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STRESSED STATE OF A QUASIORTHOTROPIC HALF PLANE WITH  
CURVILINEAR EDGE 

M. P. Savruk,1,2  A. Kazberuk,3  and  A. B. Chornen’kyi1 UDC 539.3 

By the method of singular integral equations, we consider a plane periodic problem of the theory of elas-
ticity for a quasiorthotropic half plane containing an infinite row of edge angular rounded notches.   
By using the unified approach to the solution of the problems of stress concentration near notches with 
sharp and rounded vertices, we determine the stress intensity factors at the sharp tips of the correspond-
ing edge notches.  The same method is used for the solution of the problem of stress distribution in  
a quasiorthotropic half plane with sinusoidal edge. 

Keywords: quasiorthotropic material, periodic system of edge notches, method of singular integral 
equations, stress intensity factors.  

Introduction 

The influence of free surface of the body on the stress distribution near edge notches is mainly studied for 
the elastic half plane.  A two-dimensional periodic problem for an elastic isotropic half plane was, as a rule, ana-
lyzed for the case where the half plane contains a system of cracks, holes, or inclusions [1, 2]. 

In the present work, we consider a periodic problem for a quasiorthotropic half plane with curvilinear edge. 
As in the isotopic case [1–5], the boundary-value problem for this domain is reduced to a singular integral equa-
tion (SIE) with Hilbert kernel on a part of the boundary of the half plane located in the main band of periods.   
By using the numerical method of quadrature, we find the solution of integral equation for the half plane with 
sinusoidal and sawtooth edges. 

Quasiorthotropic Plane with Periodic System of Curvilinear Cracks 

Consider an elastic quasiorthotropic plane [6–10] referred to a Cartesian coordinate system xOy .  The plane 
is weakened by a periodic system of cracks along smooth curvilinear contours.  A single crack is located in  
a band of periods of width d.  The Ox - and Oy -axes are directed along the principal axes of orthotropy. The con-
tour of the crack located in the main band of periods  x ≤ d( , − ∞ < y < ∞ )   is denoted by  L .  We assume that 
the faces of all cracks are subjected to the action of the same self-balanced load as the contour  L : 

 N ± (t) + iT ± (t) = p0(t), t = x + iy ∈L , (1) 
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where  N ± (t)  and  T ± (t)   are the normal and tangential components of the stress vector.  Moreover, at infinity, 
the plane is subjected to the action of uniaxial tensile stresses  σ x

∞ = q .  
The stress-strain state of the plane satisfies the conditions of periodicity (the stresses are periodic functions 

of  x  with a period  d).  
The posed problem is solved by the method of SIE [1, 2].  We apply the method of superposition and seek 

the complex stress potentials for the quasiorthotropic body in the form  

 Φ1
∗(z1) = Φ1

0(z1) + Φ1(z1), Ψ1
∗(z1) = Ψ1

0(z1) +Ψ1(z1), 

where   

 Φ1
0(z1) = γ −2q/4       and      Ψ1

0(z1) = − γ −2q/2 . 

Here and in what follows, subscript “1” always means that the corresponding complex quantities are related 
to the plane  z1 = x + iγy ,  where  γ   is the parameter of orthotropy (for the plane stressed state  γ = Ex /Ey4 ,  
where  Ex   and  Ey   are the moduli of elasticity along the Ox - and Oy -axes, respectively).  The integral images 
of the Kolosov–Muskhelishvili complex stress potentials  Φ1

*(z1)   and  Ψ1
*(z1)  for the analyzed problem have 

the form similar to their form in the isotropic case [11]: 

 Φ1
*(z1) =

q
4γ 2

+ 1
2d

′g1
L1
∫ (t1) cot

π
d
(t1 − z1) dt1, 

   (2) 

 Ψ1
*(z1) = − q

2γ 2
+ 1
2d

′g1(t1) cot
π
d
(t1 − z1) dt1

⎧
⎨
⎩L1

∫  

  − cot π
d
(t1 − z1) +

π
d
(t1 − t1 + z1) csc2

π
d
(t1 − z1)

⎡
⎣⎢

⎤
⎦⎥

′g1(t1)dt1
⎫
⎬
⎭

, 

where  ′g1(t1)  is the unknown density expressed via the derivative of the jump of vector of displacements  u , v   
in passing through the contour  L    associated with the contour  L1   in the plane  z1 = x + iγy . 

By using the expressions for the components of stress tensor  σ x ,  σ y ,  τxy   via the complex potentials  
Φ1

*(z1)   and  Ψ1
*(z1)   and satisfying the boundary condition (1) with the help of potentials (2), we obtain the SIE 

in the form [2, 7] 

 
 
[K1(t1, ′t1) ′g1(t1)dt1 + L1(t1, ′t1) ′g1(t1) dt1]

L1
∫ = π !P1( ′t1), ′t1 ∈L1, (3) 

where the kernels and the right-hand side are given by the formulas 

 K1(t1, ′t1) =
π
2d

cot π
d
(t1 − ′t1) + cot π

d
(t1 − ′t1)

d ′t1
d ′t1

⎡

⎣
⎢

⎤

⎦
⎥, 
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 L1(t1, ′t1) =
π
2d

1− d ′t1
d ′t1

⎛
⎝⎜

⎞
⎠⎟
cot π

d
(t1 − ′t1) −

π
d
(t1 − ′t1 + ′t1 − t1) csc2

π
d
(t1 − ′t1)

d ′t1
d ′t1

⎡

⎣
⎢

⎤

⎦
⎥, 

 
 
!P1(t1) =

1
2γ

(1+ γ )p( ′t ) − (1− γ )p( ′t ) d ′t
d ′t

⎡
⎣⎢

⎤
⎦⎥
d ′t
d ′t1

, 

where  p( ′t ) = p0( ′t ) − q(1− d ′t /d ′t )/2γ 2 . 
For any continuous right-hand side  p( ′t ),  the integral equation (3) possesses a unique solution in the class 

of functions with integrable singularity at the ends of the contour  L   under the additional condition 

 ′g (t)dt
L
∫ = a0 = 0  (4) 

guaranteeing the uniqueness of displacements in traversing the contour  L . 

Periodic Boundary-Value Problem of the Theory of Elasticity for a Half plane with Curvilinear Edge 

Consider an elastic half plane with smooth periodic curvilinear edge.  A part of the contour of this edge lo-
cated in the main band of periods  x ≤ d( )  is denoted by  L .  We also assume that a periodic load  

 N + iT = p0(t), t ∈L  

acts upon the edge of the half plane. 
The complex stress potentials and the integral equation of the posed problem are obtained from the results, 

presented above for the periodic system of curvilinear cuts in the elastic plane under the assumption that the con-
tour  L   intersects the entire main band of periods and the boundaries of the obtained half planes are smooth 
lines.  This enables us to reduce Eq. (3) to a complete SIE with Hilbert kernel [12].  This equation has a solution 
that depends on an arbitrary constant only under the condition  

 p0(t)dt
L
∫ = 0  (5) 

guaranteeing the equality of the resultant vector of external forces acting on the contour  L   to zero.  In what 
follows, we assume that the external load satisfies condition (5).  A unique solution of Eq. (3) is obtained under 
the additional condition (4), which has a different physical interpretation in this case.  Indeed, this condition now 
guarantees the periodicity of the vector of jump of displacements with respect to the variable  x . 

By analogy with the integral equation for a multiply connected domain [8], we add a regularizing operator 
to the left-hand side of Eq. (3).  As a result, we arrive at the following modified integral equation: 

 
 
[K1(t1, ′t1) ′g1(t1)dt1 + L1(t1, ′t1) ′g1(t1)dt1]

L1
∫ + δ

d
d ′s1
d ′t1

a0 = π !P1( ′t1), ′t1 ∈L1 , (6) 

which has a unique solution for any right-hand side   !P1( ′t1).  If the external load satisfies condition (5), then 
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the operator  a0   in (4) is equal to zero and Eq. (6) gives the solution of the posed problem.  Here,  ′s1   is the arc 
abscissa corresponding to a point  ′t1   on the contour  L1   and  δ ≠ 0   is an arbitrary real number. 

We represent the parametric equation of the contour  L1   in the form 

 t1 = lω1 ξ( ) = (1+ γ )t + (1− γ )t
2

, − π ≤ ξ ≤ π , 

where  l   is a chosen parameter with dimension of length and the equation 

 t = lω(ξ), π ≤ ξ ≤ π  (7) 

describes the contour  L   in the plane  z = x + iy . 
We now represent the integral equation (9) in the dimensionless form:  

 
 

1
π

M1(ξ, η)u(ξ) + N1(ξ, η)u(ξ)⎡⎣ ⎤⎦dξ
−π

π

∫ = !P1(η), − π ≤ η ≤ π , (8) 

where  

 M1(ξ, η) = lK1 lω1(ξ), lω1(η)( ) + δl
d

′ω1(η)
′ω1(η)

, N1(ξ, η) = lL1 lω1(ξ), lω1(η)( ) , 

 
 
u ξ( ) = ′g1 lω1(ξ)( ) ′ω1(ξ)

q
, !P1(η) =

!P1(lω1(η))
q

. 

Hence, we have reduced our problem to finding a 2π -periodic continuous function of the SIE (8), which has 
a unique solution for any right-hand side.  The numerical solution of this equation can be found by the method 
of quadratures. 

Quasiorthotropic Half Plane with Sinusoidal Edge 

Consider the problem tension of an elastic load-free  [ p0(t) = 0 ]  half plane with sinusoidal edge at infinity.  
Here and in what follows, we choose the maximum depth of edge notches as the parameter  l   (Fig. 1).  We rep-
resent the function  ω(ξ)   in the parametric equation (7) for a sinusoid in the form 

 
 
ω(ξ) = ξ

π!γ
− i(1+ cos ξ)

2
, − π ≤ ξ ≤ π , 

where the parameter   !γ = 2l /d . 
The stresses acting on the edge of the half plane are given by the formula [14]  

 σ s
*( ′t ) = 4 Re q

4γ 2
+ Φ1

− ( ′t1)
⎡

⎣
⎢

⎤

⎦
⎥ , ′t1 ∈L , 
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Fig. 1. Quasiorthotropic half plane with periodic curvilinear edge.

where  

 Φ1
− ( ′t1) = − i

2
′g1( ′t1) +

1
2d

′g1(t1) cot
L1
∫

π
d
(t1 − ′t1) dt1 .  

For the stress concentration factor (SCF)  kt = σ s
* /q   at the notch tip, we get  

 kt = 4 Re 1
4γ 2

− i
2

u(0)
′ω1(0)

+ lπ
nd

u(tk ) cot
π
d
l ω1(ξk ) − ω1(0)[ ]

k=1

2n

∑
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
. (9) 

Here,   

 ξk = π(2k −1)/(2n) − π,  k = 1, 2n .   

The value of  u(0)   is determined by using the Lagrange interpolation formula on uniform nodes:  

 u(t) = 1
2n

u(ξk )
k=1

2n

∑ sin [n(t − ξk )]cot
t − ξk
2

⎛
⎝⎜

⎞
⎠⎟ . 

The numerical analysis of the SCF (9) was carried out for the parameter   !γ = 2l /d   within the range  
 0.01 ≤ !γ ≤ 100   (Fig. 2). 

As the radius of curvature approaches zero, the SCF  kt   tends to infinity and, as the distance between the 
notch tips increases, i.e., as the parameter   !γ   decreases,  the value of  kt   approaches 1 (the case of a half plane 
with rectilinear edge).  

Rounded Edge Angular Notches 

Assume that an elastic half plane is weakened by periodically arranged angular notches with rounded verti-
ces.  The edge of the half plane is free of loads  [ p0(t) = 0 ]  and a tensile stress  σ x = q   is assigned at infinity.  
The contour of the notch consists of rectilinear domains oriented at an angle  2β   joined by a circular arc of radi-
us  ρ1 = ρ  and also smoothly connected with the rectilinear edge of the half plane by a circular arc of radius  ρ2 .  
The length of the rectilinear part of the edge of half plane located between the neighboring notches is equal 
to  2a  (Fig. 3). 
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Fig. 2.  Stress concentration factor  kt   at the notch tip as a function of the parameter  2l /d   for the quasiorthotropic half plane with 
sinusoidal edge. 

 

Fig. 3.  Quasiorthotropic half plane weakened by a periodic system of rounded angular notches. 

We now introduce dimensionless parameters   

 ε1 = ε = ρ/l ,      ε2 = ρ2 /l ,      ε3 = a/l ,      and       !γ = 2l /d    

satisfying the following relation:  

 
 
!γ = 1

1− (ε1 + ε2 )(1− sinβ)[ ] tanβ + (ε1 + ε2 ) cosβ + ε3
. 
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Fig. 4. Stress concentration factor at the vertex of a U-shaped notch  (β  = 0)  as a function of the dimensionless distance between 
the notches for their different relative depths and the values of parameter  ε  = 1  (a) and  ε  = 0.5  (b). 

In view of the symmetry of contour  L   about the Oy -axis, we can represent its parametric equation in 
the form  

 t = lω(ξ) = l
− ω0(− ξ), − π ≤ ξ < 0,

ω0(ξ), 0 ≤ ξ ≤ π.

⎧
⎨
⎪

⎩⎪
 

Here, we have the following function: 

ω0(ξ) =

ε1 sin
ξc
ε1

⎛
⎝⎜

⎞
⎠⎟
+ i (ε1 −1) − ε1 cos

ξc
ε1

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥
, 0 ≤ ξ < ξB ,

ε1 cosβ + c(ξ − ξB ) sinβ + i ε1(1− sinβ) −1[ ] + c(ξ − ξB ) cosβ{ } , ξB ≤ ξ < ξC ,

1
γ
− ε3

⎛
⎝⎜

⎞
⎠⎟
− ε2 cos

c(ξ − ξC )
ε2

+ β⎡
⎣⎢

⎤
⎦⎥
+ i −ε2 + ε2 sin

c(ξ − ξC )
ε2

+ β⎡
⎣⎢

⎤
⎦⎥

⎧
⎨
⎩

⎫
⎬
⎭
, ξC ≤ ξ < ξD ,

1
γ
− ε3

⎛
⎝⎜

⎞
⎠⎟
+ c(ξ − ξD ), ξD ≤ ξ ≤ π,

⎧

⎨

⎪
⎪
⎪
⎪
⎪
⎪⎪

⎩

⎪
⎪
⎪
⎪
⎪
⎪
⎪

where 

 ξB = ε1(π/2 − β)
c

, ξC = ξB + 1− (ε1 + ε2 )(1− sinβ)
c cosβ

, 
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Fig. 5. Dependences of the SCF for a quasiorthotropic half plane with sawtooth edge on the opening angle of the notch  2β   for the 
relative rounding radius  ρ/l  = 0.5. 

 ξD = ξC + ε2(π/2 − β)
c

, 

 c = ε3 + (ε1 + ε2 )(π/2 − β) + 1− (ε1 + ε2 )(1− sinβ)[ ]/cosβ
π

. 

We performed the numerical analysis of the SCF for different values of the parameters  ε1  and  ε3  and the 
angle  β   as  ε2 → 0 .  Setting  β = 0,  we obtain a periodic system of U-shaped edge notches (Fig. 4).  

We also consider the case of a half plane with sawtooth edge in which the rounded angular notches are con-
nected  (ε3 = 0 ).  We computed the dependences of SCF on the opening angle  2β   (Fig. 5) for different relative 
radii of curvature at the notch tips.  It is easy to see that the SCF take their maximum values at the inner points 
of the interval  0 < 2β < π. 

The stress concentration factors at the tips of rounded angular notches in the quasiorthotropic plane take 
higher values when the parameter of orthotropy  γ > 1,  i.e., the SCF is higher if the axis of higher modulus of 
elasticity coincides with the axis of tension of the plane.

Sharp Angular Notches in the Quasiorthotropic Half Plane 

To calculate the generalized stress intensity factors (SIF) at the tips of sharp edge angular notches, we use 
the dependence [1, 2] 

 
 
!KI
V = 1

RI
lim
ρ→0

[(2πρ)λIσ s
∗(0)] . 

For this purpose, at the tip of a sharp angular notch, it is necessary to know both the coefficient of influence 
of rounding of the notch  RI  and  the  parameter  of stress singularity  λΙ .  Thus, for the quasiorthotropic material,  
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Fig. 6. Dimensionless stress intensity factor  !FΙV   as a function of the opening angle  2β   for relative distances between the edge angu-
lar notches  a /l  = 0  (a) and  a /l  = 2  (b) in the quasiorthotropic half plane. 

we have [11, 12] 

 λΙ = 1.247 cosβ1(α) −1.312 cos2 β1(α) + 0.8532 cos3 β1(α) − 0.2882 cos4 β1(α), 

where  β1(α) = π + arctan (γ tanα),  and  α = π − β .  In Fig. 6, we present the obtained dependences of the di-
mensionless SIF   !FI

V = !KI
V /(p(πl)λΙ )  on the opening angle of the notch 2β .  

If 2β = 180°, then the singularity of stress field at the notch tip disappears and, therefore,  
!FΙV = 1, which 

is a consequence of the accepted definition of generalized SIF.  

CONCLUSIONS 

We considered a periodic problem of the theory of elasticity for a quasiorthotropic half plane with curvilin-
ear edge of periodic form.  The boundary-value problem for this domain is reduced to SIE.  We determined  
the SCF at the vertices of sinusoidal, U-shaped, and rounded angular notches in the quasiorthotropic half plane 
subjected to uniaxial tension at infinity.  We computed the SIF at the sharp tips of edge angular notches in the 
quasiorthotropic half plane as functions of the opening angle of the notch.  
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