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INFLUENCE OF THE TIME OF INCREASE IN CONTACT PRESSURE IN THE COURSE 
OF BRAKING ON THE TEMPERATURE OF A PAD–DISC TRIBOSYSTEM 

К. Topczewska  UDC 536.12:621.891:539.3 

We obtain exact solutions of the thermal problems of friction for a pad–disc tribosystem with regard  
for the time profiles of specific friction power corresponding to the exponential and linear increase in 
pressure during braking.  We study the influence of time of attainment of the nominal value of contact 
pressure on temperature in the contact zone of a cermet pad with a cast-iron disc.  It is shown that the 
maximal temperature linearly decreases as the time of attainment of the nominal value of contact pres-
sure increases.  At the same time, the time of attainment of this temperature increases. 
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The time dependences of the friction power are required for the evaluation of the temperature of disc 
brakes [1].  The analytic [2, 3], numerical-analytic [4], and numerical [5] methods were proposed for the inves-
tigation of transient temperature fields in friction elements for the a priori specified time profiles of specific fric-
tion power.  The influence of this factor on the temperatures and temperature stresses of pad–disc tribosystems 
was studied for the case of rational mode of braking [6, 7].  

The time profile of specific friction power is determined by the variations of pressure in the zone of contact 
between a pad and a disc and by the velocity determined from the solution of the corresponding initial-value 
problem for the equation of motion.  In general, the level of pressure exponentially increases in the course  
of braking [8].  The solutions of the one-dimensional thermal problems of friction were obtained in quadra-
tures with regard for the indicated increase in pressure for two half spaces [9, 10] and for a layer and a half 
space [11, 12]. 

The aim of the present work is to obtain engineering formulas for the determination of the influence of the 
time of increase in pressure on the maximal temperature in the course of single braking.  For this purpose,  
we use approximations of the actual time profile of friction power with the help of power functions.  

Statement of the Problem 

We describe the behaviors of contact pressure  p ,  velocity  V ,  specific power  q ,  and the work of friction 
w  as functions of time  t  in the course of a single braking in the form [8] 

 p(t) = p0p∗(t) ,     p∗(t) = 1− e−t /ti ,      0 ≤ t ≤ ts , (1) 

 V (t) = V0V *(t),      V ∗(t) = 1− t
ts0

+ p∗(t)ti
ts0

,      ts0 = W0
fp0AaV0

,      0 ≤ t ≤ ts ,  (2) 
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 q(t) = q0q∗(t),      q0 = fp0V0 ,      q∗(t) = p∗(t) 1− t
ts0

+ p∗(t)ti
ts0

⎡

⎣
⎢

⎤

⎦
⎥ ,      0 ≤ t ≤ ts , (3) 

 w(t) = w0w∗(t) ,      w0 = q0ts0 ,      0 ≤ t ≤ ts , (4) 

 w∗(t) = q∗(s)ds
0

t

∫ = (1− 0.5t /ts0 )t
ts0

− p∗(t)(1− t /ts0 )ti
ts0

− 0.5 p∗(t)ti
ts0

⎡

⎣
⎢

⎤

⎦
⎥
2

, (5) 

where  ts   is the time of stop,  ti  > 0  is a parameter characterizing the rate of increase in contact pressure from 
zero to the nominal value  p0 ,  f   is the friction coefficient,  Aa   is the area of nominal zone of the pad–disc 
contact, and  V0   and  W0   are the initial velocity and kinetic energy, respectively.  

For the time of stop  t = ts ,  it follows from relation (2) that  

 ti p*(ts ) = ts − ts0 ,  (6) 

and the condition  dq* /dt t=tmax
= 0   gives the following formula for the time  tmax   of attainment by the func-

tion  q∗(t)   (3) its maximal value  qmax
∗ : 

 (ts0 − tmax )e− tmax /ti − (1− 2e− tmax /ti )ti p∗(tmax ) = 0 . (7) 

Solving the nonlinear equations (6) and (7) by the bisection method [13], we arrive at the relations 

 ts = ts0 + 0.99ti ,      tmax = 0.783 tits0 ,      0 ≤ ti ≤ 0.3ts0 . (8) 

As ti → 0 , it follows from relations (1)–(6) that   

 p(t) = p0 ,    V (t) = V0(1− t),    q(t) = q0(1− t) ,    and    w(t) =  w0(1− 0.5t /ts0 )t /ts0 ,    0 ≤ t ≤ ts0 .   

Hence, the parameter  ts0  (2) is the time of stop in the course of braking with constant deceleration.  
Further, we expand the function  p∗(t)   (1) in power series and restrict ourselves to the first two terms in 

this expansion.  As a result, we obtain 

 p∗(t) = t
ti
H (ti − t) + H (t − ti ), 0 ≤ t ≤ ts ,  (9) 

where  H (⋅)   is the Heaviside unit function.  If the contact pressure (9) linearly increases, then we can write the 
time profiles of velocity  V *,  specific power  q* ,  and the work of friction  w*  (2)–(5) as follows [14]: 

 V *(t) = 1−Vi∗(t)H (ti − t) − [Vi∗(ti ) +Vs∗(t)]H (t − ti ), 0 ≤ t ≤ ts ,  (10) 

 Vi∗(t) =
0.5t 2

ts0ti
, Vs∗(t) =

t − ti
ts0

 (11) 
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 q∗(t) = qi∗(t)H (ti − t) + qs∗(t)H (ti − t),      0 ≤ t ≤ ts , (12) 

 qi∗(t) =
[1− 0.5t 2 /(ts0ti )]t

ti
, qs∗(t) = 1− t − 0.5ti

ts0
, (13) 

 w*(t) = wi
∗(t)H (ti − t) − [wi

∗(ti ) + ws
∗(t)]H (t − ti ), 0 ≤ t ≤ ts  (14) 

 wi
∗(t) = 0.5[1− 0.25t 2 /(ts0ti )]t 2

ts0ti
,      ws

∗(t) = (1− 0.5t /ts0 )(t − ti )
ts0

. (15) 

Substituting relations (10) and (11) in condition  V *(ts ) = 0 ,  we determine the braking time:  

 ts = ts0 + 0.5ti . (16) 

It was also proposed to approximate the time profile of specific power  q*   (3) and the work of friction  w*  
(4), (5) in the form [1] 

 q(t) = q0q∗(t),      q∗(t) = 0.5(α +1)(α + 2) ts
0

ts
t
ts

⎛
⎝⎜

⎞
⎠⎟
α

1− t
ts

⎛
⎝⎜

⎞
⎠⎟

,      0 ≤ t ≤ ts , (17) 

 w(t) = w0w∗(t) ,      w∗(t) = 0.5 t
ts

⎛
⎝⎜

⎞
⎠⎟
α+1

(α +1) 1− t
ts

⎛
⎝⎜

⎞
⎠⎟
+1⎡

⎣⎢
⎤
⎦⎥

,      0 ≤ t ≤ ts , (18) 

 α = tmax
ts − tmax

,     0 ≤ α ≤ 1, (19) 

where the parameters  ts   and  tmax   can be found from relations (8).  
It follows from expressions (4) and (5), (14) and (15), (18) and (19) that the total work of friction  w(ts )   

does not depend on the parameter  ti   and is equal to 0.5w0 .  This means that the amounts of friction heat gener-
ated by the specific friction powers (3), (12), (13) and (17), (19) on the surface of the pad–disc contact are iden-
tical and, hence, we can compare the corresponding values of temperature.  To find these values, we consider  
a one-dimensional model of friction heating of a pad–disc tribosystem.  In the case of perfect thermal friction 
contact, we find the temperature fields  Tl (z, t)  in these elements from the solution of the boundary-value prob-
lem of heat conduction for two semiinfinite bodies  z ≥ 0   (l = 1,  pad)  and  z ≤ 0   (l = 2 ,  disc)  [9, 10]: 

 ∂2T1∗(ζ, τ)
∂ζ2

= ∂T1∗(ζ,τ)
∂τ

      ζ > 0 ,      0 < τ ≤ τs , (20) 

 ∂2T2∗(ζ, τ)
∂ζ2

= 1
k*

∂T2∗(ζ, τ)
∂τ

      ζ < 0 ,      0 < τ ≤ τs , (21) 
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 K * ∂T2∗(ζ, τ)
∂ζ

ζ=0

− ∂T1∗(ζ, τ)
∂ζ

ζ=0

= q∗(τ),      0 < τ ≤ τs , (22) 

 T1∗(0, τ) = T2∗(0, τ) ≡ T ∗(τ),      0 < τ ≤ τs , (23) 

 Tl∗(ζ, τ)→ 0,      ζ → ∞ ,      0 < τ ≤ τs ,      l = 1, 2 , (24) 

 Tl∗(ζ, 0) = 0 ,      ζ < ∞ ,      l = 1, 2 , (25) 

 ζ = z
a

,      τ = k1t
a2

,      τi = k1ti
a2

,      τs0 = k1ts0

a2
,      τs = k1ts

a2
,      K * = K2

K1
,      k* = k2

k1
,  

 Ta = q0a
K1

,      Tl* = Tl − T0
Ta

,  (26) 

where  q*(τ)   is the time profile of specific friction power,  Ta   is the initial temperature,  Kl   and  kl   are the 

heat-conduction coefficient and thermal diffusivity, respectively, and  a = max {al} ,  al = 3klts0 ,  are the ef-
fective depth of heat penetration into the pad and the disc [1]. 

Solution of the Problem   

Bu using the Duhamel formula, we represent the solution of the boundary-value problem of heat conduc-
tion (20)–(26) on the contact surface  ζ = 0   in the form [6] 

 T ∗(τ) = γ
π

q∗(s)
τ − s0

τ

∫ ds ,      γ = k*

k* + K *
,       0 ≤ τ ≤ τs . (27) 

Substituting function  q*(τ)   (3) in the integrand in relation (27), we obtain 

 T ∗(τ) = γ
τs0

[(τs0 + τi )I0,0 (τ) − I1,0 (τ) − (τs0 + 2τi )I0,1(τ) + I1,1(τ) + τi I0,2 (τ)],      0 ≤ τ ≤ τs , (28) 

 In,m (τ) =
1
π

sne−ms/τi

τ − s0

τ

∫ ds ,      n = 0,1;      m = 0,1, 2 . (29) 

Setting  x = τ − s ,  we represent integrals (29) for  m = 0   in the following form: 

 In,0 (τ) =
2
π

(τ − x2 )n
0

τ

∫ dx ,      n = 0,1. (30) 
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By using the formula [15] 

 (aµ − xµ )ν−1
0

a

∫ dx = µ−1aµ(ν−1)+1B(ν;µ−1) ,      a,µ, ν > 0 , (31) 

for  a = τ ,  µ = 2 ,  and  ν = n +1,  we find 

 In,0 (τ) = B(n +1; 0.5)τn τ
π

,      n = 0,1, 2,…, (32) 

where  B(ν;µ−1)   is the beta function [16]. 
Taking into account the values  B(1; 0.5) = 2   and  B(2; 0.5) = 4/3  and relation (32), we obtain 

 I0,0 (τ) = 2 τ
π

,      I1,0 (τ) =
4
3
τ τ

π
. (33) 

If  m ≠ 0 ,  then, in view of  x = τ − s ,  we reduce integrals (29) to the form 

 I0,m (τ) = τF mτ
τi

,      m = 1, 2,      I1,1(τ) = (τ + 0.5τi ) τF τ
τi

− τi
τ
π

, (34) 

where the Dawson integral 

 F(x) = 2
π
e−x

2

x
es

2

0

x

∫ ds  

is calculated as follows [17]: 

 F(x) = 2
π

(−1)n (2x2 )n

(2n +1)!!n=0

∞

∑ ,      0 ≤ x ≤ 3,      F(x) = 2
π

(2n −1)!!
(2x2 )n+1n=0

∞

∑ ,      x > 3 . 

Substituting the values of the integrals  In,m (τ)  (33), (34) in relations (28), we find 

 T ∗(τ) = γ τ 1+ τi
2τs0

− 2τ
3τs0

⎛
⎝⎜

⎞
⎠⎟

2
π
− 1− τ

τs0
+ 3τi
2τs0

⎛
⎝⎜

⎞
⎠⎟
F τ

τi

⎛
⎝⎜

⎞
⎠⎟
+ τi
τs0

F 2τ
τi

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥ ,      0 ≤ τ ≤ τs . (35) 

In the limiting case as  τi → 0 ,  solution (35) yields the well-known Fazekas formula for the temperature of 
the surface of pad–disc contact in the course of braking with constant deceleration [18]: 

 T ∗(τ) = 2γ τ
π

1− 2τ
3τs0

⎛
⎝⎜

⎞
⎠⎟

,      0 ≤ τ ≤ τs . (36) 
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Substituting function  q∗(τ)   (12), (13) in relations (27), we obtain 

 T ∗(τ) = γ{Ti∗(τ)H (τi − τ) + [Ti∗(τi ) − Ts∗(τi ) + Ts∗(τ)]H (τ − τi )}, 0 ≤ τ ≤ τs , (37) 

 Ti∗(τ) =
I1,0 (τ) − 0.5I3,0 (τ)/(τs0τi )

τi
,      Ts∗(τ) = 1+ 0.5τi

τs0
⎛
⎝⎜

⎞
⎠⎟
I0,0 (τ) −

I1,0 (τ)
τs0

, (38) 

where, in view of the value  B(4; 0, 5) = 32/35   and expression (32), we find 

 I3,0 (τ) =
32
35

τ3 τ
π

. (39) 

Substituting the integrals  In,0 (τ),  n = 0,1  (33) and  I3,0 (τ)   (39) in relations (38), we get 

 Ti∗(τ) =
4τ
τi

τ
π

1
3
− 4τ2

35τs0τi

⎛

⎝⎜
⎞

⎠⎟
,      Ts∗(τ) = 2 τ

π
1+ τi

2τs0
− 2τ
3τs0

⎛
⎝⎜

⎞
⎠⎟

, (40) 

 Ti∗(τi ) − Ts∗(τi ) = − 2
3

τi
π

1+ 13τi
70τs0

⎛
⎝⎜

⎞
⎠⎟

. (41) 

Knowing functions  Ti,s∗ (τ)  (40) and (41), we can find, by using relation (37), the dimensionless tem-
perature of the surface of pad–disc contact.  Passing to the limit as  τi → 0   and using expressions (37), (40), 
and (41), we arrive at the Fazekas solution (36).  

Substituting function  q*(τ)   (17) in relation (27), we find  

 T ∗(τ) = 0.5γ (α +1)(α + 2) τs
0

τs
[Iα (τ) − Iα+1(τ)],      0 ≤ τ ≤ τs , (42) 

 Iα (τ) =
1
π

s
τs

⎛
⎝⎜

⎞
⎠⎟
α ds

τ − s0

τ

∫ , (43) 

where the parameter  0 ≤ α ≤ 1  can be found from relations (8) and (19).  With the help of the substitution  
x = τ − s ,  we first rewrite integral (43) in the form 

 Iα (τ) =
2
π

(τ − x2 )α
0

τ

∫ dx . 

Taking  a = τ ,  µ = 2 ,  and  ν = α +1  in relation (31), we find 

 Iα (τ) = B(α +1; 0.5) τ
τs

⎛
⎝⎜

⎞
⎠⎟
α τ

π
. (44) 
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By using the dependences [16] 

 B(α +1; 0.5) = π Γ(α +1)
Γ(α +1.5)

,      B(α + 2; 0.5) = (α +1)B(α +1; 0.5)
α +1.5

 

and substituting the functions  Iα (τ)   and  Iα+1(τ)   (44) in relation (42), we get 

 T ∗(τ) = 0.5γ (α +1)(α + 2) τ Γ(α +1)τs0

Γ(α +1.5)τs
τ
τs

⎛
⎝⎜

⎞
⎠⎟
α

1− (α +1)τ
(α +1.5)τs

⎡
⎣⎢

⎤
⎦⎥
,      0 ≤ τ ≤ τs , (45) 

where  Γ(α)  is the gamma-function [16].  For the linear decrease in velocity during braking, we have  α = 0 ,  
τs = τs0 .  Then, with regard for the values  Γ(1) = 1  and  Γ(1.5) = 0.5 π ,  we obtain the Fazekas solution (36) 
from relation (45). 

Numerical Results 

We performed calculations for a metal-ceramic (FMK-11) pad,   

 K1 = 34.3W⋅m–1⋅K–1,      k1 =  15.2 ⋅10–6m2 ⋅ sec–1,   

and cast-iron (ChNMKh) disc, 

 K2 = 51W⋅m–1⋅K–1,      k2 = 14 ⋅10–6m2 ⋅ sec–1   

(see [8]).  For this friction pair, the coefficient of distribution of heat flows is equal to  γ  = 0.608,  and the effec-

tive depth of heat penetration is  a = a1 = 3k1ts0 .  Thus, by using relations (26), we find the Fourier numbers  
τ = 0.33t∗ ,  τi = 0.33ti∗ ,  τs0 = 0.33 ,  and  τs = 0.33ts∗ ,  where  t∗ = t /ts0 ,  ti∗ = ti /ts0 ,  and  ts∗ = ts /ts0 . 

The duration of braking increases with the time of attainment of the nominal value of contact pressure and 
velocity nonlinearly decreases only in the initial stage of braking, where  0 ≤ t* ≤ 0.3  (Fig. 1). 

Knowing the dependences of contact pressure  p*   and velocity  V *  on the time of braking, we constructed 
plots for the product of these quantities, i.e., for the specific friction power  q*   (Fig. 2).  The presented time 
profiles of dimensionless specific friction power  q*   have two branches.  The ascending branch corresponds to 
the increase in contact pressure and, hence, in the friction force during braking.  In this time interval, the in-
crease in the friction force runs ahead of the decrease in velocity and, after certain time, the specific friction 
power reaches its maximal value.  The descending branch of time profile of the friction power is caused by the 
rapid decrease in the braking speed with simultaneous insignificant growth of pressure.  The work of friction, 
i.e., the area of the domain under the curve of specific friction power, is independent of the time of increase in 
contact pressure and, as shown above, is identical for both exact (3) and approximate (12), (13), and (17) repre-
sentations of  q* .  For a fixed value of the parameter  ti ,  the braking time  ts   determined from relation (8) ex-
ceeds the braking time found from (16).  

The evolutions of the dimensionless temperatures  T *  corresponding to the time profiles of specific fric-
tion  power  q*   from  Fig. 2а  are  illustrated  in  Fig. 2b.  In  the  initial  period  of  braking,  the  lower  the  time  of  
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Fig. 1. Evolutions of the dimensionless pressure  p*   (solid curves) and velocity  V *   (dashed curves) for some values of the pa-
rameter ti∗ . 

 

Fig. 2. Evolutions of the dimensionless specific friction power  q*   (a) and temperature  T *   (b) for two values of the parameter  ti∗ .  
The solid curves were plotted according to relations (3) and (35), the dashed lines were plotted by using (12), (13), and (37),  
and the dashed-dotted curves were plotted according to (17) and (45). 

attainment of the nominal value of contact pressure, the higher the rate of growth of temperature.  In this stage,  
the highest temperature was found from solution (45) obtained by using the Chichinadze approximation (17).  

At the same time, the lowest temperature was obtained by using the exact solution (35) with exponential in-
crease in the contact pressure (1).  In the last case, the temperature increases in the course of braking for the 
longest time and attains its maximal values.  On the attainment of the maximum temperature, the process of 
cooling of the contact surface begins and goes until the complete stop. 
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Fig. 3. Dependences of the dimensionless maximal temperature  Tmax
*   (1) and the time of its attainment  τmax   (2) on the parameter  τi .  

The solid curves correspond to the results obtained by relation (35), the dashed curves correspond to formula (37), and the 
dashed-dotted curves correspond to (45). 

In the course of braking with constant deceleration  (τi = 0 ),  the maximal value of dimensionless tempera-
ture  Tmax

* = 0.187   is attained at the time  τmax = 0.17   and is identical for the exact (35) and approximate (37) 
and (45) solutions (Fig. 3).  As the parameter  τi   increases, the maximal temperature of the surface of pad–disc 
contact decreases, and the time of its attainment linearly increases.  We determined the smallest (largest) drop  
of the maximal temperature for the exponential (1) [linear (9)] growth of contact pressure.  For time  τi = 0.1,  
the values of dimensionless maximal temperature  Tmax

*   and time of its attainment  τmax   determined from rela-
tions (35), (37), and (45), constitute 0.175, 0.154, and 0.164 and 0.28, 0.19, and 0.22, respectively.

CONCLUSIONS 

We obtain computational formulas for the investigation of the influence of the time of attainment of the 
nominal value of pressure on the temperature of the surface of pad–disc contact.  We consider the time profile of 
specific friction power with exponential growth of pressure during braking and two its approximations: linear 
and power proposed by Chichinadze.  We obtain the exact solutions of the corresponding one-dimensional ther-
mal problems of friction.  It was shown that the maximal temperature and duration of braking are linear func-
tions of the time of attainment of the nominal value of contact pressure.  The temperatures found by using the 
approximate formulas are lower than the temperature determined for the exponential increase in pressure.   
The longer the time of attainment of the nominal value of pressure, the greater the differences between these 
temperatures. 
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