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FATIGUE LIFE OF S355JR STEEL UNDER UNIAXIAL CONSTANT AMPLITUDE  
AND RANDOM LOADING CONDITIONS 

A. Niesłony1,2  and  M. Böhm1 

The results of fatigue tests of samples made of S355JR steel under random tension-compression with 
nonzero mean stress are presented.  The procedure of experimental research is described.  The obtained 
experimental results are presented with the use of Wöhler fatigue graphs.  The algorithm for the deter-
mination of the fatigue life uses, among other things, a rainflow cycle counting procedure, as well as the 
Palmgren–Miner linear damage accumulation hypothesis and six selected models that take into account 
the effect of mean stress on the tested durability.  We also display the plots for comparison of the exper-
imental and computed lives.  It is indicated, which of the considered models describes the impact of the 
mean stress on the fatigue life of the tested material within the scatter error 3. 
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Introduction 

The initial force affecting a structural element and even its inherent weight has a significant influence on the 
fatigue phenomenon.  These types of stresses are called initial or mean stresses and are often overlooked by de-
signers in the process of design of connections or components due to fatigue.  In numerous branches of industry 
the adequate consideration of the mean stress plays a significant role due to the prevalence of time-varying exter-
nal forces, as well as internal forces in structures and machine components [9].  We can also mention an espe-
cially important and difficult case involving the correct analysis of the mean stress, i.e., the case of multiaxial 
load with nonzero value of the mean stress [3, 4, 6, 7].  In this case, no one has been able to propose an efficient 
and reliable computation model so far.  Steels belong to the most common groups of structural materials used 
for the construction of machines, mainly due to their availability, cost, and good mechanical properties [10] or 
corrosion resistance [2].  The literature review shows that the fatigue tests of S355JR steel studied in our work 
are rare.  Therefore, the main aim of the present work is to verify the developed algorithm [12] used to deter-
mine the fatigue life on the basis of the original experimental results.  The case of tension-compression of un-
notched round specimens with different levels of mean stresses is analyzed.  The computational algorithm is 
constructed with regard for the state of knowledge in the evaluation of fatigue life in a random uniaxial stress 
state.  The Rainflow cycle counting procedure used together with the linear cumulative damage hypothesis by 
Palmgren–Miner [16] and six selected models that take into account the effect of mean stresses on the fatigue 
have been used in the proposed algorithm.  The effect of mean stresses on the fatigue life was taken into account 
by transforming the stress amplitude specified for each cycle by the Rainflow method.  The coefficient K [4, 14] 
was found for six models in order to perform this task. 
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Fig. 1.  Shape and dimensions of fatigue test samples. 

Table 1 
Strength Properties of S355JR Steel 

Re  Rm  A10  Z  
E ,  GPa N

MPa % 

394 611 20 51 213 0.31 

Description of Fatigue Tests 

We present the results of the original research performed for S355JR steel on the SHM250 fatigue testing 
bench for tension-compression.  The research was carried out both for constant and random loads.  The experi-
ments were carried out with two stress ratios  R  = − 1  and  R  = 0  in the case of constant amplitude and for  
R  = 0  in the case of random loading.   

The basic strength properties of S355JR steel are summarized in Table 1.  Its chemical composition is as fol-
lows:  0.18 C;  1.3 Mn;  0.45 Si;  0.04 P;  0.03 S;  0.3 Cr;  0.2 Cu;  0.2 Ni;  balance Fe.  The test samples used in the 
research are shown in Fig. 1. 

The test samples were prepared according to the ASTM E466-07 [1] standard.  Under the conditions of ran-
dom loading, the tests were performed with the help of a special stochastic loading module added to the existing 
driving software.  A cross section of the applied signal is shown in Fig. 2.  The signal has a narrow-band charac-
teristic with a predominant frequency of  20 Hz.  The characteristics of signals correspond to the stresses  
observed in the selected structural elements, although they are generated by noise-band filtering with normal dis-
tribution.  The random tests are performed under random loading with a stress ratio  R  = 0,  which means that 
the samples have been preloaded with a stress equal to the maximum global stress amplitude of the course.  
The indicated stress ratio is given by the formula: 

 R = σmin
σmax

, (1) 
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Fig. 2.  Record of sample random stresses used in the experiment prior to scaling to the appropriate ratio  R . 

 

Fig. 3. Experimental results presented in the form of Wöhler curves for S355JR steel:  (a) tension-compression with constant amplitude 
for  R  = –1  (�) and  R  = 0  (£);  (b) random-amplitude tension for  R  = 0  (�). 

where  σmin   and  σmax  are the minimum and maximum stresses, respectively.  The results of constant- and 
random-amplitude tests are shown in Fig. 3 in the form of Wöhler fatigue-life curves. 

The crack shape obtained from the experiments is characteristic for the high-cycle fatigue, although it does 
not reveal the formation of a significant narrowing in the diameter of the sample, thus indicating a significant 
influence of strains. 

Mean Stress Correction Equations 

In the literature, there is a large variety of equations taking into account the mean stress.  These are the so-
called correction equations specifying the material with the use of certain strength parameters and then applied 
for the scaling of a nonzero mean stress signal (transform) to an equivalent zero mean signal. 
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In the present work, we use the following equations: 

the Gerber equation: 

 σa
σaT

= 1− σm
Rm

⎛
⎝⎜

⎞
⎠⎟
2
; (2) 

the Kwofie equation: 

 σa
σaT

= exp − αK
σm
Rm

⎛
⎝⎜

⎞
⎠⎟

; (3) 

the Morrow equation: 

 σa
σaT

= 1− σm
′σ f

; (4) 

the Goodman equation: 

 σa
σaT

= 1− σm
Rm

; (5) 

the Oding equation: 

 σaT = σa
2 + σmσa = σaσmax , (6) 

and the Niesłony–Böhm equation: 

 σaT = σa + (σa,R=−1 − σa,R=0 )
σm

σa,R=0
, (7) 

where   

  σa   is the stress amplitude,   

  σaT   is the transformed stress amplitude,   

  σm   is the mean stress value,   

  Rm   is the ultimate strength of the material,   

  ′σ f   is the fatigue-strength coefficient,   

  α   is the mean stress sensitivity coefficient of the material [5],   

  σaf   is the fatigue limit in tension-compression,  

and   
  σa,R  = – 1  and  σa,R  = 0  are the amplitudes obtained from the Wöhler tension curves for the rati-

os  R  = − 1  and  R  = 0. 
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Fig. 4. Diagram explaining the characteristics of some mean-stress compensation models according to Kluger and Łagoda [3]: 
(1) Goodman;  (2) Gerber;  (3) Kwofe  (α  = 0.2);  (4) NB;  (5) Morrow;  (6) Oding. 

A diagram explaining the above models is presented in Fig. 4.  In the present paper, we make an attempt to 
verify  these classical empirical formulas and the formula presented by the authors in [12] on the example of the 
experimental results obtained for S355JR steel.   

An explanation of the generation of the test signal was presented in the previous section [8].  Nevertheless, 
the algorithm of evaluation of the fatigue life can be split into several main parts, e.g., cycle and half-cycle 
counting from the random course according to the Rainflow method [11].  At present, this is the most reliable 
cycle-counting method recommended (among other things) by the ASTM society. 

As already indicated, our research deals with the verification of the compensation models of equiva-
lent transformed amplitudes due to the mean stress.  Five literature proposals and a model developed by the au-
thors were chosen for verification.  It was assumed that the stress course subjected to transformation was  
stationary with a constant value of the mean stress σm .  In [7], it was proved that, for this type of stress courses, 
the mean stress can be found in a global way.  These assumptions enable us to use the following transformation 
formula: 

 σaiT = σaiK , (8) 

where  σaiT   is the transformed stress amplitude,  σai   is the stress amplitude determined from the equivalent 
course with the use of a cycle-counting algorithm,  K   is a coefficient that depends on the transformation method 
as a function of the strength parameters and the mean-stress value  σm . 

For the coefficients  K ,  the appropriate functions used in the procedure of calculations are obtained from 
the models proposed by Oding, Goodman, Morrow, Gerber, and Kwofie [4, 11, 13] and presented in Table 2. 

A model developed by the authors in [12] is also used.  This model employs the fatigue parameters of  
the material obtained for two limit states: tension-compression with the ratio  R  = – 1  and one-way tension 
with  R  = 0.  These parameters have been taken from the the appropriate Wöhler curves.  It is assumed that  
the intermediate state between the states of material effort can be described by a linear function.  The results ob-
tained for the case of random loading  R  = – 1  have been taken from the previous experiments carried out for this 
material.  

The coefficient  KNB  is as follows:  

 KNB = 1+ (σa,R=−1 − σa,R=0 )
σm

(σa,R=0 )2
. (9) 
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Table 2 
Formulas for the Coefficient  K   Used in the Process of Calculations  

Oding (6) Goodman (5) Morrow (4) Gerber (2) Kwofie (3) 

K = 1+ σm
σa

 KGo = 1

1− σm
Rm

 KM = 1

1− σm
′σ f

 KGe =
1

1− σm
Rm

⎛
⎝⎜

⎞
⎠⎟
2  KK = 1

exp − α σm
Rm

⎛
⎝⎜

⎞
⎠⎟

 

In the cumulative damage process, we use the Palmgren–Miner [16] hypothesis: 

 D(N ) =

ni
N0(σaf /σaiT )mi=1

j∑ for σaiT ≥ aPMσaf ,

0 for σaiT < aPMσaf ,

⎧

⎨
⎪
⎪

⎩
⎪
⎪

 (10) 

where  D(N )   is the degree of damage for  N   cycles,  aPM   is the coefficient taking into account the amplitudes 
beneath  σaf ,  m   is the slope of the Wöhler curve in tension-compression,  ni   is the number of stress cycles 
with the amplitude  σaiT ,  and  N0   is the number of cycles corresponding to the fatigue limit  σaf . 

The last step of the algorithm is the evaluation of fatigue life.  It becomes possible after the determination of 
the degree of damage  D(N )   for a number of cycles performed in a loading unit.  The durability in the number 
of cycles is given by the following formula:  

 Ncal =
N

D(N )
, (11) 

where  Ncal   is the calculated fatigue life,  N   is the number of cycles in the unit, and  D(N )   is the total degree 
of damage for the period of observations.  

CONCLUSIONS 

Mean-stress compensation models are verified under the conditions of random loading.  For this purpose, 
we use a computation that consists of the rainflow cycle counting procedure and the linear Palmgren–Miner cu-
mulative damage hypothesis.  The numerical results are compared with the experimental data for six mean stress 
compensation models as presented in Fig. 5.  It is easy to see that the numerical results obtained by using the 
Goodman model differ from the experimental data to the greatest degree.  Note that two models, namely, the 
model proposed by Morrow and the model developed by the authors of the present paper, give satisfactory re-
sults in most cases.   

Some detailed observations are also formulated:  If we subject S355JR steel to a random loading with non-
zero  mean  stress,   then  we  get  the  shorter  fatigue  life  as  compared  with  the case of zero mean value.  The results  
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Fig. 5. Comparison of the experimental and computed fatigue lives of S355JR steel for random loading with  R  = 0  determined by 
Niesłony with:  (�) Gerber;  (£) Kwofe;  (¯) Morrow;  (�) Goodman;  (s) Oding;  (w) Niesłony–Böhm. 

accumulated for the uniaxial stress state in tension-compression and obtained by using the transformation models 
proposed by Gerber, Kwofie, Morrow, and the authors of the present paper lie within the value of scatter equal 
to 3.  Most of the comparison results obtained by using the Oding model are located in the unacceptable scatter-
ing area.  However it is important to note that this model is very conservative and does not overestimate the fa-
tigue life after amplitude correction.  The results obtained by the Goodman model do not lie in the accepted scatter 
area.  In view of this fact, the indicated model is not suitable for the predictions of fatigue life for the analyzed type 
of steel. 
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