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FATIGUE PARAMETER BASED ON THE ASSESSMENT OF STRESS COMPONENTS  
IN ALL MATERIAL PLANES 

C. Lu,1,2  J. Melendez,1  and  J. M. Martínez–Esnaola1 

A new fatigue parameter is proposed, which provides a new way of thinking to assess fatigue damage 
problems.  The complete stress state at a certain material point, i.e., taking into account any material 
plane at that point, is included in the method.  The influence of tension and compression state and also 
the mean stress are also included.  Some experiments with different materials and loading conditions are 
used to validate the capabilities of the proposed method.  The results show that the method provides good 
predictions for axial cyclic and/or torsion cyclic conditions with zero or nonzero mean stresses, in-phase 
and out-of-phase, different shapes of the specimen, loading waveform and loading path. 

Keywords: fatigue parameter, mean-stress effect, fatigue damage curve, complex loading, material 
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Introduction 

Fatigue is one of the most common damage mechanisms in engineering components.  The methods used for 
the evaluation of fatigue damage can be split into three main categories according to the mechanical magnitudes 
used in the definition of various criteria, i.e. stress-based, strain-based, and energy-based methods.  As a general 
rule, the stress-based methods are used for high-cycle fatigue, the strain-based methods are used in low-cycle 
fatigue and can also be used for high-cycle fatigue, and the energy-based methods can be used for both high- and 
low-cycle fatigue because they contain contributions of both stress and strain magnitudes.  Basically, in the 
stress/strain-based methods, the maximum normal or shear stress/strain is used in the case of tension fatigue or 
torsion fatigue and then some simple modifications, such as amplitude, mean value, separation between the elas-
tic/plastic components are used.  The stress invariants, like  J2 ,  hydrostatic pressure  σH,  or some equivalent 
stress/strain states, such as Mises, Tresca, etc. are also used to predict fatigue damage. 

More complex formulations assume that fatigue damage should take into account the stress or strain com-
ponents (typically, normal and shear components) that can be active in different planes at a given material point.  
Thus, a fatigue parameter (FP) given by  Δγmax /2 + SΔεn ,  where  Δγmax   is the range of maximum shear 
strains,  Δεn   is the range of normal strains in the plane of maximum range of shear strains, and  S   is a material 
constant, was proposed in [1].  It is therefore assumed that both shear and normal strains can affect fatigue dam-
age, the shear strain is the predominant factor in the course of crack formation and in the first stages of crack 
development, while the normal strain is predominant during macrocrack propagation.  In [2], the authors modi-
fied the Kandil method as follows:  Δγmax /2 + (1 – σn /2σ y )Δεn ,  where  σn   is a normal stress in the plane of 
maximum shear-strain range and  σ y   is the yield limit.  In this modification, the influence of normal stresses 
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can be taken into consideration.  The influence of normal loading was considered in [3] with the help of the 
maximum normal stress  σn

max  in the form  0.5Δγmax[1+  kσn
max /σ y ],  where  k   is a material constant.  In this 

method, it is assumed that the fatigue damage is mainly affected by the maximum shear strain range; the maxi-
mum normal stress is only used as a correcting term to revise the influence of the maximum shear strain range. 

In the energy-based methods, it is assumed that the fatigue damage is controlled by the energy dissipation in 
cyclic loading represented by the hysteretic loop in the stress-strain plot.  A fatigue parameter  σ1

maxΔε1/2 ,  
where  σ1

max  is the maximum principal stress and  Δε1,  is the range of principal strains, is presented in [4].  
Note that it represents the tractive part of a sort of hysteretic loop in a fully reversed cycle.  In this approach, the 
normal energy is used to calculate fatigue damage, which is accurate when tensile failure of the material is pre-
dominant.  The fatigue parameter in the form   

 0.25Δγ12Δσ12[1/(1 – σ12
max / ′σ f ) +1/(1 – σ22

max / ′σ f )],  

where  Δγ12   is the range of shear strains,  Δσ12   is the range of shear stress,  Δσ12
max   is the maximum shear 

stress,  Δσ22
max   is the maximum normal stress, and  ′τ f   and  ′σ f   are the shear and normal fatigue strength lim-

its, is defined in [5].  In this method, it is assumed that the shear energy makes the main contribution to the fa-
tigue damage and, at the same time, both the maximum shear and normal stresses exert some influence on the 
fatigue damage.   

In [6], the authors combine the two methods proposed above and suggest the following parameter:   

 Δε1Δσ1 + kΔγ1Δτ1,   

where  Δσ1  and  Δτ1  are the ranges of normal and shear stresses, respectively,  Δγ1  and  Δε1  are the ranges  
of shear and normal strains, respectively, and  k   is a material constant.  In this method, it is assumed that both 
shear and normal energy can affect the fatigue damage and that the relative contribution of shear and normal 
energy is quantified by the parameter  k .  Further modifications were proposed in [7] as follows:  

 ΔσnΔεn / ′σ f ′ε f + (1+ σn
m / ′σ f )(ΔτmaxΔ(0.5γmax ))/ ′τ f ′γ f ,  

where  σn
m   is the mean normal stress,  ′τ f   and  ′σ f   are the shear and normal coefficients of fatigue strength, 

and  ′ε f   and  ′γ f   are the normal and shear fatigue ductility coefficients, respectively.  In this method, the influ-
ence of mean normal stress  σn

m   is taken into account.  

A Proposed New Fatigue Parameter 

The different approaches to the evaluation of fatigue damage reviewed in the previous section indicate that 
the stress/strain-based methods are essentially based on normal/shear, stress/strain, and some modifications, such 
as those caused by the range (maximum and mean), or on a combination of some of these (the methods based on 
energy magnitudes may serve as an example). 

The proposed approach is based on the generalization of the idea that the normal and shear components of 
stresses and strains are different in different planes at a certain material point, in addition to the simple combina-
tion of maximum stress or strain values.  The definition of the new fatigue parameter is described in what fol-
lows.  The well-known Mohr’s circle representation of the stress (or strain) state is used to illustrate the main 
ideas of the proposed method. 
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Fig. 1. Mohr’s stress circle: (a) 3D stress;  (b) 2D stress.

In Fig. 1, we present the Mohr’s stress circle for the 3D stress state (Fig. 1a) and the 2D stress state 
(Fig. 1b).  The dark symbol in the figure corresponds to the normal and shear stress components in a certain ma-
terial plane.  In the methods sketched in the previous section only some stress/strain components at a certain 
point (or, maybe, at two points) are used to compute the fatigue damage.  Although the stress (strain) state at  
a material point is completely described by Mohr’s representation, the fatigue damage, generally speaking, de-
pends on the normal and shear stress (or strain) components in a given plane.  Therefore, we need a method to 
quantify the amount of damage in each plane.  It is also necessary to find a procedure of weighing with an aim  
to define the equivalent fatigue damage parameter at this point.   

The possible combinations of normal/shear stresses are represented by the shadowed region in the 3D 
Mohr’s stress circle displayed in Fig. 1a, and by the entire circumference for the plane-stress conditions 
(Fig. 1b).  The new fatigue parameter is defined as follows: 

 FP =
ΔD ⋅ ΔP∑
P

, (1) 

where  ΔD   is the fatigue damage in a certain material plane for a certain material point, which is a function 
of  σ   and  τ ,  and  ΔP   is the contribution of each material plane to the total set of possible planes; the sum-
mation is extended to all material planes and  P   is the summation of all  ΔP .  In this way, all stress/strain com-
ponents at a certain material point can be taken into account.  It is not necessary to choose certain specific  
components as the representative components to calculate the fatigue damage.  This overcomes a shortcoming of 
the methods outlined above.  The mathematical form of Eq. (1) for the 3D and 2D stress (strain) states can be 
rewritten as Eq. (2), where  ΔS /S   is an area element in the 3D Mohr’s stress circle and  ΔL /L   is an arc-length 
element in the plane of Mohr’s stress circle: 

 FP =
ΔD ⋅ ΔS∑
S

; 

   (2) 

 FP =
ΔD ⋅ ΔL∑
L

. 
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Fig. 2.  Different stress states for the 3D and 2D stress states:  (a–c) three 3D cases .  (d–f) three 2D cases. 

Since the stress components in a certain material plane can be reduced to the normal and shear components, 
we define the fatigue damage   ΔD   as follows: 

 ΔD = µ(A σ + B τ ), (3) 

where  A   and  B   are coefficients used to describe the influence of normal and shear stress components, respec-
tively, on the fatigue damage.  In order to make sure that the effects of both normal and shear stress are positive,  
A   and  B   should be greater than zero.   

In the present paper, it is assumed that the effects of normal and shear stresses are identical, i.e.,  A = B .   
In this case, we use the absolute value of  τ   in view of the top-bottom symmetry of  τ   in Mohr’s circle; other-
wise, the mean influence of  τ   becomes equal to zero as a result of averaging.  In order to make sure that the 
fatigue damage is positive, we use the absolute value of  σ ;  at the same time,  µ   is used to reflect the different 
influence of tension and compression loads and is defined as follows: 

 

 

µ =
+1

−1 ⋅ω
…

σm ≥ 0,

σm < 0,
 (4) 

where   σm   is the mean stress and ω is the coefficient used to describe the influence of compression.  In what fol-
lows, the value of  ω   is assumed to be equal to  1.  This means that tension and compression exert the same in-
fluence.  Under the conditions of multiaxial loading, the FP can be found as follows:  

 FP = FPmax − FPmin , (5) 
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where  FPmax   and  FPmin   are the maximum and minimum values of the FP in a cycle.  According to this new 
method, we can consider three cases of evaluation of the fatigue parameter both for the 3D stressed state and for 
the 2D stressed state depending on the sign of the principal stresses (see Fig. 2).  The first case corresponds to 
the situation where the minimum principal stress is greater than or equal to zero as in Figs. 2a and d.  The second 
case is realized when the maximum principal stress is less than or equal to zero as in Figs. 2b and e.  In the third 
case, the maximum principal stress is greater than zero and the minimum principal stress is smaller than zero as 
in Figs. 2c and  f .  

Sensitivity Analysis 

We now consider some simple cases to show the influence of the variations of principal stresses on the FP 
according to the proposed method.  We use Figs. 2d and e as examples to reveal the influence of principal 
stresses.  In this discussion, we assume that only one principal stress is variable in order to be able to com-
pare different degrees of influence of changes in each of the different principal stresses.  For the case depicted  
in Fig. 2d, we get the following rates of variation of the FP (the details of calculations can be found in the ap-
pendix): 

 ∂FP
∂σ1

= A
2
+ B
π

,          ∂FP
∂σ2

= A
2
− B
π

. (6) 

Similarly, for the case depicted in Fig. 2e, we get 

 ∂FP
∂σ2

= − A
2
+ B
π

,      ∂FP
∂σ3

= − A
2
− B
π

. (7) 

Note that, for the case in Fig. 2d in which  A   and  B   are greater than zero, the value of the FP increases 
with  σ1,  and the influence of  σ1  on the FP is stronger than the influence of  σ2 .  The value of  σ2   exerts only 
positive influence on the FP when the value of  A/B   is larger than  2/π .  For the case in Fig. 2e, the influence 
of  σ2   is stronger than the influence of  σ3  and, moreover,  σ3  always negatively affects the value of FP.   
In addition, when the value of  A/B  is smaller than  2/π ,  σ2   exerts a positive influence on the value of FP.   
In the other cases, the influence of variations of the principal stresses is more complicated and each case should 
be analyzed separately.   

Some other special cases, such as fully reversed torsion, fully reversed biaxial tension-compression, and ful-
ly reversed axial loading with the same stress amplitudes are depicted in Fig. 3.  It can be seen that, according to 
the new parameter proposed in this paper, the degrees of fatigue damage in the cases of fully reversed torsion 
and biaxial opposite tension-compression with the same stress amplitude are identical.  At the same time, in the 
case of fully reversed axial loading, the degree of fatigue damage is different. 

Results and Experimental Verification 

In order to check the capabilities of the proposed new fatigue parameter, we used some experimental re-
sults obtained for different materials subjected to different loading conditions.  In Figs. 4a–c, we present the data 
of fatigue tests obtained under the conditions of axial and torsion loading.  The tests shown in Fig. 4a were car-
ried  out  in  the  fully  reversed  axial  and  fully  reversed  torsion  loading  modes  with  zero  mean  stresses.  The tests  
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Fig. 3. Some cases with identical stress amplitudes:  (a) fully reversed torsion;  (b) fully reversed biaxial tension-compression; (c) fully 
reversed axial loading. 

 

Fig. 4. Dependences of the FP on the number of cycles  (N )  for different materials:  (a) S355 J2 [8],  (b) SNCM630 [9],  (c) AW-2007 
[10] [(¡) reversed axial (experiment); ( ) reversed axial loading (prediction); (¨) reversed torsion (experiment);  (- - - -) re-
versed torsion (prediction)];  (d) Haynes 188 [11]  [(¡) in/out of phase axial-load+torsion (experiment); ( ) in/out of phase 
axial-load +torsion (prediction)];  (e) 42CrMo [12] [(¡) complex loading (experiment); ( ) complex loading (prediction)]; 
(f) AW-2007 [10]  [(¡) complex loading (experiment), ( ) complex loading (fitting), (- - - -) complex loading (prediction)]. 

depicted in Fig. 4b correspond to the axial and torsion loading modes with zero or nonzero mean stresses.   
The tests in Fig. 4c were performed under the axial and torsion loading conditions with zero mean stresses and 
for different specimen shapes.  It is worth noting that, in the single axial (or single torsion) loading modes for 
different materials, different shapes of the specimens, and zero or nonzero mean stresses, the predictions per-
formed by using the new fatigue parameter are quite good. 

There are experimental data on the differences between the axial and torsion curves of fatigue damage [8, 
10] regarded as a clear indication of the fact that fatigue damage depends on the loading conditions.  Most of  
the available experimental results are for the axial and torsion loads.  In order to predict the fatigue damage  
under more complicated loading conditions, such as axial-torsion loading, in-phase and out-of-phase loading, 
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and even random loading that contain various combinations of normal and shear stresses, we assume that the 
fatigue-damage curve under complex loading conditions  F(FPc , Nc )   can be predicted as an axial fatigue damage 
curve  Q(FPa , Na )  and a shear fatigue damage curve  W (FPt , Nt ): 

 F(FPc , Nc ) = f (ξQ,ζW ). (8) 

The parameters  ξ   and  ζ   represent the influence of the axial and torsion loading conditions.  These pa-
rameters reflect the relative contributions of the axial and torsion loading conditions, respectively, to the fatigue 
damage curve obtained under the condition of complex loading.  Thus, if  ξ/ζ  = 1,  then the fatigue damage curve 
obtained under complex loading conditions is the bisector of an angle between the fatigue damage curves plotted 
under the axial and torsion loading conditions.   

The results of the tests shown in Fig. 4d were obtained for the in-phase and out-of-phase axial-torsion load-
ing conditions for different values of the mean stresses, different phase differences, and different shapes of the 
loading waveform.  Since both axial and torsional loads are included in these loading conditions, we can use these 
data to plot the fatigue damage curve directly for the complex loading conditions.  It can be seen that the pro-
posed method provides good agreement.  The tests in Fig. 4e correspond to more complicated loading conditions 
with different shapes of the load path.  It can be seen that the results are also good, to within a factor of two, ac-
cepted as reasonable in the fatigue tests. 

The tests in Fig. 4f correspond to the same material as in Fig. 4c, but the loading conditions are more com-
plicated and containing different load paths.  First, we use Eq. (8) to predict the fatigue damage curve under the 
complex loading conditions with the help of the axial and torsion fatigue damage curves but without using  
the data generated for the complex loading conditions.  Then the experimental data on fatigue under complex 
loading conditions are compared with the predicted fatigue damage curve.  The complex loading conditions have 
different loading paths but all load paths satisfy the equation  εmax /γmax = 30.5 .  Therefore, it is assumed that 
the influence coefficient  ξ/ζ = 30.5 .  This means that the fatigue curve in this particular complex loading mode 
is closer to the fatigue damage curve under the conditions of axial loading.  It can be seen that the predicted fa-
tigue damage curve almost coincides with the curve based on the direct fitting of the experimental data. 

CONCLUSIONS 

In the present paper, we propose a new fatigue parameter, which suggests a new way of thinking to tackle 
the fatigue damage problems.  The difference between this new method and the other existing methods is that 
there is no need to choose certain stresses, strains, or energy components in a certain material plane as repre-
sentative parameters to compute the fatigue damage.  The stress components in each material plane at a certain 
material point are averaged and included in the method, which can show all features of the stress state at a certain 
material point.  In this new method, the difference between the tension and compression states and the influence 
of the mean stress are taken into account.  

Some experiments with different materials and different loading conditions are used to validate the capabili-
ties of the proposed method both for the data representation and for the life prediction.  The loading conditions 
considered in the procedure of validation include reversed axial, reversed torsion, axial cycling with nonzero 
mean stress, and torsion cycling with nonzero mean stress.  We also studied different types of the specimens, 
different shapes of the loading waveform, in-phase and out-of-phase load, and different loading paths.  The ac-
cumulated results show that the proposed method provides good correlations and predictions for all investigated 
materials and loading conditions. 
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Appendix 

For the case in Fig. 2d, the FP is computed as follows:  

 
 
FP =

(A | σ | +B | τ |)!∫ ⋅ ds
L

. 

The integral is taken with respect to the angle that describes Mohr’s circle, between 0 and  π ,  in view of the 
symmetry of  τ   in Mohr’s circle as explained earlier.  Thus, we obtain 

 FP =
2 A σ1 − σ2

2
cos θ + σ1 + σ2

2
⎛
⎝

⎞
⎠ + B σ1 − σ2

2
sin θ⎡

⎣⎢
⎤
⎦⎥
σ1 − σ2

2
dθ

0

π
∫

π(σ1 − σ2 )
. 

Finally, we get  

 ∂FP
∂σ1

= A
2
+ B
π

,        ∂FP
∂σ2

= A
2
− B
π

. 
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