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DETERMINATION OF THE STRESS STATE OF AN ANISOTROPIC BODY 
WITH SMOOTH CURVILINEAR INCLUSIONS UNDER LONGITUDINAL SHEAR 

M. P. Savruk,1  V. S. Kravets,1,2  L. Yo. Onyshko,1  and  O. I. Kvasniuk 1 UDC 539.3 

The antiplane problem of the theory of elasticity for an elastic piecewise homogeneous anisotropic body 
was solved using the method of singular integral equations.  For one anisotropic inclusion in the 
orthotropic plane, the constructed system of integral equations of the second kind was solved 
numerically by the quadrature method.  The influence of elastic constants of anisotropic materials of the 
plane and the inclusion, as well as the shape of the curvilinear inclusion on the shear stress distributions 
at the interface of the materials was studied. 

Keywords: antiplane deformation, anisotropy, inclusions, stress concentration, singular integral 
equation method. 

Introduction 

The use of high-strength composite materials in modern technology requires the study of the stress-strain 
state of such bodies with stress concentrators as holes, inclusions, cracks, and notches.  Different types of 
composite materials can be modeled by a homogeneous or piecewise-homogeneous anisotropic medium.  A 
number of scientific papers [1–10] deal with the problems of the theory of elasticity of anisotropic bodies with 
holes, cracks, and inclusions.  One of the most common methods of solving such problems is the method of 
complex potentials (CP) written in additional mathematical planes associated with the elastic constants of 
anisotropic materials [2, 4, 11–17].  Two-dimensional problems of the theory of elasticity for piecewise 
homogeneous anisotropic bodies were also considered [6, 18–25].  Separate numerical results were obtained for 
stress distributions along the boundary contour of anisotropic materials of an infinite plane and finite two-
dimensional inclusions [2, 6, 18, 19, 22, 25]. 

The antiplane problem of the theory of elasticity for an infinite elastic anisotropic plane (matrix) with 
smooth curvilinear anisotropic inclusions under their perfect mechanical contact is considered.  The methods of 
CP and singular integral equations (SIE) were used for anisotropic bodies with cracks, holes, and notches [17, 
26–28].  For an orthotropic matrix with one anisotropic inclusion, the SIE system of the second kind is solved 
numerically.  The longitudinal shear stress distributions at the interphase of the matrix materials and the 
inclusion were determined depending on the elastic solid materials, as well as the shape of the contour of the 
smooth curvilinear inclusion.  The parameters of the problem, which significantly affect the distribution of shear 
stresses at the boundary contours of anisotropic materials, are established. 
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Some Relations of the Antiplane Problem of the Theory of Elasticity of an Anisotropic Body  

Let us consider the longitudinal shear of an anisotropic body in the Cartesian coordinate system (x, y, z).  The 
components of the vector of elastic displacements can be presented as  0, 0, ,x y zu u u w w x y     if the axis 

of deformation is directed along the axis z .  The relationship between non-zero components of deformations 
,yz xz   and stresses ,yz xz   was obtained based on Hooke’s generalized law [7, 11].  Expressing the general 

solution of the differential equation of equilibrium in displacements in terms of the analytical function  3 3z  

of the complex argument 3 3z x y   

    0 3 3, Imw x y a z    , (1) 

the relationship for stresses is given in terms of CP    3 3 3 3z z    as [2, 11] 

        3 3 3 3 3, Re , , Reyz xzx y z x y z              . (2) 

Here 3 3 3i      is the complex root of the characteristic equation of the antiplane problem, where 
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With the help of relations (2), write formulas for assessing shear stresses ( )nz t  on some smooth curvilinear 

contour L  with a given normal n , as well as contour stresses n , on the planes orthogonal to the contour L  [17] 

      3 3 3 3 3 3
3 3Re Re , ,nz

t dt t dt
t t L t L

ds ds

    
         

   
; (3) 

    
   3 3

3 3

1 1

Re
2sz

i dt i dt

ds dst t
i

      
                   

. (4) 

Here the contour 3L  in the auxiliary plane of the complex variable 3z  corresponds to the contour L  in the 

plane  ,x y ; s  is the arc abscissa of the point t L . 

Problem Formulation 

Consider a two-dimensional problem of the theory of elasticity under antiplane deformation of an 

anisotropic body 0S  (matrix) with smooth anisotropic inclusions  1,jS j J .  Assume that there is a perfect 

mechanical contact between the inclusions and the matrix, that is, when passing through the contours of the 

inclusions  1,jL j J , the normal component of shear stress and displacement  ,w x y  are continuous: 
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     0, , 1,nz nz jt t t L j J       ; (5) 

     0, , 1,jw t w t t L j J     . (6) 

Here, the superscripts indicate the limiting values of the corresponding values when approaching the 
contours jL  from the left (+) or right (–) when bypassing them counterclockwise (Fig. 1). 

 

Fig. 1.  Longitudinal shear of а piecewise homogeneous anisotropic body. 

The matrix 0S  at infinity is under the action of longitudinal shear 

 , 0yz xz
      , (7) 

which does not limit the generality of the given load, since the matrix is anisotropic. 
The problem with boundary conditions (5), and (6) is solved by the SIE method [17, 27, 28].  Under load 

(7), the stress state of an infinite piecewise homogeneous anisotropic body  0,jS S j J   is described by 

relations (2)–(4), written in complex mathematical planes 3 3
j jz x y     0,j J .  Here and in the future, the 

values with the superscript 1,j J  refer to the jth inclusion jS  ( 3 3 3
j j ji     , 553 45 /j j ja a  , 553 /j j

ja a  , 

5544 45 45
j j j j

ja a a a a  ), and with the index 0j   refer to the matrix 0S  and correspond to the elastic constants 

of anisotropic materials of the inclusions and the matrix. 
The stress potentials for the matrix and inclusions will be searched for in the form of analytical functions 
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 , 0,jz x iy S j J    , (8) 
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where    3 3
3 3

3

, 0,

j j
j j

j

d t
t j J

dt


   ;     0 0 0 0 0 0

3 3 3 3 3 3, , 1,j j j jt t t L j J       are unknown complex functions; 

   3 3 3Re Im ,j j j
jt t t L t L     ; 0 jL L  , 0 0

3 3 jL L    1,j J ; contours  1,jL j J  in the physical plane 

z x iy   correspond to the contours 0
3 3, j

jL L  in mathematical planes 0
3 3, jz z  (Fig. 1).  Complex constants 

3
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1 j
j

j

i  
     

 determine the same homogeneous stress states (  yz z   ,   0,xz jz z S   , 0,j J ) of the 

matrix ( 0j  ) and inclusions ( 1,j J ) under loading (7).  The corresponding normal and tangential 

longitudinal shear stresses (3), and (4) on curvilinear smooth contours jL  in anisotropic bodies are determined 

by simple expressions 

    Re , Im , , 1,nz sz j
dt dt

t t t L j J
ds ds
                

,  

which are independent of elastic constants of materials and remain the same as for isotropic bodies. 
Using the Sokhotski–Plemelj  formula for Cauchy integrals, we find the limiting values ( jz t L  ) of the 

CP of stresses (8) on the contours ( 1, )jL j J  from the sides of the inclusions and the matrix. 
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      
0
3

0 0
3 30 0 0 0 0 0 0 0

3 3 3 3 3 3 3 30 0
1 3 3

1
,

k

J k k
j j j k j j

k k jL

t
t i t dt t L

t t




 
       

  
  . (9) 

Based on relations (1), (3), (9) from the boundary conditions at each of the contours of the inclusions jL  (5) 

and the conditions differentiated along the arc abscissas js  (6) 

 
     0, , , 1,j j j
j j

dw t dw t
s s t t L j J

ds ds

 

       (10) 

a system 2J  of real SIEs of the 2nd kind is obtained 

          0 0 0
3 3 11 3 12 3

1

1
Im Re , , 0

2
k

J
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A s D s s s D s s s ds


                  
  ,  (11) 
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  , 

where ,j ks s  are arc abscissas of the points  , , 1,j kt L t L j k J   , 
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   0
11 3 12 3, ; ,j j
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. (12) 

Here, taking into account the boundary conditions (5) and (10) the dependences between the unknown 

complex functions      0 0
3 3 3 33
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  were used.  For homogeneous stress states of the 

inclusions and the matrix, there are the following dependencies
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dtdt
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ds ds
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.  

For a piecewise homogeneous isotropic body ( 3 30, 1, 0,j j j J     ), the well-known SIE system is obtained 

[29] from equations (11). 

One Anisotropic Inclusion 

The SIE system (11) was numerically solved by the quadrature method [17] in the presence of one 
anisotropic inclusion  1 0 11,S J L L L    in the matrix.  We considered an orthotropic matrix 0S  (with the 

main axes of orthotropy along the axes Ox, Oy), for which 0 0 0
3 3 3, 0i     , 

0
0 3
3 0

3

x
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G

G
  , 0

0 0
3 3

1

x y

a
G G

 , and 

an orthotropic inclusion 1S  (with axes of orthotropy inclined to the axes Ox, Oy at an angle ), for which 

 1 1 1
3 3 3i    ,   
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, (13) 

where 
1

1 13
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G

G
  , 1

1 1
13 23

1
a

G G
 .  Here 0 0

3 3,x yG G ; 1 1
13 23,G G  are shear moduli along the orthotropy axes of the 

matrix and inclusion materials, respectively.  Having set the inclusion L  contour in the physical plane xOy in the 
parametric form  t    ,  't    ;  , 0; 2   , the problem is reduced to solving two real SIEs of the 

second kind (11) ( 1J  ). 
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Based on the limiting CP values (9) for one inclusion 

 
 
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         
       , 

  
 
           
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'
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            
       , (14) 

contact distributions      nz nz nzt t t       (3), (5), and contour (4) shear stresses from the sides of inclusion 

( )sz t  and matrix are defined: 

            1 1 0 0
3 1 3 3 0 3Re , , Re ,sz s sz st t f t t t f t             

   
. (15) 
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3   , 

1
1 3
3 1

3

1
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      
.  Calculation is done for the inclusion contour of an elliptical shape 

        cos sin , 0; 2t a ib         . (16) 

and some values of the elastic constants of the matrix and inclusion materials. 

Orthotropic Matrix and Elastic Isotropic Inclusion 

The influence of the level of orthotropy of the matrix material (mechanical parameter 
0

0 13
3 0

23

G

G
  ) on the 

distributions of contact (3) and contour (15) stresses significantly depends on the parameter 
1 1
13 230

01
0 01 13 23

G Ga
a

a G G
  , which characterizes the total relative rigidity (for longitudinal shear along the Oz axis) of 

the inclusion material relative to the matrix material (Fig. 2).  An orthotropic matrix (  0
3 0,25; 4  ) with an 

isotropic ( 1
3 1  , 1

3 0  , 1 1 1
13 23 3G G G  ) circular ( 1

b

a
 ) inclusion is considered.  A change in the parameter 

01a  from 0.25 to 4 leads to a 4-fold increase in stresses  nz   and  sz
   (Figs. 2a–d), and the relative contour 

stresses 
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Fig. 2. Influence of the parameter 0
3  on the relative stress distributions (a, b),   /nz   , (c, d)   /sz

   , (e, f)   /sz
    for a 

flexible (a, c, e) ( 01a  = 0.25) and (b, d, f) rigid ( 01a  = 4) isotropic circular inclusion. 

from the matrix  sz
   side also undergo significant qualitative changes (Figs. 2e, f).  The obtained maximum 

values of contact stresses  nz   for a piecewise isotropic body (isotropic matrix with an elliptical inclusion) 

agree well with those known [6]. 
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Orthotropic Matrix and Anisotropic Inclusion 

The influence of the inclination angle  of the orthotropy axes of the inclusion 1S  material to the axes Ox, 

Oy on the stress distributions at the interphase of the materials was studied (Fig. 3).  Such an inclusion for angles 
 0; / 2    in the introduced Cartesian coordinate system xOy (Fig. 3d) is described by the model of an 

anisotropic body with mechanical parameters (13).  The elliptic inclusion ( / 0.25b a  ) with the ratio of shear 

moduli along the axes of material orthotropy 1 1
13 23/ 1 / 8G G   in a relatively compliant orthotropic matrix 

( 01 8 2a  ; 0
3 2  ) is considered.  The rotation of the axes of orthotropy of the inclusion material significantly 

changes the contour stress distributions from the inclusion side (Fig. 3b). It almost does not affect the contact 
(Fig. 3a) and contour stresses from the matrix side (Fig. 3c). 

 

Fig. 3. Influence of the angle  of the orthotropy axes of the elliptical inclusion material (b/a = 0.25) on the relative stress distributions 

(a) ( ) /nz   ; (b) ( ) /sz
   ; (c) ( ( ) /sz

   , for 1 1
13 23/ 1 / 8G G   and compliance matrix ( 01 8 2a  ; 0

3 2  ); d is the scheme 

of the problem. 

For the given load (7) for different geometric and mechanical parameters of the problem 

( 0 1
3 3 0 1/ , , , , /b a a a   ), the stress ( ), ( )xz yzz z   inside the elliptical anisotropic inclusion ( 1z S ) was calculated 

and the homogeneity of its stress state was found, which is consistent with the known analytical result [24]. 
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Constant stresses constxz  , constyz   in an elliptical inclusion, depend significantly on the parameters 

of the problem discussed above. 

CONCLUSIONS 

The antiplane problem of the theory of elasticity for an infinite anisotropic body with a finite number of 
smooth curvilinear anisotropic inclusions is considered.  Using the methods of complex potentials and singular 
integral equations, the problem was reduced to solving systems of real integral equations of the second kind.  
For an orthotropic plane with one anisotropic inclusion, the constructed system of equations was solved 
numerically by the method of quadratures.  The distributions of shear contact and contour stress at the materials 
interphase both from the side of the plane and the side of the inclusion were determined.  The influence of these 
stresses on elastic constants of orthotropic materials of the plane and the inclusion of the material interphase of 
elliptical shape was studied.  The problem parameters are established, which essentially affect the distribution of 
shear stresses at the inclusion contour. 
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