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DETERMINATION OF PLANE STRESS-STRAIN STATES OF THE PLATES ON  
THE BASIS OF THE THREE-DIMENSIONAL THEORY OF ELASTICITY 

V. P. Revenko1,2  and  A. V. Revenko3 UDC 539.3 

We construct a theory of plates loaded only on their sides by loads parallel and symmetric to the median 
surface.  We use the general representation of three-dimensional stress-strain state and exactly satisfy 
the trivial boundary conditions on the plane surfaces of the plate.  The numerical  analysis of the three-
dimensional stressed state of the plate is reduced to the determination of its two-dimensional state under 
the assumption that the normal stresses perpendicular to the median surface are negligible.  The displace-
ments and stresses are expressed via two two-dimensional harmonic functions.  We obtain the homoge-
neous solutions and develop a numerical-analytic algorithm for the solution of the boundary-value prob-
lems posed for rectangular plates.  

Keywords:  plate, plane stressed state, stress tensor, homogeneous solutions. 

Plates loaded only on their sides by loads parallel and symmetric to the median surface are widely used in 
building and engineering structures [1–7].  The stressed state of thin plates is, as a rule, determined by using the 
equations of the plane problem of the theory of elasticity [2–4].  For thick plates, it is customary to use the ho-
mogeneous solutions and the symbolic method [5, 8], harmonic and biharmonic functions [2–4], hypothesis on 
the behavior of normal to the median surface [1, 8], or expansions of the Papkovich–Neuber representation in 
the variable normal to the median surface [5, 9]. 

Statement of the Problem and Its Solution 

Consider a three-dimensional static problem of the theory of elasticity for a plate with constant thickness  h   
whose median surface occupies a domain  S   with contour  L   and coincides with the plane  Oxy   of a Cartesian 
coordinate system:  x1 = x ,  x2 = y ,  x3 = z .  The general stressed state of the plate can be split [10] into the 
states of bending and symmetric pressure: 

 ui (x, y, − z) = ui (x, y, z),      i = 1, 2 ,      u3(x, y, − z) = − u3(x, y, z), (1) 

where  ui   are displacements in the directions of the corresponding axes of the Cartesian coordinate system.   
We now consider a special case of the second problem where the plane surfaces of the plate  (z = hj ,  

j = 1, 2 ,  h1 = h/2 ,  h2 = − h/2)  are free of normal and tangential loads and its sides (lateral surfaces) are sub-
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jected to the action of loads symmetric and parallel to the median surface  S :  

 σn (x, y, − z) = σn (x, y, z),      τnz (x, y, z) = 0,      τnt (x, y, − z) = τnt (x, y, z),      {x, y} ∈L .   

For the solution of the problem, we use the general representation of the equations of the theory of elastici-
ty [11] and write the components of the vector of displacements as follows:  

 ux = ∂P
∂x

+ ∂Q
∂y

,      uy = ∂P
∂y

− ∂Q
∂x

,      uz = ∂P
∂z

− 4(1− ν)Φ , (2) 

where  P = zΦ +Ψ   is a biharmonic function,  Φ ,  Ψ ,  and  Q   are harmonic functions called the functions of 
displacements, and  ν   is Poisson’s ratio.  The function  P   satisfies the equation  

 ΔP + ∂2

∂z2
P = 2 ∂

∂z
Φ , (3) 

where   

 Δ = ∂2

∂x2
+ ∂2

∂y2
   

is the two-dimensional Laplace operator.  We now write the expressions for the normal stresses 

 σ j = 2G ∂2P
∂x j2

− 2ν ∂Φ
∂x3

− (−1) j ∂2Q
∂x1 ∂x2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

,      σ3 = 2G ∂2P
∂x32

− 2(2 − ν) ∂Φ
∂x3

⎡

⎣
⎢

⎤

⎦
⎥  (4) 

and for the tangential stresses 

 τ12 = G 2 ∂2P
∂x1 ∂x2

+ ∂2Q
∂x22

− ∂2Q
∂x12

⎡

⎣
⎢

⎤

⎦
⎥ , 

   (5) 

 τ j3 = G ∂
∂x j

2 ∂P
∂x3

− 4(1− ν)Φ⎡
⎣⎢

⎤
⎦⎥
− (−1) j ∂2Q

∂x3− j ∂x3

⎡

⎣
⎢

⎤

⎦
⎥ ,      j = 1, 2 , 

where  G = E /2(1+ ν)   and  E   are, respectively, the shear and Young moduli.  The sum of normal stresses is 

equal to  − 2E ∂Φ
∂z

. 

Relations (1) and (2) imply that  P   and  Q   are even functions of the variable  z   and the function  Φ   is 
odd.  From the symmetry of loads, we get the conditions imposed on the functions of displacements on the outer 
plane surfaces of the plate:  

 ∂P+

∂z
= − ∂P−

∂z
,     ∂Φ

+

∂z
= ∂Φ−

∂z
,      ∂Q

+

∂z
= − ∂Q−

∂z
. (6) 
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Here, the signs “+” and “–” describe the boundary values of the corresponding functions on the upper  z = h1  
and lower  z = − h1   surfaces of the plate.  Hence, the conditions imposed on the lower surface can be expressed 
via the functions defined on the upper surface. 

In view of relations (4)–(6), we can write the following boundary conditions for the surfaces of the plate 
free of loads: 

 ∂2P+

∂x32
− 2(2 − ν) ∂Φ

+

∂x3
= 0 , 

   (7) 

 ∂
∂x j

2 ∂P+

∂x3
− 4(1− ν)Φ+⎡

⎣
⎢

⎤

⎦
⎥ − (−1) j ∂2Q+

∂x3− j ∂x3
= 0 ,      j = 1, 2 . 

Equations (7) yield the following conditions of harmonicity: 

 Δ ∂P+

∂z
− 2(1− ν)Φ+⎡

⎣
⎢

⎤

⎦
⎥ = 0 ,      Δ ∂Q+

∂z
= 0 . (8) 

In view of the fact that the normal stresses  σ z   are insignificant under the indicated loading of the plate, in-
tegrating along the  Oz -axis, we find  

 ∂P+

∂z
= 2(2 − ν)Φ+ . (9) 

Substituting relation (9) in the first equation in (8), we obtain 

 ΔΦ+ = 0 . (10) 

By using relation (9), we can simplify the second and third equations in (7) as follows: 

 4 ∂Φ+

∂x j
= (−1) j ∂2Q+

∂x3− j ∂x3
,      j = 1, 2 . (11) 

We now construct a two-dimensional theory of symmetrically loaded plates.  For this purpose, we substitute 
the three-dimensional stresses (4) and (5) in the known expressions for the normal and tangential forces [1, 2, 4].  
Integrating these expressions, we get 

 
 
Tx = 2G ∂2 !P

∂x2
+ ∂2 !Q
∂x ∂y

− 4νΦ+⎡

⎣
⎢

⎤

⎦
⎥ ,      

 
Ty = 2G ∂2 !P

∂y2
− ∂2 !Q
∂x ∂y

− 4νΦ+⎡

⎣
⎢

⎤

⎦
⎥ , 

    (12) 

 
 
Sxy = Syx = 2G ∂2 !P

∂x ∂y
+ 1
2

∂2 !Q
∂y2

− ∂2 !Q
∂x2

⎛

⎝⎜
⎞

⎠⎟
⎡

⎣
⎢

⎤

⎦
⎥ ,  
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where  

 
 

!P = Pdz
−h1

h1

∫       and      
 

!Q = Qdz
−h1

h1

∫ . 

In view of Eqs. (3), (9), and (10) and the harmonicity of the functions of displacements, we can now deduce 
the following key equations of the theory of plates: 

  Δ !P = − 4(1− ν)Φ+ ,      
 
Δ !Q = − 2 ∂Q+

∂z
, (13) 

where Φ+   and  ∂Q
+

∂z
  are harmonic functions and   !P   and   !Q   are biharmonic functions.  Relations (11)–(13) 

are equivalent to the well-known balance equations for the plate [1, 2, 4] formulated in terms of forces. 
The general solution of the harmonic equation (10) takes the form  

 Φ+ = − ∂ϕ(x, y)
∂y

,  (14) 

where  ϕ   is an unknown harmonic function.  By using formula (14) and relation (11), we get  

 ∂Q+

∂z
= 4 ∂ϕ

∂x
. (15) 

In view of relations (14) and (15), the general solution of Eqs. (13) takes the form 

  
!P = 2(1− ν)yϕ + g1(x, y),      

 
!Q = − 4y ∂ϕ1

∂x
+ g2(x, y), (16) 

where   

 ϕ1 = ϕ(x, y)∫ dy + C(x) ,   

C(x)   is an unknown function determined from the condition of harmonicity of the function  ϕ1,  and  g j   are 
harmonic functions.  These functions can be represented in the form 

 g1 = (1+ ν) ∂ϕ
∂x

− ∂ψ
∂x

⎡
⎣⎢

⎤
⎦⎥
, g2 = (1+ ν) ∂ϕ

∂y
+ ∂ψ
∂y

⎡
⎣⎢

⎤
⎦⎥
, (17) 

where  ϕ   and  ψ   are harmonic functions.  
We now substitute functions (14), (16), and (17) in relation (12).  In this case, forces (12) can be represented 

via the functions introduced above: 
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 Tx = 2E y ∂2

∂y2
ϕ + 2 ∂ϕ

∂y
+ ∂2

∂y2
∂ψ
∂x

⎧
⎨
⎩⎪

⎫
⎬
⎭⎪

,       Ty = 2E y ∂
2ϕ
∂x2

+ ∂3ψ
∂x3

⎧
⎨
⎩⎪

⎫
⎬
⎭⎪

, 

   (18) 

 Sxy = −2E{y ∂2ϕ
∂x ∂y

+ ∂ϕ
∂x

+ ∂3ψ
∂x2 ∂y

} . 

Hence, the function  ϕ   does not appear in representation (18) and can be neglected.  Relation (17) can be 
simplified to the form  

 g j = − (−1) j (1+ ν) ∂ψ
∂x j

.  

We now introduce a biharmonic function  U   by the formula 

 U = 2E
h

yϕ + ∂ψ
∂x

⎛
⎝⎜

⎞
⎠⎟ .  

Then relations (18) yield the well-known formulas for stresses from the plane problem of the theory of elas-
ticity. 

We now find the stresses in the plate by dividing the corresponding forces (18) by the thickness of the plate  
h .  In view of relations (2), (7), and (9), we can find the transverse displacements and strains on the lateral sur-
faces of the plate:   

 uz+ = 2νΦ+   and  ez+ = 2ν ∂Φ+

∂z
.   

For a thin plate, we get the dependence  

 ∂Φ+

∂z
= 2
h
Φ+  

in agreement with the three-dimensional theory of elasticity.  
Since all relations of the theory of elasticity are exactly satisfied, the displacements and strains can be found 

as a result of averaging of relations (2): 

 
 
hu = ∂ !P

∂x
+ ∂ !Q
∂y

= 2(1+ ν) ∂2ψ
∂y2

− y ∂ϕ
∂x

⎧
⎨
⎩⎪

⎫
⎬
⎭⎪
− 4 ∂ϕ1

∂x
,      uz+ = − hν ∂ϕ

∂y
, 

  
 
hv = ∂ !P

∂y
− ∂ !Q
∂x

= 2(1− ν)ϕ − 2(1+ ν) y ∂ϕ
∂y

+ ∂2ψ
∂x ∂y

⎡

⎣
⎢

⎤

⎦
⎥ ,  

   (19) 

 hey = − 2(1+ ν) y ∂
2ϕ
∂y2

+ ∂3ψ
∂x ∂y2

⎡

⎣
⎢

⎤

⎦
⎥ − 4ν ∂ϕ

∂y
, 

 hex = 4 ∂ϕ
∂y

− 2(1+ ν) y ∂
2ϕ
∂x2

+ ∂3ψ
∂x3

⎡

⎣
⎢

⎤

⎦
⎥ ,      exy = 1

hG
Sxy . 
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Hence, the displacements in the directions of the Ox - and  Oy -axes coincide with the averaged displace-
ments of the three-dimensional theory of elasticity.   

Note that forces (18) and displacements (19) are expressed via two harmonic functions  ϕ   and  ψ   of dis-
placements of the plane problem.  We now present their expressions for the known three-dimensional stressed 
states of the plate in the case of uniform tension–compression by loads  σ0   in the direction of the Ox -axis:   

 ϕ = h
4E

σ0y ,     ϕ1 =
h
8E

σ0(y2 − x2 ) ,     ψ = 0 ,     uz+ = − νh
2E

σ0 .  

In the case of uniform shear by tangential loads  τ0 ,  we get   ϕ = 0   and   

 ψ = h
12E

τ0(y3 − 3x2y) .   

Consider a rectangular plate  Π = { x, y( ) ∈[0, a]× [−b, b]}   whose lateral sides  y = ± b  are free of 
loads, i.e.,  

 σ y(x, ± b) = 0, τxy(x, ± b) = 0, x ∈[0, a] . (20) 

On the sides perpendicular to these sides, we specify certain known loads  σg,m (y)  and  τm (y) :  

 σ x (am , y) = σm (y) = σg,m (y) − σ0,     τxy(am , y) = τm (y) ,     m = 1, 2 , (21) 

where 

 a1 = 0 ,      a2 = a ,      σ0 = σg,m (y)dy
−b

b

∫ ,      τm (y)dy
−b

b

∫ = 0 ,      m = 1, 2 . 

The homogeneous solutions (eigenfunctions) that describe even normal stresses (about the Oy-axis) and odd 
tangential stresses and identically satisfy condition (20) can be constructed in the form of the sum of series in 
eigenvalues (as in [12]):  

 ϕN (α, γ ) = hb
k=1

2N

∑Re[gkθ(µk ,α) sin (µkγ )],  

   (22) 

 ψN (α, γ ) = hb3
k=1

2N

∑Re[χkgkθ(µk ,α) cos (µkγ )], 

where  α = x /a,  γ = y/b ,  N   is a given natural number,  c = a/b ,  µk ,  Re (µk ) > 0 ,  are the first  N  eigenval-
ues (the roots of the equation sin (2µ) + 2µ = 0 ),   

 χk = 1+ ν
µk

tan (µk ) ,  

gk   are complex coefficients,  θ(µk ,α) =  exp (− cµkα),  θ(µk+N ,α) = exp (cµk (α −1)) ,  and  µk+N = µk ,  
k = 1, N . 
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Substituting the functions of displacements (22) in relation (18), we find the stresses and reduce condi-
tions (21) to the following compact system of four equations: 

 
k=1

M

∑ckAk
m (γ ) = Pm (γ ), m = 1, 4 , (23) 

where  M = 4N ,  ck = Regk ,  c2N+k = Im gk ,  k = 1, 2N ,  and  Ak
m (γ )  are known functions. 

We now apply the numerical-analytic method developed in [10, 12, 13].  Moreover, in order to satisfy the 
boundary conditions, we find the minimum  F(N )   of the generalized quadratic form 

 
m=1

4

∑
k=1

M

∑ckAk
m (γ ) − Pm (γ )

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

2

dγ =
k, j=1

M

∑ ckc jWkj − 2
k=1

M

∑ckVk + P2  (24) 

whose coefficients can be found analytically.  

Lemma 1 [10].  The function  F(N )   is unknown and nonincreasing. 

Theorem 1.  If the loads  σm (γ )   and  τm (γ )  are continuous and there exists  N   such that  F(N ) <  ε2 /4  
for any  ε > 0 ,  then the stresses given by the functions  ϕ = lim

N→∞
ϕN   and  ψ = lim

N→∞
ψN   satisfy the boundary 

conditions (23) in the norm  C[0,1]   and describe the stressed state of the rectangular plate. 

The proof of the theorem is based on equality (24) and known results from [13].  Note that the functional 
used to construct the generalized quadratic form is not bilinear.  However, the value of  F(N )   tends to zero 
as  N   increases and serves as the estimate of convergence and accuracy of the solution. 

CONCLUSIONS 

On the basis of the three-dimensional theory of elasticity, without using the hypotheses of absence of the 
tangential stresses in the middle of the plate, we develop a two-dimensional theory of thin and thick plates load-
ed only on the lateral sides by loads symmetric about the median surface and parallel to this surface.  It is shown 
that the obtained stresses and displacements are exactly equal to the corresponding averaged stresses and dis-
placements of the three-dimensional theory of elasticity.  Moreover, the obtained relations yield representations 
of stresses from the plane problem of the theory of elasticity.  The proposed theory of plates is used for the con-
struction of countable collections of homogeneous solutions and formulation of the criteria according to which 
their finite sum approximates the stress-strain state of the plate. 
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