
for Z̃(B). That is, the spatial predictor Ž(B) is dominant over Z̃(B).

It is this latter result that we would like to explore in greater depth, since
the improvement in efficiency obtained by using Ž(B) is not uniform over all
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Figure 7. Boxplots of bias of Z̃(B), where B is small (6 × 6), medium (16 × 16), and large
(30 × 30). The box plots are formed from the various factor-level combinations.

combinations of the factors of the simulation experiment. The efficiency of Z̃(B)
relative to Ž(B) is defined as

E ≡ M̌SPE/M̃SPE , (30)

where M̌SPE (M̃SPE) is given by (29) with Z† ≡ Ž (Z† ≡ Z̃). We now ana-
lyze these efficiencies according to different combinations of the factors of the
simulation experiment.

Some preliminary analysis showed it was useful to modify certain factors
and their levels:

• Data: Now measure this factor in terms of the smallest distance between
two data in units of the range R. Denote it by DR , and hence DR ∈
{ 1

16 , 1
8 , 1

4 , 1
2 , 1, 2}.

• Support: Now measure this factor in terms of the side of the square block in
units of the range R. Denote it by SR , and hence SR ∈ { 6

64 , 6
32 , 1

4 , 6
16 , 30

64 , 1
2 ,

6
8 , 30

32 , 1, 30
16 , 2, 30

8 , }.
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Figure 8. Boxplots of: (a) [(24)/M̌SPE] − 1; and (b) [(26)/M̃SPE] − 1. The
boxplots are formed from all factor-level combinations.

Figure 10(a) shows E for all factor combinations, and the dominance of
Ž(B) over Z̃(B) is striking. Figure 10(b) shows that the efficiency of Z̃(B) de-
creases as the sill σ 2

Y increases, showing that the more skewed the lognormal
distribution, the greater the potential gains in efficiency using Ž(B). Figure 10(c)
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Figure 9. Boxplots of (BIAS)2/MSPE for: (a) Ž(B); and (b) Z̃(B). The
boxplots are formed from all factor-level combinations.

shows that the efficiency of Z̃(B) increases as the nugget effect ν increases. That
is, as the spatial dependence gets weaker, Ž(B) is not as dominant over Z̃(B).
A plot of E broken down by range (not shown here) reinforces this observa-
tion; for small R (weaker spatial dependence), Ž(B) is not as dominant over
Z̃(B). From Figure 10(d), we see that Ž(B) dominates over Z̃(B) when data are
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Figure 10. Boxplots of efficiencies E, of Z̃(B) relative to Ž(B): (a) boxplot is formed as in
Figure 8; (b) boxplots are a function of the sill σ 2

Y and are formed from all remaining factor-level
combinations; (c) boxplots are a function of the nugget effect ν and are formed from all remaining
factor-level combinations; (d) boxplots are a function of the smallest distance between data DR

and are formed from all remaining factor-level combinations.

closer together (in units of range) and is less dominant when they are far apart.
That is, the more nearby the spatial data are, the better Ž(B) is able to use that
information.

The data and block factors, as measured by DR and SR , respectively, show
interesting interaction. What looks like no pattern at all in Figure 11(a), in terms
of SR , takes on remarkable structure when it is further broken down by DR .
Figure 11(b) shows that for a given DR , E decreases as SR increases. That is, it is
on large supports where Ž(B) is particularly dominant over Z̃(B).

Finally, it is interesting to look at how E varies as a function of block size,
|B|1/2; B ∈ {2 × 2, 4 × 4, 6 × 6, . . . , 32 × 32}. Figure 12 shows four such plots
for four different factor-level combinations where DR is held fixed at its smallest
value of 1/16 (i.e., R = 64 and n = 81). All plots show a decrease in efficiency
as block size increases, as expected from other results in this section. The biggest
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Figure 11. Boxplots of efficiencies E, of Z̃(B) relative to Ž(B): (a) boxplots are a function of the
support (block size) SR and are formed from all remaining factor-level combinations; (b) boxplots
are broken down by the smallest distance between data DR ; they are functions of the support SR

and are formed from all remaining factor-level combinations.

drop in efficiency occurs when ν is 0% (high spatial dependence) and σ 2
Y is 2.5

(large skewness).

DISCUSSION AND CONCLUSIONS

Data that exhibit non-normality could be handled by a normal-score trans-
form, but this approach does not account for the randomness inherent in the
transform. Data that exhibit skewness may be successfully modeled as coming
from a lognormal spatial process; such data are common in soil science (e.g.,
Webster, 2001). Under lognormality and a known mean and covariance function,
an optimal spatial predictor can be derived that predicts at both point and block
supports. The optimal predictor Ž(B) at block support B requires quadrature of
the optimal predictor at point support, something that is trivial to do in current
computing environments. When the mean function is unknown, the problem is
easily solved by invoking the principle that efficient mean estimation yields ef-
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Figure 12. Plot of efficiency E as a function of the block size |B|1/2, where R = 64 and n = 81:
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and σ 2
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ficient spatial prediction. The efficiency of Ž(B) can be quantified by its mean
squared prediction error, for which a formula is given. This involves quadrature,
but again it is trivial to evaluate in current computing environments.

Lognormal kriging has traditionally used another principle, that of perma-
nence of lognormality. Mathematically, permanence is impossible, but it can lead
to simple predictors. The permanence-based predictor Z̃(B) is only approximately
unbiased and the formula for its mean squared prediction error is only approxi-
mately correct, in contrast to the optimality-based predictor Ž(B). The question
that this paper addresses is which predictor is the most efficient.

Although formulae are given for both constant and non-constant mean, the
case of constant mean is featured in the example and the simulation experiment.
Further experiments based on non-constant mean are needed to fully comple-
ment the empirical results obtained here. Because the predictor Ž(B) is based
on optimality and efficient parameter estimation, we expect the results to remain
unchanged.

Through simulation and practical application, it is shown that the optimality-
based predictor Ž(B) is superior, particularly in situations where the spatial
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dependence is strong, the lognormal data are more skewed, and the spatial data
are closer together. In current computing environments, the two predictors have
the same computational burden, and hence we conclude unequivocably that Ž(B)
is the superior predictor.

ACKNOWLEDGMENTS

This research was funded in part by the Office of Naval Research under grant
N00014-02-1-0052 and N00014-05-1-0133. The main theoretical results came
out of early discussions with Isobel Clark. Martina Pavlicova gave invaluable
assistance with the computational aspects and gave generous feedback on various
drafts of the manuscript, and the referees helped clarify the presentation. Many
thanks go to Richard Webster for making the Broom’s Barn Farm data available
and to Kathy Flanders for helpful discussions on precision agriculture.

REFERENCES

Aitchison, J., and Brown, J. A. C., 1957, The lognormal distribution: Cambridge University Press,
Cambridge, 176 p.

Aldworth, J., and Cressie, N., 1999, Sampling designs and prediction methods for Gaussian spatial
processes, in Ghosh, S., ed., Multivariate Design and Sampling: Marcel Dekker, New York,
p. 1–54.

Brown, G., and Sanders, J. W., 1981, Lognormal genesis: J. Appl. Probabil., v. 18, p. 542–547.
Cressie, N., 1985, Fitting variogram models by weighted least squares: Math. Geol., v. 17, no. 5,

p. 563–586.
Cressie, N., 1993, Statistics for spatial data (revised edition): Wiley, New York, 900 p.
Cressie, N., and Pavlicova, M., 2002, Calibrated spatial moving average simulations: Stat. Model., v.

2, p. 267–279.
Cressie, N., and Pavlicova, M., 2005, Permanence of lognormality: Bias adjustment and kriging

variances, in Leuangthong, O., and Deutsch, C. V., eds., Geostatistics Banff 2004: Springer,
Dordrecht, p. 1027–1036.

de Wijs, H. J., 1951, Statistics of ore distribution. I: Frequency distribution of assay values: Geologie
en Mijmbouw, v. 13, p. 365–375.

Dowd, P. A., 1982, Lognormal kriging—The general case: Math. Geol., v. 14, no. 5, p. 475–499.
Journel, A. G., 1980, The lognormal approach to predicting local distributions of selective mining unit

grades: Math. Geol., v. 12, no. 4, p. 285–303.
Marechal, A., 1974, Krigeage normal et lognormal. Centre de Morphologie Mathematique, Ecole des

Mines de Paris, Publication N-376, 10 p.
Matheron, G., 1962, Traite de geostatistique appliquee: Memoires du Bureau de Recherche Ge-

ologiques et Minieres, no. 14, Ed. Technip, Tome 1, 333 p.
Matheron G., 1974, Effet proportionnel et lognormalite ou: Le retour du serpent de mer. Centre de

Morphologie Mathematique, Ecole des Mines de Paris, Publication N-374, 43 p.
Rendu, J.-M., 1979, Normal and lognormal estimation: Math. Geol., v. 11, no. 4, p. 407–422.
Rivoirard, J., 1990, A review of lognormal estimators for in situ reserves: Math. Geol., v. 22, no. 2,

p. 213–221.



Lognormal Block Kriging 439

Roth, C., 1988, Is lognormal kriging suitable for local estimation? Math. Geol., v. 30, no. 8,
p. 999–1009.

Thorin, O., 1977, On the infinite divisibility of the lognormal distribution: Scand. Actuar. J., v. 1977,
p. 121–148.

Webster, R., 2001, Statistics to support soil research and their presentation: Eur. J. Soil Sci., v. 52,
331–340.

Webster, R., and McBratney, A. B., 1987, Mapping soil fertility at Broom’s Barn by simple kriging: J.
Sci. Food Agric., v. 38, p. 97–115.

APPENDIX A: LOGNORMAL KRIGING IN THE PRESENCE
OF MEASUREMENT ERROR: FIRST TWO NORMAL

MOMENTS KNOWN

Recall that Z(·) = exp(Y (·)), where Y (·) is a normal process. Assume that
Y (·) = S(·) + ε(·), where ε(·) is a measurement-error process: zero-mean, white
noise, with variance σ 2

ε . Then

Z(·) = W (·) exp(ε(·)) ,

where W (·) ≡ exp(S(·)) is a lognormal process with multiplicative measurement
error. Scientific interest is often in W (·).

To predict W (s0), we minimize the mean squared predictor error,

E(W (s0) − p(Z; s0))2 ,

with respect to p, yielding the optimal predictor,

W ∗(s0) ≡ E(W (s0)|Z)

= exp{S∗(s0) + (1/2)var(S(s0)) − (1/2)var(S∗(s0))} ,

where S∗(s0) = µY (s0) + cS(s0)′�−1
Y (Y − µY ) and cS(s0) ≡ (cov(S(s0), S(s1)),

. . . , cov(S(s0), S(sn)))′. Hence, var(S∗(s0)) = cS(s0)′�−1
Y cS(s0). Notice that when

s0 ∈ {s1, . . . , sn}, cS(s0) = cY (s0); otherwise, when s0 = s1 for example, cov(S(s0),
S(s1)) = CY (s1, s1) − σ 2

ε , and cov(S(s0), S(si)) = CY (s0, si), i =2, . . . , n. Finally,
var(S(s0)) = var(Y (s0)) − σ 2

ε . Substitution of these values into the expression for
W ∗(s0) yields the optimal predictor for W (s0) with mean squared prediction error,
E(W (s0) − W ∗(s0))2. The optimal predictor for W (B) ≡ ∫

B
W (u)du/|B| is:

W ∗(B) ≡
∫

B

W ∗(u)du/|B| ,
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with mean squared prediction error, E(W (B) − W ∗(B))2.
Recall that the predictor (18) is of the form exp{Y ∗(B) + k@}, where k@ is

chosen to (approximately) correct for bias. In the presence of measurement error,
S(B) = Y (B) and S∗(B) = Y ∗(B), for |B| > 0. Now the predictor based on the
permanence approximation is of the form exp{S∗(B) + k′}, where k′ is an adjust-
ment that gives an (approximate) expectation equal to E(W (B)) = E(exp{S(U)}).
Using the same reasoning that led to (18), it is straightforward to show that

W@(B) ≡ exp{S∗(B) + (1/2)
∫

B

(CY (u, u) − σ 2
ε )du/|B|

+ (1/2)
∫

B

(µY (u) − µY (B))2du/|B|

− (1/2)cY (B)′�−1
Y cY (B)} ; |B| > 0 ,

where the only difference between this and Z@(B) in (18) is the presence of the
measurement-error variance σ 2

ε in the bias adjustment. The mean squared predic-
tion error is, E(W (B) − W@(B))2.

APPENDIX B: LOGNORMAL KRIGING WHEN THE NORMAL
MEAN IS CONSTANT AND UNKNOWN

The predictor based on the permanence approximation is,

Z̃(B) = exp{Ŷ (B) + (1/2)var(Y (U)) − (1/2)var(Ŷ (B))}
= exp{Ŷ (B) + (1/2)

∫

B

CY (u, u)du/|B| − (1/2)λ(B)′�Y λ(B)} ,

which we now show is equal to (23). Because Ŷ (B) is unbiased for Y (B), the
mean squared prediction error satisfies,

σ 2
Y,k(B) = var(Y (B) − Ŷ (B))

= var(Y (B)) + var(Ŷ (B)) − 2cov(Ŷ (B), Y (B))

=
∫

B

∫

B

CY (u, v)dudv/|B|2 + λ(B)′�Y λ(B) − 2λ(B)′cY (B) ,

where Ŷ (B) = λ(B)′Y and λ(B) and m(B) solve the ordinary kriging equations,

�Y λ(B) = cY (B) + 1m(B)

1′λ(B) = 1 .
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Hence, 2λ(B)′cY (B) = 2λ(B)′�Y λ(B) − 2m(B), which leads to:

σ 2
Y,k(B) =

∫

B

∫

B

CY (u, v)dudv/|B|2 − λ(B)′�Y λ(B) + 2m(B) .

Substituting this relation into the expression for Z̃(B) yields (23).
In the case where there is measurement error, we wish to predict W (B) =∫

B
exp{S(u)}du/|B|, where Z(·) = exp{S(·) + ε(·)}; see Appendix A. Then the

predictor based on the permanence approximation is, W̃ (B) ≡ exp{̂S(B) + k′′},
where k′′ is an adjustment that gives an (approximate) expectation equal to
E(W (B)) = E(exp{S(U)}). We use the same derivations as those leading to (23)
and note that S(B) = Y (B) and Ŝ(B) = Ŷ (B), for |B| > 0. Then

W̃ (B) = exp{̂S(B) + (1/2)
∫

B

CY (u, u)du/|B| − (1/2)σ 2
ε

− (1/2)
∫

B

∫

B

CY (u, v)dudv/|B|2

+ (1/2)σ 2
Y,k(B) − m(B)} ; |B| > 0 ,

where the only difference between this and Z̃(B) in (23) is the presence of the
measurement-error variance σ 2

ε in the bias adjustment. The mean squared predic-
tion error is, E(W (B) − W̃ (B))2.

APPENDIX C: LOGNORMAL KRIGING WHEN THE NORMAL
MEAN IS A LINEAR REGRESSION WITH UNKNOWN

REGRESSION COEFFICIENTS

Suppose that µY (s) = x(s)′β, a linear regression on known explanatory vari-
ables, x(s) ≡ (x1(s), . . . , xp(s))′. The only case of interest is β ≡ (β1, . . . , βp)′

unknown; when β is known, we can use the predictors (14) and (18) in section
“Prediction when Parameters are Known”.

When β is unknown, ordinary kriging in section “Prediction when only
Covariance Parameters are Known” is replaced with universal kriging. Then (19)
is replaced with

Ŷ (s0) = x(s0)′β̂ + cY (s0)′�−1
Y (Y − Xβ̂) ,

where β̂ ≡ (X′�−1
Y X)−1X′�−1

Y Y is the generalized least squares estimator of β,
and X is the (n × p) matrix (x(s1), . . . , x(sn))′. Furthermore, (20) is replaced with

Ž(s0) = exp{Ŷ (s0) + (1/2)σ 2
Y,k(s0) − m(s0)′x(s0)} ,
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where Ŷ (s0) ≡ λ(s0)′Y is the universal kriging predictor, λ(s0) and m(s0) solve

�Y λ(s0) = cY (s0) + Xm(s0)

X′λ(s0) = x(s0) ,

and the kriging variance is

σ 2
Y,k(s0) = CY (s0, s0) − λ(s0)′cY (s0) + m(s0)′x(s0) .

Finally, the empirical-Bayes version of the optimal predictor,

Ž(B) ≡
∫

B

Ž(u)du/|B| ,

is calculated along with its mean squared prediction error, E(Z(B) − Ž(B))2.
In a like manner, we derive an empirical-Bayes version of the predictor based

on the permanence approximation, Z̃(B) ≡ exp{Ŷ (B) + k̃}, where k̃ is chosen
to (approximately) correct for bias. The universal kriging predictor is Ŷ (B) ≡
λ(B)′Y, where λ(B) and m(B) solve

�Y λ(B) = cY (B) + Xm(B)

X′λ(B) = x(B) ,

with x(B) ≡ (
∫
B

x1(u)du/|B|, . . . , ∫
B

xp(u)du/|B|)′. The predictor is the
empirical-Bayes version of (18) and is given by,

Z̃(B) ≡ exp{Ŷ (B) + (1/2)
∫

B

CY (u, u)du/|B| − (1/2)λ(B)′�Y λ(B)

+ (1/2)β ′M(B)β} ,

where M(B) ≡ ∫
B

(x(u) − x(B))(x(u) − x(B))′du/|B| is a (p × p) matrix. Then,
in a like manner to the derivation in Appendix B, we obtain,

Z̃(B) = exp{Ŷ (B) + (1/2)
∫

B

CY (u, u)du/|B| − (1/2)
∫

B

∫

B

CY (u, v)dudv/|B|2

+ (1/2)σ 2
Y,k(B) − m(B)′x(B) + β ′M(B)β} ,
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where the kriging variance is

σ 2
Y,k(B) =

∫

B

∫

B

CY (u, v)dudv/|B|2 − λ(B)′cY (B) + m(B)′x(B) .

However, there is a problem with predictor Z̃(B) given just above: it depends
on β unless M(B) is the zero matrix. Now if x(s) ≡ 1, M(B) = 0, which is the
case we presented in Appendix B. Otherwise, M(B) is nonzero. The generalized
least squares estimator β̂ could be substituted in for β, but that would lead to a
deterioration in bias and an increase in mean squared prediction error. In contrast,
Ž(B) does not depend on β and is the empirical-Bayes version of the optimal
predictor.
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