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INFLUENCE OF THE FRICTION POWER ON TEMPERATURE STRESSES  
IN THE COURSE OF ONE-TIME BRAKING 

K. Topczewska  UDC 536.12:621.891:539.3 

We determine the space and time distributions of quasistatic temperature stresses in friction elements 
(pads and disks) in the course of one-time braking on the basis of known nonstationary temperature 
fields.  The influence of three rational time profiles of the specific friction power on the stressed states 
of a pad (FM-16L retinax) and a cast-iron disk is analyzed.  It is shown that tensile normal stresses are 
formed on the working surface of the disk at the end of the process of braking and may lead to the ap-
pearance of radial cracks on this surface. 
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Inhomogeneous temperature fields caused by the friction heating of the working elements (pads and disks) 
of the brakes induce temperature stresses in these elements.  If the intensity of these stresses exceeds a certain 
value critical for a given material, then the cracks may appear in the material, which would lead to the deteriora-
tion of the friction thermal resistance of the couple, i.e., its ability to preserve a constant value of the friction co-
efficient in the process of braking [1].  The analytic models used for the evaluation of the temperature conditions 
of disk brakes are based on the solutions of one-dimensional thermal friction problems for bodies bounded by 
the coordinate surfaces [2]; in particular, for a half space or a ball [3].  The stresses caused by one-dimensional 
nonstationary temperature fields can be found by using the model of the temperature bending of a beam with 
free ends [4]. 

In the formulation of thermal problems with friction, it is customary to use the condition of equality of the 
sum of the intensities of heat flows directed from the contact surface into a pad and into a disk to the specific 
friction power [5].  Therefore, the variations of temperature in the process of braking are determined, to a signif-
icant extent, by the time profile of the friction power.  This profile is most often described with the help of  
a function linearly decreasing from the nominal value at the onset of braking to zero at the end of braking (brak-
ing with constant deceleration).  Note that the distributions of temperature and temperature stresses in a "layer–
half space" [6] and "half space–half space with protective coating" tribosystems were studied in [7] just for the 
indicated evolution of the specific friction power in braking.  The process of braking accompanied by a decrease 
in the friction power to zero in approaching the time of stop is regarded as rational [8]. The exact solutions of 
some thermal friction problems for the "half space–half space" tribosystem with three nonlinear rational time 
profiles of the specific friction power were obtained in [9].  The aim of the present work is to find the tempera-
ture stresses and to study the influence of specific friction power varying as a function of time in the course of 
braking on the thermal stressed states of the pad and the disk. 
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Fig. 1.  Schematic diagram of friction heating of the tribosystem. 

Temperature Fields 

Consider a schematic diagram of friction contact of two half spaces (Fig. 1).  In what follows, we denote all 
quantities and parameters corresponding to the upper  (z ≥ 0)  and lower  (z ≤ 0)  half spaces by the subscripts 
k = 1  and  k = 2 ,  respectively.  On the surface  z = 0,  the following conditions of perfect thermal friction con-
tact are satisfied:

 T1
(i)(0+ , t) = T2

(i)(0− , t),      q1
(i)(t) + q2

(i)(t) = q(i)(t) ,      0 < t ≤ ts ,      i = 1, 2, 3, (1) 

where   

  Tk
(i)(z, t)  are temperature fields;   

  qk
(i)(t),  k = 1, 2 ,  are the intensities of heat fluxes directed along the normal to the contact surface into 

each element;   

  t   is time,  and  ts   is the duration of braking.   

The time profiles of the specific friction power in the second condition in (1) are chosen in the form [8]  

 q(i)(t) = q0q(i)*(t),      0 ≤ t ≤ ts ,      i = 1, 2, 3,  (2) 

 q(1)*(t) = 3 1− t
ts

⎛
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⎠⎟

, (3) 

where  q0   is the a priori known nominal value of the specific friction power.   
The solution of the one-dimensional parabolic boundary-value problem of heat conduction for two half 

spaces with the boundary conditions (1)–(3) and a constant initial temperature  T0   takes the form [9] 

 Tk
(i)(z, t) = T0 + TaTk

(i)(ζ, τ) ,      0 ≤ t ≤ ts ,      i = 1, 2, 3,      k = 1, 2 , (4) 
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 Tk
(1)*(ζ, τ) = 2γ τ {0.2τ*2[8 +18Zk

2(ζ, τ) + 4Zk
4 (ζ, τ)]}Fk (ζ, τ) − 4τ*[1+ Zk

2(ζ, τ)] 

  + τ*{2Zk (ζ, τ) − 0.2τ*Zk (ζ, τ)[7 + 2Zk
2(ζ, τ)]}Ek (ζ, τ) + 3 ,  (5) 

 Tk
(2)*(ζ, τ) = 4γτ* τ {2[1+ Zk

2(ζ, τ)]− 0.2τ*[8 + 18Zk
2(ζ, τ) + 4Zk

4 (ζ, τ)]}Fk (ζ, τ) 

  − {Zk (ζ, τ) − 0.2τ*Zk (ζ, τ)[7 + 2Zk
2(ζ, τ)]}Ek (ζ, τ) ,  (6) 

 Tk
(3)*(ζ, τ) = γτ* [3 πτs + 4 τZk (ζ, τ)]Ek (ζ, τ)  

  − 2{3 πτs Zk (ζ, τ) + 4 τ[1+ Zk
2(ζ, τ)]}Fk (ζ, τ) ,  (7) 

 Fk (ζ, τ) = ierfc Zk (ζ, τ) ,      Ek (ζ, τ) = erfc Zk (ζ, τ),  (8) 

 Z1(ζ, τ) =
0.5ζ
τ

,      ζ ≥ 0,     Z2(ζ, τ) = − 0.5ζ

k*τ
,      ζ ≤ 0 ,  (9) 

 ζ = z
a1

,    τ = k1t
a12

,    τs =
k1ts
a12

,     τ* = τ
τs

,   

   (10) 

 K * = K2
K1

,    k* = k2
k1

,    γ = k∗

k∗ + K ∗
,    Ta = q0a1

K1
,  

where  K1,2   and  k1,2   are the heat-conduction coefficients and thermal diffusivity, respectively,  

 ierfc x =  e
−x2

π
− x erfc x ,      erfc x = 1− erf x ,  

erf x   is the Gaussian error function [10], and  ak = 3kkts , k = 1, 2 ,  are the effective depths of heat penetra-
tion into the elements of the friction couple [1].   

Stressed State 

We find the temperature stresses  σk
(i)(z, t)   corresponding to the temperature fields  Tk

(i)(z, t)  (4)–(10) by 
using the relations of the theory of temperature bending of a layer with free edges [4].  Thus, we get [11]  

 σk
(i)(z, t) ≡ σ x,k

(i) (z, t) = σ y,k
(i) (z, t),     σ z,k

(i) (z, t) = 0 ,     − a2 ≤ z ≤ a1,      0 ≤ t ≤ ts , (11) 
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 σk
(i)(z, t) = σ0,kσk

(i)*(ζ, τ),     σ0,k = αkEkT0
1− νk

,     i = 1, 2, 3, (12) 

 σk
(i)*(ζ, τ) = εk

(i)*(ζ, τ) − Tk
(i)*(ζ, τ),     a2* ≤ ζ ≤ a1* ,     0 ≤ τ ≤ τs , (13) 

 εk
(i)*(ζ, τ) = [(−1)k+14 − 6ζ]Nk

(i)(τ) + [(−1)k+112ζ − 6]Mk
(i)(τ), (14) 

 Nk
(i)(τ) = Tk

(i)*(ζ, τ)dζ
0

ak*

∫ ,     Mk
(i)(τ) = ζTk

(i)*(ζ, τ)dζ
0

ak*

∫ , 

 ak* = (−1)k+1ak
a1

,     k = 1, 2 , (15) 

where  E   is Young's modulus and  ν  is Poisson’s ratio, and  α   is the coefficient of linear thermal expansion.  
Substituting the dimensionless temperatures  Tk

(i)∗(ζ, τ)   (5)–(10) in relations (15), we obtain 

 Nk
(1)(τ) = 2γ τXk (τ){3 I0,k (τ) − 2τ∗[2I0,k (τ) + 2I2,k (τ) − J1,k (τ)]  

  + 0.2τ*2[8I0,k (τ) +18I2,k (τ) + 4I4,k (τ) − 7J1,k (τ) − 2J3,k (τ)]} , (16) 

 Mk
(1)(τ) = 2γ τXk

2(τ){3 I1,k (τ) − 2τ∗[2I1,k (τ) + 2I3,k (τ) − J2,k (τ)] 

  + 0.2τ*2[8I1,k (τ) +18I3,k (τ) + 4I5,k (τ) − 7J2,k (τ) − 2J4,k (τ)]} , (17) 

 Nk
(2)(τ) = 4γτ∗ τXk (τ){[2I0,k (τ) + 2I2,k (τ) − J1,k (τ)] 

  − 0.2τ∗[8I0,k (τ) +18I2,k (τ) + 4I4,k (τ) − 7J1,k (τ) − 2J3,k (τ)]}, (18) 

 Mk
(2)(τ) = 4γτ∗ τ Xk

2(τ){[2I1,k (τ) + 2I3,k (τ) − J2,k (τ)]  

  − 0.2τ∗[8I1,k (τ) +18I3,k (τ) + 4I5,k (τ) − 7J2,k (τ) − 2J4,k (τ)]}, (19) 

 Nk
(3)(τ) = γτ∗Xk (τ){3 πτs [J0,k (τ) − 2I1,k (τ)]− 4 τ[2I0,k (τ) + 2I2,k (τ) − J1,k (τ)]} , (20) 

 Mk
(3)(τ) = γτ∗Xk

2(τ){3 πτs [J1,k (τ) − 2I2,k (τ)]− 4 τ[2I1,k (τ) + 2I3,k (τ) − J2,k (τ)]} , (21) 

 In,k (τ) = Zk
n (ζ, τ)

0

Yk (τ)

∫ Fk (ζ, τ)dZk =
Ln,k (τ)

π
− Jn+1,k (τ), (22) 
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 Ln,k τ( ) = Zk
n (ζ, τ)e−Zk

2 (ζ,τ)

0

Yk (τ)

∫ dZk ,  

 Jn,k (τ) = Zk
n (ζ, τ)Ek (ζ, τ)

0

Yk (τ)

∫ dZk , n = 0,1,…, (23) 

 X1(τ) = 2 τ ,     X2(τ) = − 2 k*τ ,     Yk (τ) =
ak*

Xk (τ)
,      k = 1, 2 . (24) 

By using the recurrence relations [12, 13] 

 Ln,k (τ) = 0.5[(n −1)Ln−2,k (τ) − Yn−1,k (τ)e−Yk
2 (τ) ] ,      n = 2, 3,…, 

 Jn,k (τ) =
0.5n(n −1)Jn−2,k (τ) + [Yk2(τ) − 0.5n]Ykn−1(τ) erfcYk (τ) − Ykn (τ)e−Yk

2 (τ) / π
n +1

, 

 L0,k (τ) = 0.5 π[1− erfcYk (τ)],      L1,k (τ) = 0.5[1− e−Yk
2 (τ) ], (25) 

 J0,k (τ) =
1
π
− ierfcYk (τ),      J1,k (τ) = 0.25erf Yk (τ) − 0.5Yk (τ) ierfcYk (τ) , (26) 

we can take integrals (23) for  n = 2, 3,…, 6 : 

 L2,k (τ) = 0.25 π erf Yk (τ) − 0.5Yk (τ)e−Yk
2 (τ),      L3,k (τ) = 0.5{1− [1+ Yk2(τ)]e−Yk

2 (τ)}, (27) 

 L4,k (τ) = 0.375 π erf Yk (τ) − 0.5Yk (τ)[Yk2(τ) +1.5]e−Yk
2 (τ) ,  (28) 

 L5,k (τ) = 1− [0.5Yk4 (τ) + Yk2(τ) +1]e−Yk
2 (τ), (29) 

 J2,k (τ) =
Yk3(τ)erfcYk (τ) + {1− [Yk2(τ) +1]e−Yk

2 (τ)}/ π

3
, (30) 

 J3,k (τ) =
{Yk4 (τ) erfcYk (τ) + 0.75 erf Yk (τ) − Yk (τ)[Yk2(τ) +1.5]e−Yk

2 (τ) / π}
4

, (31) 

 J4,k (τ) =
Yk5(τ)erfcYk (τ) + {2 − [Yk4 (τ) + 2Yk2(τ) + 2]e−Yk

2 (τ)}/ π

5
, (32) 
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 J5,k (τ) =
{Yk6(τ) erfcYk (τ) + 1.875 erf Yk (τ) − Yk (τ)[Yk4 (τ) + 2.5Yk2(τ) + 3.75]e−Yk

2 (τ) / π}
6

, (33) 

 J6,k (τ) =
Yk7(τ)erfcYk (τ) + {6 − [Yk6(τ) + 3Yk4 (τ) + 6Yk2(τ) + 6]e−Yk

2 (τ)}/ π

7
, (34) 

Substituting the functions  Ln,k (τ)  and  Jn,k (τ) (25)–(34) in relations (22), we get  

 I0,k (τ) =
0.5Yk (τ)e−Yk

2 (τ)

π
+ 0.25erf Yk (τ) − 0.5Yk2(τ) erfcYk (τ), (35) 

 I1,k (τ) =
{1+ [2Yk2(τ) −1]e−Yk

2 (τ)}/ π − 2Yk3(τ) erfcYk (τ)

6
, (36) 

 I2,k (τ) =
{Yk (τ)[2Yk2(τ) −1]e−Yk

2 (τ) / π + 0.5erf Yk (τ) − 2Yk4 (τ) erfcYk (τ)}
8

, (37) 

 I3,k (τ) =
0.5{1+ [2Yk4 (τ) − Yk2(τ) −1]e−Yk

2 (τ)}/ π −Yk5(τ) erfcYk (τ)

5
, (38) 

 I4,k (τ) =
{0.25Yk (τ)[4Yk4 (τ) − 2Yk2(τ) − 3]e−Yk

2 (τ) / π + 0.375erf Yk (τ) − Yk6(τ) erfcYk (τ)}
6

 (39) 

 I5,k (τ) =
{1+ [Yk6(τ) − 0.5Yk4 (τ) − Yk2(τ) −1]e−Yk

2 (τ)}/ π − Yk7(τ)erfcYk (τ)

7
, (40) 

where the functions  Yk (τ)  have the form (24).  If we know the functions  Jn,k (τ)  (26), (30)–(34) and  In,k (τ)  
(35)–(40), then we can find the dimensionless temperatures  Nk

(i)(τ)   averaged over the thicknesses of the layers 
and the temperature moments  Mk

(i)(τ)  by using relations (16)–(21).  Substituting these quantities in rela-
tions (11)–(14), we determine the stresses  σk

(i)(z, t) ,  i = 1, 2, 3,  k = 1, 2 . 

Numerical Results 

The influence of the time profiles of specific friction power  q(i)(t),  i = 1, 2, 3,  (2), (3) on the tempera-
ture fields  Tk

(i)(z, t)  (4)–(10) in a tribosystem formed by a disk of cast iron (K1 = 51Wm−1K−1  and  k1 =  
14 ⋅10−6m2sec−1)  and pads made of FM-16L retinax  (K2 = 0.65 Wm−1K−1,  k2 = 4 ⋅10−7 m2sec−1)  was  
studied in [9].  For the same friction couple, we now study the distributions of dimensionless temperature stress-
es  σk

(i)*(ζ, τ),  0 ≤ τ ≤ τs = 1 (13)–(15) in the disk for 0 ≤ ζ ≤ a1∗ = 1 and in the pad for − 0.17 = a2∗ ≤  ζ ≤ 0 .   
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Fig. 2. Time dependences of the dimensionless thermal stresses  σk
(i)∗(ζ, τ)  :  (a) i  = 1,  (b) i  = 2,  (c) i  = 3,  in the disk (solid curves;  

k  = 1)  and in the pad (dashed curves;  k  = 2)  at different distances  ζ   from the contact surface.  

For the rational modes of braking, the evolution of temperature on the contact surface of a pad with a disk 
occurs in the following specific form: at the beginning of braking, the temperature rapidly increases, then attains 
its the maximum value, and finally, monotonically decreases up to the complete stop [9].  The maximum value 
of temperature, the time of its attainment, and the rate of subsequent cooling of the contact surface depend on the 
time profile of the specific friction power.  In view of the indicated time of behavior of temperature in the course 
of braking, the corresponding normal temperature stresses on the contact surface between the pad and the disk  
(ζ = 0 )  are compressive.  Moreover, their absolute values increase from zero at the initial time to the maximum 
values different for the pad and the disk.  After this, the compressive stresses begin to decrease (Fig. 2).  For 
three chosen time profiles of the specific friction power  q(i)(t),  i = 1, 2, 3  [see (2) and (3)], the maximum val-
ues of the dimensional compressive stresses  

 σk,max
(i)* = σk

(i)*(0, τmax
(i) )  

on the contact surface between the disk  (k = 1)  and the pad  (k = 2)  and of the time of their attainment  τmax
(i) ,  
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are equal to  0.26 and 0.08  (k = 1)  and 0.56 and 0.25  (k = 2)  (Fig. 2a), 0.14 and 0. 47  (k = 1)  and 0.51 
and 0.7  (k = 2)  (Fig. 2b), and  0.15 and 0.24  (k = 1)  and 0.48 and 0.53  (k = 2)  (Fig. 2c), respectively.   
In view of the lower heat conduction of retinax, as compared with cast iron, the maximum temperatures and 
temperature stresses on the working surface of the pad are higher than for the disk.  Unlike the stresses acting on 
the surface of the pad, which are compressive for the entire braking process, the compressive temperature stress-
es on the surface of the disk become tensile at the times  τ∗ =  0.67, 0.96,  and 0.9, and their values at the time of 
stop are 0.034, 0.026, and 0.03 for  i = 1; 2; 3,  respectively.  

As the distance from the contact surface increases, the compressive stresses in the disk and in the pad de-
crease and become tensile at a certain depth depending on the braking time  τ .  The highest values of tensile 
stresses inside the disk are attained at a depth  ζ = 0.5   at the same times for which the compressive stresses on 
the working surface of the disk are maximum.  On approaching the surface  ζ = a1∗,  we see that the temperature 
stresses in the disk again become compressive.  The tensile stresses in the pad increase with depth and attain 
their maximum values 0.1, 0.08, and 0.08 at the times equal to 0.37, 0.72, and 0.55 for  i = 1; 2; 3,  respectively, 
at the distance  ζ = a2∗ .  

CONCLUSIONS 

The results of our investigations demonstrate that the evolution of normal stresses on the working surface of 
the disk runs in three stages.  In the first stage, as the onset of braking, the temperature stresses are compressive.  
Their absolute values rapidly increase and attain the maximum values.  Then, in the second stage, we observe  
a slow decrease in compressive stresses down to zero.  In the last stage, not long before the final stop, the tem-
perature stresses become tensile and attain their highest values when the disk stops.  The temperature stresses on 
the working surface of the pad are compressive for the entire process of braking.  Their variations as a function 
of time repeat the first two stages of the evolution of stresses on the disk surface.  The maximum values of com-
pressive stresses on the friction surfaces of the pad and the disk and the times of their attainment strongly de-
pend on the behavior of the specific friction power as a function of time in the course of braking.   

At fixed time, we select three sections in the distribution of temperature stresses over the thickness of  
the disk.  In the first section located under the working surface and in the third section  (ζ = a1∗)  located near the 
free surface of the disk, the temperature stresses are compressive.  In the second section, placed between the first 
and third sections, the temperature stresses are tensile.  The tensile temperature stresses in the pad monotonically 
increase with the distance from the working surface. 

Upon attainment of a certain ultimate value, the tensile temperature stresses acting on the working surface 
of the disk at the end of the process of braking may initiate the appearance and development of radial cracks on 
this surface [14, 15]. 
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