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INFLUENCE OF THE FRICTION POWER ON TEMPERATURE IN THE  
PROCESS OF BRAKING 

К. Topczewska  UDC 536.12: 621.891: 539.3 

For three experimental dependences used to describe the changes in the specific power of friction as  
a function of the braking time, we construct the exact solutions of the corresponding thermal problems 
of friction.  For this purpose, we use the Duhamel formula and the well-known analytic solution of  
a one-dimensional boundary-value problem of heat conduction for two semiinfinite bodies and a con-
stant power of friction on the contact surface.  We illustrate the application of obtained solutions to 
modeling the process of friction heating of a pad–disk tribosystem.  We also study the influence of the 
chosen time profiles of friction power on the temperature distribution in a cast-iron (ChNMKh) disk and 
in a pad made of FM–16L retinax.  
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The available mathematical models of friction heating in the process of operation of braking systems are 
based on the solutions of the corresponding thermal problems of friction, i.e., one-dimensional boundary-value 
problems of heat conduction with two specific boundary conditions on the surface of pad–disk contact [1, 2].  
The first of these conditions is connected with the experimental results on the purity of treatment of the contact 
surfaces: their roughness and the presence of oxide films or wear products, etc. [3, 4].  If the working surfaces of 
friction elements are sufficiently smooth, then the temperatures of the pad and the disk on the contact surface are 
assumed to be equal.  The second boundary condition expresses the equality of the sum of intensities of the heat 
fluxes directed along the normal to the contact surface into each element of the friction couple to the specific 
power of friction, i.e., the product of tangential stresses by the sliding velocity [5].  Hence, the changes in the 
friction power in the process of braking (time dependence) may exert a significant influence on the temperature 
of the friction elements of brakes.  

The major part of analytic solutions of the thermal problems of friction in the course of braking were ob-
tained for a linear decrease in the friction power with time [6–8].  This means that the friction force in the nomi-
nal domain of pad–disk contact is constant and the contact pressure reaches its nominal value with the onset of 
braking instantaneously.  However, as follows from the experimental results, the time dependence of the friction 
power may substantially differ from linear function depending on the character of changes in the friction coeffi-
cient and contact pressure as functions of the braking time [9, 10].  The list of experimental dependences used to 
describe the variations of the specific power of friction in the case of one-time braking can be found in [11].  
Among these dependences, it is necessary to distinguish the functions vanishing on approaching the stopping 
time.  Braking with this type of time dependence of the friction power is regarded as rational.  

The aim of the present work is to construct exact solutions of the one-dimensional thermal problem of fric-
tion for three chosen time dependences of the specific power of friction and to analyze, by using these solutions, 
the time-and-space distributions of temperature in the friction elements in the case of one-time braking. 
                                                        
Politechnika Białostocka, Białystok, Poland;  e-mail: k.topczewska@doktoranci.pb.edu.pl. 

 
Translated from Fizyko-Khimichna Mekhanika Materialiv, Vol. 53, No. 2, pp. 96–101, March–April, 2017.  Original article submitted 
November 28, 2016. 

  1068-820X/17/5302–0235      ©  2017    Springer Science+Business Media New York 235 

DOI 10.1007/s11003-017-0067-x



236 К. TOPCZEWSKA 

 

Fig. 1.  Time dependences of the dimensionless specific power of friction  q(i)∗(t) ,  i = 1, 2, 3 . 

Statement of the Problem 

We represent the dependences of the specific power of friction as functions of time t  in the process of brak-
ing up to the stopping time  ts   in the following form: 

 q(i)(t) = q0
(i)q(i)∗(t) ,       0 ≤ t ≤ ts ,      i = 1, 2, 3. (1) 

In what follows, we consider braking processes for which the total work of braking is identical and equal to  ws   
for each function  q(i)(t)  (1): 

 q(i)(t)
0

ts

∫ dt = ws ,      i = 1, 2, 3. (2) 

Condition (2) is satisfied by assuming that   

 q0
(i) ≡ q0 = ws /ts    

in relation (1) and taking the dimensionless functions  q(i)∗(t) ,  i = 1, 2, 3,  in the form [11] 

 q(1)∗(t) = 3 1− t
ts

⎛
⎝⎜

⎞
⎠⎟
2

,      q(2)∗(t) = 6 t
ts

⎛
⎝⎜

⎞
⎠⎟

1− t
ts

⎛
⎝⎜

⎞
⎠⎟

,      q(3)∗(t) = 6 t
ts

1− t
ts

⎛
⎝⎜

⎞
⎠⎟

.  (3) 

For the first analyzed braking process, the specific friction power decreases according to a parabolic law 
from the maximal value  qmax

(1)* = 3  at the initial time  t  = 0  to zero at the stopping time (Fig. 1, i  = 1).  It is 
known that even in the case of instantaneous growth of pressure in the braking system, the load applied to the 
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contact surface and, hence, the friction force gradually increase as functions of the braking time prior to the de-
crease in the velocity [12].  Therefore, the specific friction power grows from the onset of braking up to the  
attainment of the maximal values   

 qmax
(2)* = qmax

(3)* = 1.5    

at the times t = 0.5ts  (i  = 2) and t = 0.25ts  (i  = 3)  (Fig. 1, i  = 2, 3).  After this, the decrease in the braking ve-
locity begins to leave behind the process of growth of the friction force and the specific friction power vanishes 
at the stopping time.  

The mathematical formulation of the thermal problem of friction in the course of braking for a pad–disk tri-
bosystem is based on the following main assumptions:  the free surfaces are adiabatic and the heat generated on 
the contact surface propagates into each element along the normal to this surface [13].  Therefore, the problem 
of finding temperature fields in the pad and in the disk is reduced to the construction of the solution of the one-
dimensional boundary-value problem of heat conduction for two semiinfinite bodies  z ≥ 0   and  z ≤ 0 .  In what 
follows, we denote all quantities for each of these bodies by subscripts 1 and 2, respectively.  Hence, we get 

 ∂2T1
(i)∗(ζ, τ)
∂ζ2

= ∂Ti
(i)∗(ζ, τ)
∂τ

,      ζ > 0 ,      0 < τ ≤ τs ,      i = 1, 2, 3, (4) 

 ∂2T2
(i)∗(ζ, τ)
∂ζ2

= 1
k*

∂T2
(i)∗(ζ, τ)
∂τ

,      ζ < 0 ,      0 < τ ≤ τs ,  (5) 

 K * ∂T2
(i)∗(ζ, τ)
∂ζ

ζ=0−
− ∂T1

(i)∗(ζ, τ)
∂ζ

ζ=0+
= q(i)∗(τ) ,      0 < τ ≤ τs , (6) 

 T1
(i)∗(0+ , τ) = T2

(i)∗(0− , τ) ,      0 < τ ≤ τs , (7) 

 Tk
(i)∗(ζ, τ)→ 0 ,     ζ → ∞ ,     0 < τ ≤ τs ,      k = 1, 2 , (8) 

 Tk
(i)∗(ζ, 0) = 0 ,      − ∞ < ζ < ∞ ,      k = 1, 2 , (9) 

where 

 ζ = z
a1

,        τ = k1t
a12

,        τs = k1ts
a12

,   

 K * = K2
K1

,        k* = k2
k1

,  (10) 

 Ta = q0a1
K1

,        Tk
(i)∗ =

Tk
(i) − T0
Ta

, 

Tk
(i)  are the temperatures of the first (k = 1) and second (k = 2) bodies corresponding to the time dependences of 

the specific density of friction power q(i)∗(τ),  i = 1, 2, 3,  K  and k  are the thermal conductivity and diffusivity, 
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respectively, and   

 a1 = 3k1ts  

is the effective depth of penetration of heat into the first body [12]. 

Solution of the Problem 

We seek the dimensionless temperature fields  Tk
(i)∗(ζ, τ) ,  k = 1, 2 ,  i = 1, 2, 3  by using the Duhamel for-

mula [14]: 

 Tk
(i)∗(ζ, τ) = q(i)∗(s) ∂

∂τ0

τ

∫ Tk
(0)∗(ζ, τ − s) ds ,      0 ≤ τ ≤ τs , (11) 

where the solution of boundary-value problem (4)–(10) with the function  q(0)∗(τ) = 1  in the boundary condi-
tion (6) has the form 

 Tk
(0)∗(ζ, τ) = 2 τ(1+ ε)−1Fk (ζ, τ) ,      0 ≤ τ ≤ τs ,      k = 1, 2 , (12)  

 Fk (ζ, τ) =
e− Zk

2 (ζ,τ)

π
− Zk (ζ, τ)Ek (ζ, τ),      Ek (ζ, τ) = 1− erf Zk (ζ, τ) , (13) 

 Z1(ζ, τ) =
0.5ζ
τ

,      ζ ≥ 0 ,      Z2(ζ, τ) = − 0.5ζ

k∗τ
,      ζ ≤ 0 ,      ε = K *

k*
, (14) 

and  erf x   is the error function [15].  It follows from relations (12)–(14) that  

 ∂Tk
(0)∗(ζ, τ − s)

∂τ
= (1+ ε)−1e−Zk

2 (ζ,τ−s)

π(τ − s)
. (15) 

Substituting the functions  q(i)∗(τ),  i = 1, 2, 3  (3), and the partial derivative (15) under the integral sign in 
relation (11), we obtain 

 Tk
(1)*(ζ, τ) = 3(1+ ε)−1[Ik

(0)(ζ, τ) − 2Ik
(1)(ζ, τ) + Ik

(2)(ζ, τ)] , (16) 

 Tk
(2)*(ζ, τ) = 6(1+ ε)−1[Ik

(1)(ζ, τ) − Ik
(2)(ζ, τ)] , (17) 

 Tk
(3)*(ζ, τ) = 6(1+ ε)−1[Ik

(0.5)(ζ, τ) − Ik
(1)(ζ, τ)] , (18) 

 Ik
(α)(ζ, τ) = 1

π
e−Zk

2 (ζ,τ−s)

τ − s
s
τs

⎛
⎝⎜

⎞
⎠⎟
α

ds
0

τ

∫ ,      k = 1, 2 ,      α = 0; 0, 5;1; 2. (19) 
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Integrals (19) were calculated with the help of the substitution   

 x = 1/ τ − s    

and the formula [16] 

 x−1(x − u)νe−µx
u

∞

∫ dx = uνΓ(ν +1)Γ(−ν;uµ), 

where  Γ(ν)  is the gamma function,  Γ(ν, x)  is the incomplete gamma function [15],  ν = n − 0.5 ,  n  = 0.1, 
u = 1/τ , and µ = Zk

2(ζ, τ)τ .  By using the values  

 Γ(0.5) = π ,      Γ(1.5) = 0.5 π ,      Γ 0.5; Zk
2(ζ, τ)⎡⎣ ⎤⎦ = πEk (ζ, τ) , 

and   

 Γ − 0.5; Zk
2(ζ, τ)⎡⎣ ⎤⎦ = 2 π Fk (ζ, τ)

Zk (ζ,τ)
,  

we find  

 Ik
(0)(ζ, τ) = 2 τ Fk (ζ, τ), Ik

(0,5)(ζ, τ) = 0.5 πτsτ∗[Ek (ζ, τ) − 2Zk (ζ, τ)Fk (ζ, τ)], (20) 

 Ik
(1)(ζ, τ) = 2 ττ∗ 2[1+ Zk

2(ζ, τ)]Fk (ζ, τ) − Zk (ζ, τ)Ek (ζ, τ)
3

, (21) 

 Ik
(2)(ζ, τ) = 2 ττ∗2 [8 +18Zk

2(ζ, τ) + 4Zk
4 (ζ, τ)]Fk (ζ, τ) − Zk (ζ, τ)[7 + 2Zk

2(ζ, τ)]Ek (ζ, τ)
15

. (22) 

Knowing the functions Ik
(α)(ζ, τ)  (20)–(22) and using relations (16)–(18), we determine the dimensionless  

temperature fields Tk
(i)*(ζ, τ)  corresponding to the time dependences of the specific friction power q(i)∗(τ), 

i = 1, 2, 3  (3) in each element  (k = 1, 2 )  of the friction couple: 

 Tk
(1)*(ζ, τ) = 2 τ

(1+ ε)
3− 4 τ

τs
⎛
⎝⎜

⎞
⎠⎟
[1+ Zk

2(ζ, τ)]+ 1
5

τ
τs

⎛
⎝⎜

⎞
⎠⎟
2
[8 +18Zk

2(ζ, τ) + 4Zk
4 (ζ, τ)]

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
Fk (

⎧
⎨
⎪

⎩⎪
ζ, τ)  

  + τ
τs

⎛
⎝⎜

⎞
⎠⎟

2Zk (ζ, τ) −
1
5

τ
τs

⎛
⎝⎜

⎞
⎠⎟
Zk (ζ, τ)[7 + 2Zk

2(ζ, τ)]⎧
⎨
⎩

⎫
⎬
⎭
Ek (ζ, τ)

⎫
⎬
⎭
, 0 ≤ τ ≤ τs ; (23) 

 Tk
(2)*(ζ, τ) = 4 τ

(1+ ε)
τ
τs

⎛
⎝⎜

⎞
⎠⎟

2[1+ Zk
2(ζ, τ)]− 1

5
τ
τs

⎛
⎝⎜

⎞
⎠⎟
[8 +18Zk

2(ζ, τ) + 4Zk
4 (ζ, τ)]⎧

⎨
⎩

⎫
⎬
⎭
Fk (

⎧
⎨
⎩

ζ, τ) 

  − Zk (ζ, τ) −
1
5

τ
τs

⎛
⎝⎜

⎞
⎠⎟
Zk (ζ, τ)[7 + 2Zk

2(ζ, τ)]⎧
⎨
⎩

⎫
⎬
⎭
Ek (ζ, τ)

⎫
⎬
⎭
, 0 ≤ τ ≤ τs ; (24) 



240 К. TOPCZEWSKA 

 Tk
(3)*(ζ, τ) = 1

(1+ ε)
τ
τs

⎛
⎝⎜

⎞
⎠⎟
{[3 πτs + 4 τZk (ζ, τ)]Ek (ζ, τ)  

  − 2{3 πτs Zk (ζ, τ) + 4 τ[1+ Zk
2(ζ, τ)]}Fk (ζ, τ)}, 0 ≤ τ ≤ τs , (25) 

where the functions  Fk (ζ, τ),  Ek (ζ, τ),  and  Zk (ζ, τ)  are given by relations (13) and (14). 

Numerical Results 

The numerical analysis was performed according to relations (16)–(18) and (23)–(25).  The role of dimension-
less input parameters of the problem was played by the space variable ζ  and the Fourier numbers τ  and τs  (10).  
The first element of the friction couple  ζ  ≥ 0  (disk) was made of ChNMKh cast iron  (K1 = 51Wm–1K–1 ,  
k1 = 14 ⋅10–6m2sec–1),  while the second element  ζ ≤ 0   (pad) was made of the friction material (FM-16L reti-
nax with  K2 = 0.65 Wm–1K–1  and  k2 = 4 ⋅10–7m2sec–1)  [9].  For this friction couple, by using formula (14), 
we determine the coefficient of relative thermal activity  ε  = 0.075. 

The evolution of the dimensionless temperature   

 Tk
(i)∗(ζ, τ) ,      k  = 1, 2;    i  = 1, 2, 3   

in the process of braking is depicted in Fig. 2.  The highest temperature is attained on the contact  surface  ζ  = 0.  
The time dependence of temperature on this surface is typical of the process of one-time braking, namely,  
the temperature increases with the onset of braking and reaches a certain maximal value with subsequent cooling 
up to the stopping time. The maximal values of dimensionless temperature   

 Tmax
(i)∗ ≡ Tk

(i)∗ 0, τmax
(i)( )  

and the time of their attainment τmax
(i)  are equal to 1.12  and 0.32 for i  = 1 (Fig. 2а), 1.09 and 0.75 for i  = 2 

(Fig. 2b),  and  1.02 and 0.62 for  i  = 3,  respectively  (Fig. 2c).  The dimensionless temperatures on the contact 
surface at the stopping time are equal to  Tk

(i)∗(0, τs ) = 0, 63, 0.84,  and 0.75 for  i  = 1, 2,  and 3, respectively.  
Since retinax conducts heat much worse than cast iron, the temperature of the pad decreases much faster 

than the disk temperature with the distance from the contact surface.  In this case, we observe the delay effect:  
as the distance from the friction surface increases, the time of attainment of the maximal temperature approaches 
the stopping moment.  The monotone growth of the disk temperature from the onset of braking up to the stop-
ping starts at the effective depth  z = a1  (ζ  = 1),  while the pad temperature monotonically increases even  
for  z = − 0.2a1   (ζ  = – 0.2). 

CONCLUSIONS 

The results of our investigations demonstrate that the distributions of temperature in the friction elements  
of brakes (pad, disk) strongly depend on the time dependences of the specific friction power.  This feature is es-
pecially pronounced for the contact surface with the maximal temperature.  It was also discovered that there exists  
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Fig. 2. Time dependences of the dimensionless temperature  Tk
(i)∗(ζ, τ) :  i  = 1  (a);  i  = 2  (b);  i  = 3  (c) in the disk (solid curves; k  = 1)  

and in the pad (dashed curves;  k  = 2)  at different distances from the contact surface. 

a direct dependence between the time of attainment of the maximal friction power  qmax
(i)∗   and temperature  Tmax

(i)∗ ,  
i = 1, 2, 3.   Indeed, the time of attainment of the maximum temperature  Tmax

(i)∗   increases with the time of attain-
ment of  qmax

(i)∗ .  At the same time, the influence of the quantity  qmax
(i)∗   on the value of  Tmax

(i)∗   is insignificant:  
for qmax

(1)∗ = 3, we obtain Tmax
(1)∗ = 1.12  and, for qmax

(2)∗ = qmax
(3)∗ = 1.5 , we get Tmax

(2)∗ = 1.09  and Tmax
(3)∗ = 1.02 .  The pro-

cess of cooling of the contact surface after reaching the temperature maximum also strongly depends on the  
evolution of specific friction power.  Indeed, the temperatures at the stopping time are equal to 56.2% , 77%, 
and 73.5% of the maximal temperatures  Tmax

(i)∗ ,  i = 1, 2, 3.  
The established exact solutions of the thermal problems of friction enable one to obtain formulas for the 

evaluation of an important tribological parameter, namely, the coefficient of distribution of thermal fluxes heat-
ing the disk and the pad in the course of braking for a given time dependence of the friction power. 
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