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HARMONIC VIBRATION AND RESONANCE EFFECTS IN THE CASE OF 
LONGITUDINAL SHEAR OF A HOLLOW CYLINDER WITH CRACK 

O. I. Kyrylova1,3  and  V. V. Mykhas’kiv1,2 UDC 539.3 

We propose an efficient analytic-numerical method for the evaluation of dynamic stresses in a hollow 
cylindrical body of arbitrary cross section with a through crack under the conditions of antiplane defor-
mation.  This method enables us to separately solve the integral equations on the surface of the defect 
and satisfy the conditions of harmonic loading on the boundary of the body.  We deduce the formulas 
for the dynamic stress intensity factors in the vicinity of the crack and study the influence of its geomet-
ric parameters and the frequency of vibration on the indicated factors, in particular, with the evaluation 
of resonance frequencies. 

Keyword:  hollow cylinder, tunnel crack, harmonic load, stress intensity factor, resonance effects, 
method of integral equations. 

Introduction 

The analysis of the stressed state of bounded bodies with cracks under harmonic loads is quite urgent both 
for the diagnostics of defects, in view of the information about their influence on the resonance frequencies of 
vibration [1], and for the determination of the conditions of fracture of the bodies by estimating the stress inten-
sity factors in the vicinity of the cracks [2].  The preliminary results in this direction were mainly obtained for 
bounded and semibounded bodies with cracks or thin inclusions [3–12].  The situations in which the bodies occu-
py bounded domains were studied less comprehensively.  This is explained by the fact that, by applying the 
method of boundary integral equations, the original problems are reduced to connected systems of integral equa-
tions given both on the surfaces of defects and on the boundary of the body [13–17].  This explains the observed 
significant complication of the numerical realization of the method, especially for multiply connected domains.  
In what follows, we propose an approach that makes it possible to solve the integral equations on the surfaces of 
cracks and satisfy the conditions of loading on the boundary of the body. 

Formulation of the Problem 

Consider an infinite hollow elastic cylinder with elements parallel to the Oz -axis  (Fig. 1).  The section  
of this cylinder by the plane  xOy   is a doubly connected domain bounded by arbitrary closed smooth curves.   
In a polar coordinate system  Orϕ ,    these curves are described by the following equations:  r0 = r0ψ0(ϕ)   for 
the outer boundary of the cross section and  r1 = r1ψ1(ϕ)   for its inner boundary;  0 ≤ ϕ < 2π .   
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Fig. 1.  Hollow cylinder with through crack. 

The cylinder contains a through crack, which occupies a segment of length  2a  in the plane  xOy   and does 
not go beyond the boundaries of the cross section. 

The process of longitudinal shear vibration in the body is caused by the action of a load  P(ϕ)e−iωt   har-
monic in time t  and directed along the Oz -axis on the lateral surface of the cylinder, where  P(ϕ)  is a given 
amplitude of load and ω is its circular frequency.

 In what follows, the factor  e−iωt   is omitted in our analysis.  Under the formulated conditions, the cylinder 
is in the state of antiplane deformation in which solely the z-component of the vector of displacements  w   is not 
equal to zero.  This component satisfies the Helmholtz equation [18], which takes the following form in the po-
lar coordinate system: 

 Δw + κ2
2w = 0 , 

   (1) 

 Δ = ∂2

∂r2
+ 1
r
∂
∂r

+ 1
r2

∂2

∂ϕ2 , 

where   

 κ2
2 = ω2c2−2 ,      c22 = Gρ−1,  

and  G ,  and  ρ  are the shear modulus and the density of the material of the cylinder, respectively.   
We describe the load on the outer boundary of the cylindrical body by the following boundary conditions 

for the tangential stresses  τnz : 

 τnz r0ψ0(ϕ),ϕ( ) = GP(ϕ), 0 ≤ ϕ < 2π , (2) 

where  n   is the vector of normal to the surface. 
Assume that the inner boundary of the body is immobile.  Then 

 w r1ψ1(ϕ), ϕ( ) = 0, 0 ≤ ϕ < 2π . (3) 

For the formulation of the boundary conditions on the crack, we choose a local coordinate system  O1x1y1   
such that the defect is located in the plane  y1 = 0   (Fig. 1).  The surface of the crack is assumed to be free of 
loads.  Then  

 τzy1 (x1, 0) = 0, x1 < a . (4) 
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Let  w(1)(x1, y1)  be the z -component of the vector of displacements  w   in the case of transition from  
the polar coordinate system to the Cartesian coordinates  O1x1y1.  On the crack surface, the displacement  
w(1)(x1, y1)  is discontinuous with a jump described by the function  

 χ(x1) = w(1)(x1, + 0) − w(1)(x1, − 0) ,      χ(± a) = 0 . (5) 

Thus, we reduce the analysis of the steady (in time) deformation of the analyzed body weakened by a crack 
to the solution of the differential equation (2) with the boundary conditions (2)–(5). 

Scheme of Satisfying the Boundary Conditions on the Crack 

We first consider a discontinuous solution  w1
(1)   of the Helmholtz equation (1) with jump (5) on the crack 

surface, which takes the following form in the coordinate system  x1O1y1 [3, 12]: 

 w1
(1)(x1, y1) =

∂
∂y1

χ η( ) f η− x1, y1( )dη
−a

a

∫ , 

 f η− x1, y1( ) = − i
4
H0

1( ) κ2 η− x1( )2 + y12
⎛
⎝⎜

⎞
⎠⎟ . (6) 

In relation (6),  H0
(1)  is the Hankel function of the first kind of order zero.   

Further, in the polar coordinate system  Orϕ ,  we represent the displacements in the cylinder in the form of 
superposition of two components, namely,  

 w(r,ϕ) = w0(r,ϕ) + w1(r,ϕ) , (7) 

where  w1(r,ϕ)   is displacement (6) after transition to the polar coordinates and  w0(r,ϕ)   is the solution of the 
Helmholtz equation (1), which is later used to satisfy the boundary conditions (2) and (3).   

We seek this solution in the form of a linear combination of  N   partial solutions of the Helmholtz equa-
tion (1), which are linearly independent in the cross-sectional region and form a complete closed system of func-
tions [19]: 

 w0(r,ϕ) = r0 Akgk r,ϕ( ) + Bkhk r,ϕ( )( )
k=1

N

∑ , 

 g2m−1(r,ϕ) = Jm−1(κ2r) cos(m − 1)ϕ, g2m (r,ϕ) = Jm (κ2r) sinmϕ , (8) 

 h2m−1(r,ϕ) = Hm−1
1( ) (κ2r) cos(m −1)ϕ, h2m (r,ϕ) = Hm

1( )(κ2r) sinmϕ . 

In relations (8),  Ak   and  Bk   are unknown coefficients and  Jm   and  Hm
(1)   are cylindrical functions. 

To satisfy the boundary conditions on crack (4), we pass to the coordinate system  O1x1y1   in representa-
tion (7).  This yields 
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 w(1)(x1, y1) = w0
(1)(x1, y1) + w1

(1)(x1, y1) , 
   (9) 

 w0
(1)(x1, y1) = r0 Akgk

(1) x1, y1( ) + Bkhk
(1) x1, y1( )⎡⎣ ⎤⎦

k=1

N

∑ . 

Further, we substitute relation (9) in the boundary condition (4) and arrive at the integral equation for the 
derivative of the jump of displacements on the crack  ′χ .  We separate the singular part of this equation and use 
the following notation: 

 η = aτ, x1 = aς, κ0 = κ2r0,
a
r0

= γ , κ2a = γκ0,
r1
r0

= λ . 

As a result, the equation takes the form 

 1
2π

′χ aτ( ) 1
τ − ς

+Q τ − ς( )⎡
⎣⎢

⎤
⎦⎥−1

1

∫ dτ = f ς( ), (10) 

where  Q   is the regular component of the kernel (here, we do not present the expression for this component be-
cause it is too cumbersome) and 

 f (ς) = Ak fk1(ς) + Bk fk2(ς)( )
k=1

N

∑ , 

 fk1(ς) = −
∂gk

1( ) aς, 0( )
∂y1

, fk2(ς) = −
∂hk

1( ) aς, 0( )
∂y1

. 

In view of linearity, the solution of the integral equation (10) can be represented via the new unknown func-
tions  Sk

j   ( j = 1, 2)  as follows: 

 χ′ (aτ) = AkSk1(τ) + BkSk2(τ)( )
k=1

N

∑ . (11) 

As a result, this equation turns into a sequence of equations for the functions  Sk
j   ( j = 1, 2),  which differ only 

by right-hand sides, namely, 

 1
2π

Ski (τ)
1

τ − ς
+Q(τ − ς)⎡

⎣⎢
⎤
⎦⎥−1

1

∫ dτ = fki ς( ) , i = 1, 2, k = 1, N . (12) 

Equations (12) should be supplemented by the equalities, which follow from the conditions of crack closure 
at the crack tips: 

 Ski (τ)dτ = 0
−1

1

∫ . (13) 
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To construct approximate solutions of the system of equations (12), (13), we separate the square-root factor 
in the form 

 Ski (τ) =
ψ k

i (τ)

1− τ2
. (14) 

Further, by using the method of mechanical quadratures [20, 21] in which the roots of the Chebyshev poly-
nomial  Un−1(ς) ,   

 ς j = cos πj
n
,      j = 1, 2,…, n −1,   

play the role of collocation points, from the integral equations (12) and (13), we obtain the following system of 
linear algebraic equations for the values  ψ km

i   of the functions  ψ k
i (τ)  at the interpolation nodes: 

 1
2π

amψ km
i

m=1

n

∑ 1
τm − ς j

+Q(τm − ς j )
⎡

⎣
⎢

⎤

⎦
⎥ = fki (ς j ), i = 1, 2, k = 1, n −1, 

   (15) 

 1
2π

amψ km
i

m=1

n

∑ = 0 . 

Solving Eqs. (15), we approximately restore each function ψ k
i τ( ) by the interpolation polynomial 

 ψ k
i (τ) ≈ ψ km

i Tn (τ)
τ − τm( )Tn′ τm( )m=1

n

∑ , (16) 

where  

 ψ km = ψ k (τm )       and      τm = cos π 2m −1( )
2n

,     m = 1,…, n ,   

are the roots of the Chebyshev polynomial of the first kind  Tn (τ). 

Scheme of Satisfying of the Boundary Conditions on the Lateral Surfaces of the Cylinder 

We now determine the unknown coefficients  Ak   and  Bk   appearing in representation (8) from conditions 
(2) and (3) on the surfaces of the cylinder.  For this purpose, from relations (7), we find the boundary values of 
displacements and the corresponding stresses: 

 τnz r0ψ(ϕ),ϕ( ) = τxz r0ψ(ϕ),ϕ( ) cx + τyz r0ψ(ϕ),ϕ( ) cy , (17) 

where  cx   and  cy   are the components of the normal n
 
to the outer boundary of the cross section. 
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Substituting the boundary values of displacements and stresses in conditions (2) and (3), we arrive at the 
following relations: 

 Ak Φk
1 (τ)G(τ,ϕ)dτ + Fk1(ϕ)

−1

1

∫
⎛

⎝
⎜

⎞

⎠
⎟

k=1

N

∑ + Bk Φk
2(τ)G(τ,ϕ)dτ + Fk2(ϕ)

−1

1

∫
⎛

⎝
⎜

⎞

⎠
⎟ = P(ϕ)

k=1

N

∑ , 

   (18) 

 Ak
k=1

N

∑ Φk
1 (τ)E(τ,ϕ)dτ +

−1

1

∫ Bk
k=1

N

∑ Φk
2(τ)E(τ,ϕ)dτ

−1

1

∫  

  = − Ak
k=1

N

∑ gk r1(ϕ),ϕ( ) + Bk
k=1

N

∑ hk r1(ϕ),ϕ( )
⎛

⎝⎜
⎞

⎠⎟
. 

Here, the functions G(τ,ϕ)   and  E(τ,ϕ)   are the combinations of the function  f η− x1, y1( )  from Eq. (6) and 
its derivatives on the outer boundary of the cross section and we represent  Fk1(ϕ)  and  Fk2(ϕ)  via the values of 
the derivatives of the functions  gk (r,ϕ)  and  hk (r,ϕ)   from Eq. (8) on this boundary.  In deducing relations 
(18), we also used the equality  

 χ(aτ) = a AkΦk
1 (τ) + BkΦk

2(τ)( )
k=1

N

∑ ,      Φk
i (τ)( )′ = Ski (τ), i = 1, 2 , 

which follows from representation (11). 
To compute the integrals in equalities (18), it is necessary to use the following approximation [12] for the 

functions  Φk
i (τ)   obtained from relations (14) and (16): 

 Φk
i (τ) ≈ 1− τ2Skni (τ) , 

 Skni (τ) = − 2
n

ψ km
i

m=1

n

∑ Tp (τm )Up−1(τ)
pp=1

n−1

∑  , 

where  Up−1(τ)  is a Chebyshev polynomial of the second kind.  As a result, we compute the integrals in 
Eqs. (18) by using the following quadrature formula [21]: 

 Φk (τ)K (τ,ϕ)dτ = amψ km DlmK (Zl ,ϕ)
l=1

n

∑
m=1

n

∑
−1

1

∫ , 

 Dlm = − 2
n +1

sin lπ
n +1

cos p(2m −1)π
2n

sin πlp
n +1

pp=1

n−1

∑ , 

 Zl = cos πl
n +1

. 
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Then we reduce the boundary conditions on the boundaries of the cross section of the cylinder to the follow-
ing equations: 

 Ak amψ km
1 DlmG(Zl ,ϕ)

l=1

n

∑ + Fk1(ϕ)
m=1

n

∑
⎛

⎝⎜
⎞

⎠⎟k=1

N

∑  

  + Bk amψ km
2 DlmG(Zl ,ϕ)

l=1

n

∑ + Fk2(ϕ)
m=1

n

∑
⎛

⎝⎜
⎞

⎠⎟k=1

N

∑ = P(ϕ), 

   (19) 

 Ak amψ km
1 DlmE(Zl ,ϕ)

l=1

n

∑ + gk (ϕ)
m=1

n

∑
⎛

⎝⎜
⎞

⎠⎟k=1

N

∑  

  + Bk amψ km
2 DlmE(Zl ,ϕ)

l=1

n

∑ + hk (ϕ)
m=1

n

∑
⎛

⎝⎜
⎞

⎠⎟k=1

N

∑ = 0 . 

By using collocation procedures at the nodes   

 σ l =
2πl
N

,     l = 1,…, N ,   

and relations (19), we obtain the following system of linear equations for the coefficients  Ak   and  Bk  

 Ak amψ km
1 DlmG(Zl ,σ l )

l=1

n

∑ + Fk1(σ l )
m=1

n

∑
⎛

⎝⎜
⎞

⎠⎟k=1

N

∑  

  + Bk amψ km
2 DlmG(Zl ,σ l )

l=1

n

∑ + Fk2(σ l )
m=1

n

∑
⎛

⎝⎜
⎞

⎠⎟k=1

N

∑ = P(σ l ), 

   (20) 

 Ak amψ km
1 DlmE(Zl ,σ l )

l=1

n

∑ + gk (σ l )
m=1

n

∑
⎛

⎝⎜
⎞

⎠⎟k=1

N

∑  

  + Bk amψ km
2 DlmE(Zl ,σ l )

l=1

n

∑ + hk (σ l )
m=1

n

∑
⎛

⎝⎜
⎞

⎠⎟k=1

N

∑ = 0 . 

The stress intensity factor (SIF)  K ±   at the opposite crack tips  x1 = ± a   are the quantities characterizing 
the behavior of stresses in the vicinity of the defect.  In the analyzed case, they are given by the formulas 

 K ± = a lim
ς→±1±0

ς2 −1τy1z (aτ, 0). 

Solving the systems of equations (15), (20), we express the dimensionless values of these coefficients 

   k± = K ±

G a
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Fig. 2. Crack in a cylinder whose cross section is bounded by two ellipses.

by the following dependences: 

 k+ = 1
2n

Ak −1( )m ψ km
1 cot γ m

2
+

m=1

n

∑
k=1

N

∑ Bk −1( )m ψ km
2 cot γ m

2m=1

n

∑
k=1

N

∑
⎛

⎝⎜
⎞

⎠⎟
, 

 k− = −1( )n+1
2n

Ak −1( )m ψ km
1 tan γ m

2
+

m=1

n

∑
k=1

N

∑ Bk −1( )m ψ km
2 tan γ m

2m=1

n

∑
k=1

N

∑
⎛

⎝⎜
⎞

⎠⎟
, 

where   

 γ m = π(2m −1)
2n

.   

For the practical evaluation of the SIF, sufficiently accurate results were obtained by choosing the upper bound-
aries in approximation calculations as follows: N = n = 10 .

Numerical Analysis of the Intensity of Dynamic Stresses and Resonance Phenomena 

For the numerical realization of the proposed method, we consider a cylinder whose cross section is bound-
ed by two ellipses (Fig. 2) under a load  P(ϕ) = sin 2ϕ   (the angle  ϕ   is measured from the point А on the major 
semiaxis of the outer contour).  The eccentricities of the ellipses were assumed to be equal:  ε = 0.5 ;  the ratio of 
the semiaxes of ellipses was specified as follows:  r1/r0 = 0.5 .  The center of the crack was located on the major 
semiaxis of the external ellipse.  The results of numerical investigations of the SIF within the frequency range 
and, in particular, their transition into the resonance mode in which the monotonicity of the frequency depend-
ences of SIF is lost are presented in Fig. 3.  In Fig. 3а, we show the results obtained for an inclined crack of con-
stant length equal to one third of the distance between the vertices of the ellipses AB whose center is located at 
identical distances from the boundaries of the cross section.  The analysis of the curves demonstrates that, prior 
to the attainment of the first resonance frequency, the SIF decrease as the inclination angle of the crack increas-
es.  The inclination angle also strongly affects the values of resonance frequencies.  Thus, for the angles  α  = 0°  
and  α  = 90°,  the resonance is absent.  However, it is observed for the other inclination angles, where  
κ0 ≈ 2.6 .  Note that all analyzed cases are characterized by the resonance behavior of the SIF for κ0 ≈ 3.8.   
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Fig. 3. Dependences of the absolute values of the SIF  k+   on the dimensionless wave number  κ0 = κ2r0   for different angles of 
inclination of the crack [(a): (1)  α  = 0°;  (2)  α  = 30°;  (3)  α  = 45°;  (4)  α  = 60°;  (5)  α  = 90°]  and for  α  = 0°  and differ-
ent values of crack length [(b):  (1)  γ  = 0.0946;  (2)  γ  = 0.1412;  (3)  γ  = 0.188]. 

We also analyzed a crack oriented along the line АВ with variable length (Fig. 3b).  The left end of the 
crack  C   is fixed, while the right end  D  is made closer to the outer boundary of the cross section by varying 
the parameter  γ = a/r0   from 0.0945 to 0.189  when the crack approaches the outer boundary.  It was shown that 
this parametrization almost does not influences the value of the SIF  k−   at the crack tip  C  remote from the out-
er contour.  In the analyzed case, the SIF  k+   at the opposite tip increases both with the crack length and as the 
crack approaches the outer boundary of the cross section.  The resonance phenomena were observed within the 
frequency range  3 < κ0 < 4 .  The band of resonance frequencies is wider for the larger crack.  

CONCLUSIONS    

The presence of a crack in an elastic hollow cylinder subjected to harmonic loading is accompanied by both 
the intense dynamic loads near the defect and their resonance behavior as a result of the generation of wave pro-
cesses in the bounded domain.  The analysis of antiplane deformation for which the vicinity of the crack is char-
acterized by stress intensity factors of longitudinal shear proves to be especially convenient for the analysis of 
this kind.  The determination of SIF in the frequency region is based on their relationship with the function  
of jump of the dynamic displacements on the crack and finding this function as a special solution of the integral 
equations on the crack with boundary conditions of dynamic loading of the cylindrical body on the lateral sur-
faces. 

In the analyzed frequency range, we established the possibility of attainment of one or two resonances de-
pending on the angle of inclination of the crack relative to the boundary of the body, unlike the case of a unique 
resonance in the same frequency range recorded in [22] for a cylinder with ribbon rigid inclusion.  Both the vari-
ations of the inclination angle and the decrease in distance from the crack to the outer surface strongly affect the 
SIF and the rate of their passing into the resonance mode in the low-frequency region. 
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