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The Probability Perturbation Method: A New Look
at Bayesian Inverse Modeling1

Jef Caers2 and Todd Hoffman2

Building of models in the Earth Sciences often requires the solution of an inverse problem: some
unknown model parameters need to be calibrated with actual measurements. In most cases, the set
of measurements cannot completely and uniquely determine the model parameters; hence multiple
models can describe the same data set. Bayesian inverse theory provides a framework for solving this
problem. Bayesian methods rely on the fact that the conditional probability of the model parameters
given the data (the posterior) is proportional to the likelihood of observing the data and a prior
belief expressed as a prior distribution of the model parameters. In case the prior distribution is
not Gaussian and the relation between data and parameters (forward model) is strongly non-linear,
one has to resort to iterative samplers, often Markov chain Monte Carlo methods, for generating
samples that fit the data likelihood and reflect the prior model statistics. While theoretically sound,
such methods can be slow to converge, and are often impractical when the forward model is CPU
demanding. In this paper, we propose a new sampling method that allows to sample from a variety
of priors and condition model parameters to a variety of data types. The method does not rely on the
traditional Bayesian decomposition of posterior into likelihood and prior, instead it uses so-called
pre-posterior distributions, i.e. the probability of the model parameters given some subset of the data.
The use of pre-posterior allows to decompose the data into so-called, “easy data” (or linear data)
and “difficult data” (or nonlinear data). The method relies on fast non-iterative sequential simulation
to generate model realizations. The difficult data is matched by perturbing an initial realization using
a perturbation mechanism termed “probability perturbation.” The probability perturbation method
moves the initial guess closer to matching the difficult data, while maintaining the prior model statistics
and the conditioning to the linear data. Several examples are used to illustrate the properties of this
method.
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INTRODUCTION

Inverse problems are ubiquitous in the Earth Sciences. Sets of measurements d
are used to determine the spatial distribution of a physical attribute, described
mathematically by a model with a set of parameters m. In most applications, d
is too sparse to determine uniquely the underlying subsurface phenomenon or

1Received 20 July 2004; accepted 18 April 2005; Published online: 18 April 2006.
2Department of Petroleum Engineering, Montana Tech of the University of Montana, Butte, Montana,
59701; e-mail: thoffman@mtech.edu.

81

0882-8121/06/0100-0081/1 C© 2006 International Association for Mathematical Geology



82 Caers and Hoffman

the model m. For example, a well-test pressure response (d) does not uniquely
determine subsurface permeability at every location (m) unless the reservoir is
purely homogeneous (single m). A set of geophysical measurements such as
seismic data does not uniquely determine the subsurface porosity distribution.
Most inverse problems are therefore fundamentally underdetermined (ill-posed),
with many alternative solutions fitting the same data d.

For this reason, a stochastic approach to solving the inverse problem is taken.
Instead of determining a single solution, one generates a set of solutions distributed
according to a probability distribution function. More specifically, in a Bayesian
context one aims at sampling such solutions from the posterior density distribution
of the model parameters m given the data d,

f (m|d) = f (d|m)f (m)

f (d)
(1)

The prior density f(m) describes the dependency between the model parameters
and therefore constrains the set of possible inverse solutions. In a spatial context,
such dependency refers to the spatial structure of m, be it a covariance, Boolean
or training image-defined dependency. The likelihood density f(d|m) models the
stochastic relationship between the observed data d and each particular model m
retained. This likelihood would account for model and measurement errors. Void
of any such errors, the data and model parameters are related through a forward
model g,

d = g(m) (2)

The density f(d) depends on the density f(m) and the forward model g, but its
specification can often be avoided in most samplers of f(m|d).

The aim of Bayesian inverse methods is to obtain samples of the posterior
density f(m|d). Other than the case where g is linear, such sampling will need to
be iterative. Popular sampling methods are rejection sampling and the Metropolis
sampler (Besag and Green, 1993; Metropolis and others, 1953; Mosegaard and
Tarantola, 1995; Neal, 1993; Omre and Tjelmeland, 1996). Both are Markov
chain Monte Carlo (McMC) samplers that avoid the specification of f(d) but are
iterative in nature in order to obtain a single sample m(�) of f(m|d). Generating
multiple (conditioned to d) samples m(�), � = 1, . . . , L in this manner quantifies
the uncertainty modeled in f(m|d).

Some practical limitations of McMC approaches warrant further discussion:

1. Iterative samplers may require many thousands of evaluations of the for-
ward model g. In practical cases, e.g., flow modeling and ray tracing in
a complex 3D subsurface, a single evaluation of the forward model may
require several hours of CPU time.
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2. The multi-Gaussian distribution is the only case for which the decom-
position (1) is analytically known (likelihood, posterior and priors are
all multi-Gaussian if g is a linear function or can be sufficiently lin-
earized). For this mathematical convenience, the multi-Gaussian is popu-
lar in Bayesian inverse work (e.g., Hegstad and Omre, 1996; Moosegard
and Tarantola, 1995; Tarantola, 1987). The Gaussian framework requires
a covariance structure for the prior as well as likelihood. The prior covari-
ance is estimated from any direct observations of the model parameters
m. The covariance structure of the likelihood often has to be assumed.
Homoscedasticity of the error distribution, namely independence of error
ε with regard to the “signal” g(m) in

d = g(m) + ε

is assumed, to make inference of the likelihood distribution feasible.

The Gaussian framework is too limited to capture the possibly large variety
of prior distributions of m observed in reality, neither does it properly model the
full dependency between m and d in the likelihoods. Most spatial phenomena
exhibit a strong correlation in the form of non-rectilinear shapes and connectivity,
e.g. channels, cross—bedding, complex litho-facies distributions that cannot be
adequately described by making multi-Gaussian assumptions.

In this paper, we also treat the more general case where two types of dataset d1

and d2 are available. In such case, the Bayesian decomposition of (1) is written as

f (m|d1, d2) = f (d1, d2|m)f (m)

f (d1, d2)

∼ f (d1|m)f (d2|m)f (m)

f (d1, d2)

(3)

where the latter expression relies on a conditional independence hypothesis
between the two data types. We will consider the data d1 as the “easy data,” i.e. data
can then be conditioned to within a more classical geostatistical context. The data
d1 could consist of a set of point measurements (termed “hard data”) combined
with secondary information (termed “soft data”) whose relationship to the model
m is linear or pseudo-linear in nature. The data d2 is termed the “difficult data,”
exhibiting a complex multi-point and non-linear relationship with the model m.

In this paper, we present a practical method, termed probability perturbation,
that addresses the above—mentioned limitations. The method relies on

1. The use of sequential simulation (Deutsch and Journel, 1998) to sample
the prior and posterior distributions. Sequential simulation is not iterative,
hence CPU efficient.
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2. The use of so-called pre-posterior distributions f (m|d1) andf (m|d2),
instead of likelihoods. We will show that this leads to an efficient sampling
method, primarily by avoiding the calculation off (d1, d2).

The probability perturbation method has been previously published as an
algorithm in field-specific papers (Caers, 2003) on history matching (inversion
of flow and pressure data), including a large case study (Hoffman and Caers,
2004). A concise theoretical framework however was still lacking. The novelty
in this paper lies in framing this method within the traditional Bayesian inverse
context and in demonstrating the theoretical foundation of the approach. For sake
of demonstration, we present an example of an inverse problems that deals with
subsurface flow, although as will be shown, the method has the potential to address
other inverse problems.

METHODOLOGY

Sampling the Prior

Practical inverse methods should be able to incorporate a diversity of prior
models, not limited to Gaussian. To emphasize the non-Gaussianity of the proposed
method, we consider a binary random function, modeling the absence or presence
of a geological event,

I (u) =
{

1, if the “event” occurs at u

0, else

where “event” could represent any spatially distributed, whether continuous or
categorical, phenomenon, such as lithologies, petrophysical, or geophysical prop-
erties. The random function is discretized on a grid composed of a finite set of N
grid node locations ui = (xi,yi,zi). The parameters of the inverse problem are given
by a set of indicator variables at each grid node location:

m = {I (u1), I (u2), . . . , I (uN )}

The grid need not be rectangular. The prior distribution is then simply the joint
distribution of all indicator random variables at all grid node locations

f (m) = Prob{I (u1) = i(u1), I (u2) = i(u2), . . . , I (uN ) = i(uN )}

A fast and general method for sampling a prior distribution is sequential simulation.
Unlike McMC methods, sequential simulation is non-iterative and is completed
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after a single pass over all grid node locations. Sequential simulation relies on the
following decomposition of the prior:

f (m) = Prob{I (u1) = 1}×
Prob{I (u2) = 1|i(u1)} × · · · ×

Prob{I (uN ) = 1|i(u1), . . . , i(uN−1)}
(4)

This decomposition can be interpreted in two ways:

1. Sampling a given joint distribution f (m) is equivalent to sequentially
sampling a series of univariate conditional distributions. If the joint distri-
bution is known analytically, it determines the shape of each conditional
distribution. The only joint distribution for which each conditional is
known is the multi-variate Gaussian. In case of a joint multi-Gaussian,
each conditional is also Gaussian with mean and variance determined by
a kriging system. Sequential Gaussian simulation (sgsim) is one of the
most efficient algorithms for drawing samples from the multi-Gaussian
distribution.

2. Sequential drawing from a series of given univariate conditional distribu-
tions provides a realization (sample) of joint distribution which need not be
explicitly stated. The only restriction on each such univariate distribution
is that it needs to be conditional on all previously simulated parameters
of the vector m. The aim in this approach is to generate realizations of m
exhibiting certain (univariate, bivariate, or multivariate) statistics. The set
of realizations generated in this manner represents a sample from some,
not explicitly known, joint distribution.

The second approach recognizes that one is not interested in f (m) itself but
in the realizations generated fromf (m). In actual field cases, prior information
on m comes in the form of limited statistics (e.g. a spatial covariance). The
type of multi-variate density f cannot be determined from data and always needs
to be assumed. In the second approach, the decision of distribution type is not
made on the joint distribution, but on the conditional distributions. An example
of such approach is direct sequential simulation (dssim, Journel, 1993), where the
conditional distribution can be of any type, as long as they have mean and variance
provided by a simple kriging system.

In practice, we obtain multiple realizations of f (m) by changing the random
seed used to generate stochastic simulations. The random seed determines the order
in which grid nodes are visited (random path) as well as the uniform numbers that
are used to draw from each conditional density function.

The second interpretation has led to a series of practical algorithms that can
sample a wide variety of prior models. One such method that will be briefly
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reviewed is the single normal equation simulation or snesim in short (Journel,
1993; Strebelle, 2002).

In most geostatistical applications, the variogram (or spatial covariance) is
used as a quantifier for spatial heterogeneity. However, the variogram, as a two-
point statistic, cannot capture non-rectilinear shapes and connectivities which
require the use of higher order, also termed multi-point statistics. Such higher
order statistics can rarely be estimated from actual field data. Instead, one relies
on the construction of a so-called training images. The training image is a fully
explicit (2D or 3D) depiction of the spatial heterogeneity present. It is merely
conceptual, hence has to be constrained to any data (d1 or d2).

The snesim algorithm (Strebelle, 2002) is a practical sequential simulation
method for generating stochastic realization depicting the structure of the training
image. At each visit of a location u along the random path, the snesim method
calculates the conditional probability Prob{I (uj ) = 1|i(u1), . . . , i(uj−1)} by scan-
ning the training image for replicates of the joint event d(1)

j = {i(u1), . . . , i(uj−1),

I (uj ) = 1} and d(0)
j = {i(u1), . . . , i(uj−1), I (uj ) = 0}. The conditional probabil-

ity is then calculated as follows:

Prob{I (uj ) = 1|i(u1), . . . , i(uj−1)}

= Prob{I (uj ) = 1, I (u1) = i(u1), . . . , I (uj−1) = i(uj−1)}
Prob{I (u1) = i(u1), . . . , I (uj−1) = i(uj−1)}

∼ # of events d(1)
j

# of events d(0)
j + # of events d(1)

j

(5)

Bayesian Inversion

Priors need to be conditioned to data d1 and d2, resulting in a posterior dis-
tribution of the model parameters given the data, as formulated in Bayes rule,
Equations (1) or (3). In determining the posterior, we will follow the same philos-
ophy as in determining the prior: the posterior will not be explicitly stated, only
conditionals will be modeled. We consider the case where the data d1 constitutes
direct observations (hard data) of the model parameters at a set of n < N spatial
locations, in the binary random function case,

d1 = {i(uα), α = 1, . . . , n}

d2 contains any type of data that has a non-linear relationship with the model
parameters

d2 = g(m) = g(I (u1), I (u2), . . . , I (uN ))
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with g as the forward model. We will assume for now that there are no data
and model errors. One is interested in generating samples from a posterior
distribution:

f (m|d1, d2) = Prob{I (u1) = i(u1), I (u2) = i(u2), . . . ,

I (uN ) = i(uN )|{i(uα), α = 1, . . . , n}, d2}

To sample such posterior, we do not follow the traditional Bayesian route of
likelihood and prior. Instead, we rely on the sequential decomposition similar to
the one in the prior case:

f (m|d1, d2) = Prob{I (u1) = 1|{i(uα), α = 1, . . . , n}, d2} ×
Prob{I (u2) = 1|i(u1), {i(uα), α = 1, . . . , n}, d2} × · · · × (6)

Prob{I (uN ) = 1|i(u1), . . . , i(uN−1), {i(uα), α = 1, . . . , n}, d2}

Sampling from the complex (joint) posterior f is equivalent to sequential sampling
from a series of univariate conditionals of the type

Prob{I (uj ) = 1|i(u1), . . . , i(uj−1), {i(uα), α = 1, . . . , n}, d2} = Prob(Aj |Bj , C)

with Aj = {I (uj ) = 1}
Bj = {i(u1), . . . , i(uj−1), {i(uα), α = 1, . . . , n}}
C = d2

where we have introduced a simpler notation Aj (unknown model parameter), Bj

data (easy data) and C data (difficult data) to make further development clear. Since
it is difficult to state the conditionals Prob(Aj |Bj , C) explicitly, we decompose
it further into two “pre-posterior” distributions, Prob(Aj |Bj ) (pre-posterior to
knowing C) and Prob(Aj |C) (pre-posterior to knowing Bj), using Journel’s (2002)
combination method called “tau-model”:

Prob(Aj |Bj , C) = 1

1 + x
with

x

a
=

(
b

a

)τ1 ( c

a

)τ2

(7)

where

b = 1 − Prob(Aj |Bj )

Prob(Aj |Bj )
, c = 1 − Prob(Aj |C)

Prob(Aj |C)
, a = 1 − Prob(Aj )

Prob(Aj )

In case, τ 1 = τ 2 = 1, Journel shows that Equation (7) is equivalent (up to a simple
standardization) to the hypothesis of conditional independence of Equation (3).
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Assuming the prior Prob(Aj ) is known, the problem of stating the conditional
Prob(Aj |Bj , C) is now decomposed into a problem of stating the pre-posteriors
Prob(Aj |Bj ) and Prob(Aj |C).

Working with pre-posteriors will lead to an approach that is different from
a classical Bayesian inversion which would involve the likelihoods Prob(Bj |Aj )
and Prob(C|Aj ). This seemingly subtle difference will lead to a fundamentally
different approach. Stating “pre-posteriors,” i.e. likelihoods, allows using (non-
iterative) sequential simulation via Equations (6) and (7), instead of (iterative)
McMC.

The τ -values in Equation (7) allow the user to model explicitly the depen-
dency between the B-data and C-data. The τ -values can be interpreted as “weights”
given to each data type (see Journel, 2002). Assuming conditional independence
(τ 1 = τ 2 = 1) results in a very particular dependency model that may often not
reflect the actual dependency between B and C data (see further for an example
study).

In the context of sequential simulation, the pre-posterior Prob(Aj |Bj ) is
simply the conditional distribution of the unknown Aj given any previously simu-
lated nodes i(u1), . . . , i(uj−1) and the hard data i(uα), α = 1, . . . , n. In snesim,
Prob(Aj |Bj ) is calculated from the training image using Equation (5).

The remaining pre-posterior Prob(Aj |C) cannot be directly estimated
because of the complex non-linear relationship (= forward model) between
Aj and C. Instead, in the next section, we propose an iterative calibration method
for determining this probability, termed probability perturbation.

Sampling Prob(A j |B j , C): The Probability Perturbation Method

Given a random seed s, and given the pre-posterior Prob(Aj |Bj ) at all grid
nodes uj, a realization i(s)

B = {i(s)
B (u1), i(s)

B (u2), . . . , i(s)
B (uN )} can be drawn by ways

of sequential simulation. The subscript B in i(s)
B emphasizes that i(s)

B is conditioned
to data d1 (B-data) only, not yet to data d2 (C-data), this would require somehow
the use of the other pre-posterior, Prob(Aj |C).

To generate a realization i(�) matching both d1 and d2, each grid node should
be sequentially sampled from the joint distribution Prob(Aj |Bj , C). However, the
joint distribution is unknown, since Prob(Aj |C) is not known. The probability per-
turbation method performs a stochastic search for those probabilities Prob(Aj |C)
(at all N grid nodes) that achieve a match to the d2 data.

The key idea is to search for all N probabilities Prob(Aj |C),∀j such that, after
combining Prob(Aj |C) with Prob(Aj |B) into Prob(Aj |Bj , C) using Equation (7),
a realization i(�) sequentially drawn from Prob(Aj |Bj , C), j = 1, . . . , N , matches
the data d2. Searching for all N probabilities Prob(Aj |C) directly is impossi-
ble, particularly since N can be large. Therefore, we rely on a perturbation
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parameterization of all N Prob(Aj |C) using a single parameter that is defined
as follows:

Prob(Aj |C) = Prob(I (uj ) = 1|C) = (1 − rC) × i
(s)
B (uj ) + rCP (Aj ),

j = 1, . . . , N (8)

where rC is a parameter between [0,1], not dependent on uj. This independence
on uj will be relaxed later. Given Equation (8), Prob(Aj |C) can be calculated for
a given value of rC and for a given initial realization i

(s)
B (uj ). The importance of

Equation (8) is that it translates the search for N probabilities Prob(Aj |C) into an
optimization problem of a single parameter rC as follows:

• Choose a random seed s
• Generate an initial realization i(s)

B using the data d1 and random seed s
• Iterate: Until the data d2 is matched, do the following:

1. Choose another random seed s ′

2. Determine a realization i(s ′) that matches better data d2 as follows:
• From Prob(Aj |C) in Equation (8), Prob(Aj |Bj , C) can be deter-

mined using Equation (7). This allows generating a realization
i(s

′)
rC

= {i(s ′)(u1), i(s ′)(u2), . . . , i(s ′)(uN )} drawn by sequentially
sampling from Prob(Aj |Bj , C), j = 1, . . . , N . This realization
is dependent on the value of rC, as well as a random seed s ′.

• To find an optimal rC, hence per Equation (8), best Prob(Aj |C),
the following objective function is formulated:

O(rC, s ′) = ∥∥d2 − g
(
i(s

′)
rC

)∥∥ (9)

which measures the distance between the data d2 and the
forward model evaluated on the realization i(s

′)
rC

. The objective
function (9) depends on rC and a fixed random seed s ′. A simple
one-dimensional optimization can be performed to find the value
of rC that best matches the data d2.

• Once an optimal value r
opt
C is found, generate a realization i(s

′)
r

opt
C

to

be used in Equation (8) during the next iteration step.

The two limit values rC = 0 and rC = 1 clarify the choice of the parameteri-
zation in Equation (8):

1. In case rC = 0, then Prob(Aj |C) = i
(s)
B (uj ), hence per Equation (7)

Prob(Aj |Bj , C) = i
(s)
B (uj ). Regardless of the random seeds s and s ′, any

realization i(s
′)

rC=0 = i(s)
B . In other words, rC = 0 entails “no perturbation of

i(s)
B ”.
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2. In case rC = 1, then Prob(Aj |C) = P (Aj ), a simple calculation using
Equation (7) shows that Prob(Aj |Bj , C) = P (Aj |Bj ), ∀ j . Since the seed

s ′ is different from the seed s, the realization i(s
′)

rC=1 = i(s
′)

B is equiprobable

with i(s)
B . In other words, rC = 1 entails a “maximum perturbation” within

the prior model constraints.

A value rC between (0, 1) will therefore generate a perturbation i(s
′)

rC

between some initial realization i(s)
B and another equiprobable realization i(s

′)
B both

conditioned to the data d1 and each following the prior model statistics.
The optimization of rC in (9), has to be repeated for multiple random seeds

s ′ since a single optimization of O(ropt
C , s ′) with fixed random seed is likely not to

reach satisfactory match to the data d2.

A Simple Illustrative Example

A simple example is presented to clarify the approach and illustrate various
properties of the method in finding inverse solutions. The model consists of a grid
with three nodes, u1, u2, and u3. Each node can be either black, I(u) = 1 or white,
I(u) = 0. The model m is therefore simply

m = {I (u1), I (u2), I (u3)}

The spatial dependency of this simple 1D model is described by a training image
shown in Figure 1. One can extract, by scanning the training image with a 3 × 1
template, the prior distribution, f(m), of the model parameters m, as shown in
Figure 1. To test the probability perturbation method, we consider two data: the
first data is a point measurement (B-data, or “easy data”) namely, i(u2) = 1 (a

Prior probabilities of the following realizations:

1

8
=

5

16
=

1

4
=

1

16
=

1

4
=

Training image

Figure 1. Illustration example: Training image and prior probabilities of a 3×1 model derived from
the training image.
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black pixel in the middle), the second one is I (u1) + I (u2) + I (u3) = 2 (C-data
or “difficult data”). The problem posed is:

What is Prob(I (u1) = 1|i(u2) = 1, I (u1) + I (u2) + I (u3) = 2)?

Or in simpler notation, what is Prob(A|B,C)? We consider three ways to solve
this problem:

1. Calculate the true posterior Prob(A|B,C) directly by simple elimination
of those prior models that do not match the B and C data.

2. Calculate Prob(A|B,C) by first calculating Prob(A|B) and Prob(A|C)
based on the prior, then using Journel’s Equation (7) under conditional
independence, namely τ 1 = 1, τ 2 = 1.

3. Calculate Prob(A|B,C) by running a Monte Carlo experiment using the
probability perturbation method (PPM). A set of realization is generated
constrained to the single datum i(u2) = 1. On each of these realizations,
the PPM using the algorithm described above is applied. Figure 2 provides
a flow chart for a running the PPM on a single realization. An algorithmic
description is as follows:

i. Set a random seed.
ii. Perform sequential simulation with conditioning data i(u2) = 1, all

conditional distributions of the type Prob(A|Bj) can be determined
from the training image.

iii. Change seed.

Seed=s

Using sequential simulation:
Draw from prior f(m)
constrained to i(u2)=1

Change seed
Pick random

rC value between
[0,1]

Using sequential simulation:
draw from posterior

using Eq. (6),(7) and (8)
constrained to i(u2)=1

Is the sum 
equal to two ?

Eq. (8): calculate
Pr(I(ui)=1|C),Vi

done

Initial realization

New realization                      

Figure 2. Probability perturbation flowchart: generating multiple realizations constrained to the two
data i(u2) = 1 and i(u1) + i(u2) + i(u3) = 2.
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iv. Until the sum i(u1) + i(u2) + i(u3) = 2 is matched, do the
following:

a. Pick a random value for rC.
b. Calculate Prob(I(u1) = 1|C) and Prob(I(u3) = 1|C) from Equation

(8).
c. Perform sequential simulation with conditioning data i(u2) = 1,

all conditional distributions of the type P(A|Bj,C) are determined
by combining Prob(A|Bj) (derived from the training image) and
Prob(A|C) (precalculated using Equation (8)) under conditional
independence.

v. If the sum i(u1) + i(u2) + i(u3) does not equal to two then, change
seed and goto iv.

From the set of matched realizations, Prob(A|B,C) is calculated by
checking how many times i(u1) = 1.

4. Calculate Prob(A|B,C) by running a Monte Carlo experiment using the
gradual deformation method (GDM) of sequential simulations (Hu, Blanc,
and Noetinger, 2001). A set of realization is generated constrained to the
single datum i(u2) = 1. On each of these realizations, the GDM is applied.
This method perturbs not the probability distributions, but the random
numbers that are used to generate the conditional simulation. Similar to
PPM, GDM parameterized that perturbation using a single parameter that
can be optimized.

The solutions are as follows:

1. True posterior: Prob(A|B,C) = 1/16
(1/8)+(1/16) = 1

3

2. Using conditional independence Equation (7):

Prob(A) = 4

16
+ 1

16
+ 5

16
= 5

8
⇒ a = 3

5

Prob(A|B) =
1
4 + 1

16
1
4 + 1

16 + 1
8 + 1

4

= 5

11
⇒ b = 6

5

Prob(A|C) =
5

16 + 1
16

5
16 + 1

16 + 1
8

= 3

4
⇒ c = 1

3

Applying Eq. (7) with τ1 = τ2 = 1 : x = 2

3
⇒ Prob(A|B,C) = 3

5

3. Monte Carlo simulation by repeating the PPM method on a set of initial
realizations drawn from the prior, Prob(A|B,C) = 0.35,
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4. using Monte Carlo simulation on the “gradual deformation of sequential
simulation” Prob(A|B,C) = 0.27,

The following observations can be made:

• Comparing the results of Methods 1 and 2, it is clear that the assumption
of conditional independence is not valid for this case. A simple calculation
shows that using τ 1 = 2.59 and τ 2 = 1 in Equation (7) would provide
an exact approximation of the true posterior. This indicates that the single
hard conditioning data should receive substantially more “weight” than
assumed under conditional independence.

• While the PPM relies on the same assumption of conditional indepen-
dence, the result is much closer to the true posterior probability. This
result was confirmed by applying a variety of other training images, i.e.
other prior distributions. Method 2 produces consistently a considerable
overestimation of Prob(A|B,C), the PPM is off by a few percentages only.

• It appears that the gradual deformation of sequential simulation has an
implicit model of dependency between the B and C data different from the
probability perturbation, and more importantly different from the actual
dependence. However, different from PPM, is that in the GDM there is no
τ -model that can be used to calibrate that dependence. In other words, there
is no means of correcting the value of 0.27 to be closer to the true value.

The reason for the reasonably good approximation provided by the PPM
can be explained by means of Equation (8). In this equation, the pre-posterior
Prob(I (uj ) = 1|C) is a function of the data C through the parameter rC, and, a
function of an initial realization {i(u1),i(u2) = 1,i(u3)}. This initial realization
depends itself on the pre-posterior Prob(I (uj ) = 1|Bj ) with Bj depending on the
random path. Hence, Equation (8) forces an explicit dependency between the
Prob(I (uj )|Bj ) and Prob(I (uj )|C) prior to combining both into Prob(I (uj ) =
1|Bj , C) using a conditional independence hypothesis (Eq. (7) with τ 1 = 1,
τ 2 = 1). At least from this simple example, one can conclude that the sequential
decomposition of the posterior into pre-posteriors has robustified the estimate of
the true posterior under the conditional independence hypothesis.

Synthetic Example of the Single Parameter Probability Perturbation

As example application, consider the inverse problem termed “history match-
ing.” The term “history matching” in reservoir characterization and engineering
describes the perturbation of a 3D reservoir model, containing petrophysical prop-
erties such as porosity and permeability, in order to match the dynamic data
gathered from testing or producing the reservoir. Data consists of pressure and
flow measurements in time obtained from multiple wells. In this particular case,
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we will history match a facies model with known petrophysical properties per
facies using water-cut data. The method can easily be extended to the case where
the facies petrophysical properties are not known (see Suzuki, 2003).

Figure 3 describes in detail the synthetic case. The target model parameters
m consist of facies indicators at each grid cell. Three facies types are present,

Figure 3. Demonstration example for the single parameter probability perturbation: (A) training
image that defines the prior model generated by snesim, (B) the reference model with the config-
urations of wells, (C) an initial model that does not match the water-cut data, (D) final model that
matched the water-cut.
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each facies has the same constant and known porosity of 25%, but each facies
has a different, constant but known permeability. The proportion of each facies is
assumed to be known as well (see Hoffman and Caers, 2004, for a way to relax this
assumption). A background facies s1 has a permeability of 10 mD, an NE elliptical
shaped high permeability facies s2 of 1000 mD is eroded by NS elongated low
permeability barriers s3 of 0.1 mD. A Cartesian grid of 100 × 100 × 10 cells is
used. The model parameters m consist of the three facies indicators I(u,s1), I(u,s2),
and I(u,s3) at each of the 100,000 grid cells.

The reservoir is initially saturated with 85% oil and 15% water, no gas is
present. The water table is below the reservoir and remains so during production.
The reservoir contains four producing wells in the corner of the reservoir and one
injecting well in the center (see Fig. 3B). The injector pumps water in the reservoir
at constant rate to drive the oil phase towards the producers. The data d consists
of the fraction of water observed at the four producing wells up till 10 years. The
forward model g is a black oil finite difference model. One single flow simulation
(evaluation of the forward model) takes about 90 min.

As prior information we consider that the style of facies architecture is known,
including the proportion of each facies. The multiple-point algorithm, “snesim” of
Strebelle (2002) is used to simulate the facies model. This algorithm requires a 3D
training image depicting the style of heterogeneity present. Figure 3A shows the
training image used by snesim. Figure 3C shows an unconditional initial realization
of the prior model, no hard conditioning facies data is used. The snesim algorithm
was also used to generate the reference, hence we consider the prior model to be
perfectly known, an assumption rarely true in reality.

To extend the binary method presented above to three (and more) categories,
we re-write the key Equation (8) as follows:

Prob(I (uj , sk) = 1|C) = (1 − rC) × i
(s)
B (uj , sk) + rCP (Aj ),

j = 1, . . . , N, k = 1, .., 3

Otherwise the probability perturbation algorithm remains the same. Note the
closure of this equation:

∑3
k=1 Prob(I (uj , sk) = 1|C) = 1.

The probability perturbation aims at moving the relative position of facies
bodies until a history match is achieved. To start the algorithm, an initial real-
ization is generated (see Fig. 3C). The realization is iteratively perturbed until
a reasonable match is achieved. The realization obtained after 15 iterations (=
random seed changes) is shown in Figure 3D, or a total of 75 flow simulations.
Figure 4 shows that a reasonable match to the water-cut in the four producing wells
obtained.
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Reference Water Cut Data
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Figure 4. Single parameter probability perturbation: Water-cut curves for reference, initial, and
matched model.

The regional Probability Perturbation Method

Parameterizing the pre-posterior of Equation (8) using a larger parameter
set is often critical to solving large and complex inverse problems. The above—
presented method does not restrict a higher order parameterization: the value of
rC can be made dependent on location uj

Prob(Aj |C) = Prob(I (uj ) = 1|C) = (1 − rC(uj )) × i
(s)
B (uj ) + rC(uj )P (Aj ),

j = 1, . . . , N (10)
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The use of (8) in the probability perturbation method now requires a multidimen-
sional optimization on all rC(uj ), j = 1, . . . , N . The elegance by which Equation
(8) reduces an N-dimensional to a one-dimensional search has therefore been
lost.

To avoid a potentially difficult full multi-dimensional search for the best
rC(uj ), j = 1, . . . , N , we will rely on a region-wise parameterization of these
parameters. Consider L regions in the domain of study, each region R�, � = 1, ..., L

consists of a set of N� grid node locations,

R� = {
u(�)

i , u(�)
j , . . .

}

The grid nodes in one single region need not be connected, but each grid node must
belong to only one region. Which nodes belong to which region is a problem–
specific question. The number of regions L however is likely to be considerably less
than the number of grid nodes N. The pre-posterior of Equation (10) is rewritten
using a region-wise parameterization as follows:

Prob
(
A

(�)
j |C) = Prob

(
I
(
u(�)

j

) = 1|C) = (
1 − r

(�)
C

) × i
(s)
B

(
u(�)

j

) + r
(�)
C P

(
A

(�)
j

)
,

j = 1, . . . , N

where the parameter r
(�)
C is the same for all grid nodes u(�)

j of region R�. Note also

that the prior P (A(�)
j ) need not be the same for all regions. An efficient strategy

for jointly optimizing on all L r
(�)
C parameters is discussed in Hoffman and Caers

(2003).
To demonstrate the benefit of the higher dimensional parameterization, we

revisit the synthetic reservoir example shown above. Four rectangular regions
are created with the injector at the center (see Fig. 5A). The regionwise per-
turbation allows the facies bodies to be perturbed by different amounts in each
region, however, without creating any discontinuities at the regions borders (see
Hoffman and Caers, 2004, for a detailed explanation). Since flow between each
producer and injector takes place mostly in the quadrant occupied by the pro-
ducer, the facies distribution in each quadrant is mostly consequential to the flow
data in that quadrant, hence the efficiency gain expected over the single parame-
ter method. Indeed, the number of iteration required to reach the same accuracy
of the match (see Fig. 6) as in the one-parameter case equals 3 (21 flow simu-
lations). A single matched model is shown in Figure 5C, note that despite the
existence of regions, the final model displays the same style of continuity as the
reference.
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Figure 5. Demonstration example for the regional probability perturbation: (A) definition of the
regions, to each region a perturbation parameter rC is assigned, (B) the same initial model as in the
single parameter case, and (C) final model that matched the water-cut.

DISCUSSION AND CONCLUSIONS

The probability perturbation has a goal no different from any other Bayesian
inverse method: drawing realizations that honor the data and honor prior statistics.
In the traditional Bayesian inversion methods, this is done by defining a prior
and a likelihood. The probability perturbation method relies on the principle
of sequential simulation to sample the posterior distribution and relies on pre-
posteriors instead of likelihoods.

Nevertheless, the probability perturbation method shares two important prop-
erties of other inverse algorithms:

1. Inverse solutions generated using the probability perturbation method
honor the prior statistics. Whatever the value of rC or random seed s,
all model realizations are drawn using a sequential sampling method that
depends on Prob(Aj |B) (depending on the prior statistics). The probability
perturbation is essentially a search method for finding those prior model
realizations that honor the data d2.
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Reference Water Cut Data
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Figure 6. Regional probability perturbation: Water-cut curves for reference, initial, and matched
model.

2. The probability perturbation method can cover the entire space of the
prior model realizations. At each step of the outer loop, the random seed
is changed, hence, if infinite computing time were available, the method
would cover the entire space of possible realizations, just like a rejection
sampler would.

These two important properties do not reflect how efficient the probability
perturbation method works. The parameterization of the pre-posterior using a sin-
gle parameter is most likely inadequate for finding solutions of complex problems
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in a reasonable amount of time. To make the method feasible for solving large
and complex problems, one most likely requires a larger-dimensional parame-
terization, as done in the regional probability perturbation method. This paper
reflects the theory behind the probability perturbation, for large-scale applications
to actual reservoirs, the reader is referred to some papers in the reference list.
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