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MODELING OF THE BEHAVIOR OF PLANE-DEFORMABLE ELASTIC MEDIA WITH 
ELONGATED ELLIPTIC AND RECTANGULAR INCLUSIONS 

V. S. Gudramovich,1,2  É. L. Gart,3  and  K. А. Strunin4 UDC 539.3 

We propose a numerical model of the stress-strain state of a plane element of an elastic inhomogeneous 
medium with long elliptic and rectangular inclusions based on the use of the standard ANSYS finite-
element package.  The mutual influence of inclusions is investigated depending on their orientation, 
shapes, sizes, and stiffnesses.  We determine the safest possible versions of their mutual location.  
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The investigation of the stress-strain state (SSS) of bodies with inclusions is important for the optimization of 
the processes of manufacturing of materials (powder metallurgy, ceramic production, casting, etc.) [1–4].  Inclu-
sions can be used to model striated formations formed in the course of plastic prestraining in the microstructure 
of metals [5].  As one of directions in the investigation of the SSS of structural elements with inclusions of spe-
cial types, we can mention the discrete hardening of materials [6].   

Inclusions strongly affect the processes of deformation, lead to the concentration of stresses and the appear-
ance of defects of the shape, and cause local fractures [7–9].  The processes of deformation may lead to phase 
transformations in materials, e.g., to the formation of martensitic structures [10].  It is especially important to 
study crack initiation in the course of phase transformations, which determines the onset of fracture of the mate-
rial [11, 12].  Note that elongated inclusions can model the stiffening elements of thin-walled structures.  

Inclusions and discontinuities in the form of cracks and pores play the role of local stress concentrators.  In the 
study of the SSS of media containing these inclusions, it is reasonable to use numerical methods.  They are fairly uni-
versal and applicable for the analyses of objects of various shapes and sizes and various types of loading, unlike the 
analytic methods, which are often cumbersome and, in some cases (noncanonical shapes of inclusions, complicated 
modes of deformation, etc.), inapplicable.  Among the numerical methods, the finite-difference method, boundary-
element method, and finite-element method (FEM) are used especially extensively [13–15].  We especially mention 
the urgency of development of projective-iterative schemes for the realization of grid methods capable of significant 
reduction of the computer time in numerous problems of the mechanics of deformable solid [16–18].  These schemes 
based on the FEM were also used for the media with inclusions [19–22].  We also indicate the possibility of con-
struction of these schemes for the method of local variations, i.e., for the numerical method used for the solution of 
variational problems [23]. 
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Fig. 1.  Plane element used to model the behavior of a medium with inclusions. 

In design works, it is customary to apply the FEM as a part of various packages of applied programs, such 
as, ANSYS, NASTRAN, ABAQUS, etc.  In the present work, by using the ANSYS program [24], we analyze 
the influence of the shape, parameters, and relative arrangement of elongated elliptic and rectangular inclusions 
in a plane element of the elastic medium (modeling its behavior in the indicated technological processes of man-
ufacturing of structural elements or in the course of operation) on the SSS.  We study two inclusions, which en-
ables us to clarify the principal features of their interaction.  

Computational Model 

Consider an inhomogeneous plane element  Ω   of an elastic medium with two randomly located elastic in-
clusions  Ω2 and  Ω3  (Ω = Ω1 ∪Ω2 ∪Ω3) (Fig. 1).  The sizes of the element are such that the boundary con-
ditions do not affect the SSS in the vicinity of the inclusions.  By  L1   and  L2   we denote the lengths of the sides 
of plane element,  ai   and  bi  are the sizes of the sides of the  i th  inclusion,  s   is the distance between the cen-
ters of the inclusions, α is the angle of rotation of one inclusion about the other, ni  is the distance from the 
edge of the plane element to the i th  inclusion,  А–А and В–В are sections of the element used to analyze 
the SSS.  Tensile forces   

 P(x, y) = (Px (x, y), Py(x, y))T   (Px (x, y) = 0, Py(x, y) = const)  

are given on the boundary  γ   of the domain  Ω   (y  = 0,  0 ≤ x ≤ L1  и  y = L2 ,  0 ≤ x ≤ L1).  On the remaining 
part of the boundary   (x  = 0,  0 ≤ y ≤ L2   and  x = L1,  0 ≤ y ≤ L2 ),  the forces are absent. 

It is necessary to find the fields of displacements and stresses in the element (matrix) with inclusions for dif-
ferent orientations of one inclusion relative to the other, study the influence of the mechanical characteristics and 
geometric parameters of the inclusions on the SSS of the element, and determine the safest possible configura-
tions of their relative arrangements.  Note that, by using the models of plane problems, it is possible to establish 
the principal features of the SSS, in particular, in the case of deformation of the media with regard for their in-
teraction with inclusions of different shapes [9, 12, 20–22].  
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In the variational statement, the original problem leads to the minimization of functional of the potential strain 
energy [25].  In the analysis of the strain and stress fields near inclusions, it is customary to consider the problems in 
which the domains of perturbation of the SSS are much smaller than the characteristic sizes of the body.  In the nu-
merical analysis, the sizes of the body are assumed to be infinite.  The classical variational principles were developed 
for finite domains and, hence, in order to extend them to infinite domains, it is necessary to change the formulation 
[21, 26]. 

The problem was solved by the FEM with the use of the ANSYS standard package of applied programs (li-
censed version) [24].  It is known [14, 15] that the main idea of the FEM is based on the discretization of the do-
main of continuous variation of arguments of the desired function (displacements, temperature, pressure, etc.) 
into a collection of finitely many subdomains, i.e., finite elements, and the approximation of continuous func-
tions within the boundaries of each finite element by certain polynomials.  As a result, the original variational 
problem is replaced by a discrete model, i.e. by a system of linear or nonlinear algebraic equations with un-
known values of the required function at the nodes of a finite-element mesh. 

In our numerical calculations, we use second-degree triangular (six-node) Lagrangian finite elements and 
approximate the unknown functions of displacements within each finite element by quadratic polynomials. 

Results of Numerical Analysis 

The calculations were performed for a plane element 0.4 × 0.4 m  in size containing two elongated elliptic 
and rectangular inclusions  a1 × b1  and  a2 × b2   of the same material;  the relative stiffness of the inclusions  
k = G2 /G1  (G1   and  G2   are the shear moduli of the materials of the matrix and inclusions, respectively) was 
taken to be either greater or smaller than one.  The distance between the inclusions was  s  = 0.02 m,  and the 
external tensile load was  P  = 10 MPa.  As the materials of the inclusions and the media (matrix), it is possible 
to use aluminum and various steels, in particular, steels for hardening coatings, such as St3, R6M5, and other 
types of steel.  The inclusions which are “softer” than the matrix can be used to endow binary systems with cer-
tain functional properties (conductivity and pore formation). 

The numerical analyses were performed on an Intel Inside computer with Dual Core characterized by a clock 
frequency of  2.10 GHz,  with a RAM of  3 GB,  and a 32-bit operating system.  The number of finite elements 
was 67,308.  On the average, the calculation time was equal to  18 sec. 

Figures 2 and 3 illustrate the distributions of the relative stress intensity  σ i /P   in the plane element depend-
ing on the angle of rotation of one inclusion about the second inclusion for  k  > 1  (Fig. 2;  k  = 3.2)  and  k  < 1  
(Fig. 3;  k  = 0.31).  In all figures, the values of  σ i /P   on the segments of the axes  [0; 0.2]  and  [0.8; 1]  are 
constant and equal to the corresponding values for  L  = 0.2  and  L  = 0.8  (L   is a dimensionless quantity,  
L = x /L1 ,  0 ≤ x ≤ L1,  L1 = L2 ).   For this reason, they are not presented.  

In Figs. 2а–d, we take the following sizes of inclusions:  a1 = 0.03 m;  b1 = 0.01 m;  a2  = 0.01 m;  b2  = 
0.005 m;  n1 = n2  = 0.0185 m.   In the А–А section, the stresses with maximum magnitude are formed for an 
angle of rotation of the inclusion α  = 135°.  In the В–В section, the corresponding stresses are formed at an an-
gle of  45°.  In Figs. 3a, b, we present the distributions of the quantity  σ i /P   in these sections for “softer” inclu-
sions depending on the angle between the inclusions.  

The maximum stresses  σ i   in the А–А section appear at  α  = 90°,  whereas in the В–В section, they are 
formed at 135°.  Hence, for two rectangular inclusions of different lengths with higher relative stiffness, the 
stresses are higher.  At the same time, “softer” inclusions decrease the stress concentration by  25%.  

The angle of rotation α  = 135° remains dangerous for both “soft” and “rigid” inclusions but, for “soft” in-
clusions, the peaks of stresses are also observed for the angle of rotation equal to  90°. 
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Fig. 2. Distributions of the relative stress intensity  σ i / p   in a plane element with two rectangular (a, b) and elliptic (c, d, e, f) inclu-
sions for  k  > 1:  (а, с, e) in the А–А  section (0 ≤ L ≤ L2 /L2 ) ;  (b, d, f) in the В–В section (0 ≤ L ≤ L1 /L1) ;  (1)  α  = 0°;  
(2) 45°; (3) 90°; (4) 135°; (5) 180°.  

We studied (see Figs. 2c, d and 3с, d) elliptic inclusions whose semiaxes are equal to the corresponding siz-
es of the inclusions depicted in Figs. 2а, b and 3 а, b and investigated the influence of their shape on the changes 
in the SSS of the plate.  The stresses with maximum magnitude  σ i   are  formed in the А–А section for the an-
gles of rotation equal to 135° and 45°  and,  in the В–В section,  for the angles  equal to 45° and 180°  (Fig. 2c, d).   
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Fig. 3.  Distributions of the relative stress intensities  σ i / p   in the plane element for  k  < 1  (the notation is the same as in Fig. 2). 

For the “soft” inclusion, we recorded their peak of stresses in the А–А section for  α  = 90°  and  45°  and, in the 
В–В section, for  90° (Figs. 3с, d).  The peaks of stresses in the В–В section for the other angles are practically 
equal (the difference is ∼ 6%).  Thus, for different combinations of materials, the elliptic inclusions cause lower 
peaks of stresses than the rectangular inclusions. 
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The difference between the maximum jumps of stresses becomes about two times higher for  α  = 135°  (el-
liptic inclusions substantially decrease the peaks of stresses) (Figs. 2а, с) and by  about  30%  higher for  90° 
(Figs. 3a, с).  For  90°  (Fig. 3d) and  135°  (Fig. 3b), the differences between the peaks of stresses are insignifi-
cant  (∼ 2%). 

In Figs. 2e, f and 3e, f, we present the results of investigations for two elliptic inclusions one of which is 
very long;  the combination of materials is the same as in the previous cases;  the sizes of the inclusions are as 
follows:  a1 = 0.07 m,  b1 = 0.017 m,  a2  = 0.02 m,  b2  = 0.023 m,  n1 = 0.0165 m,  and  n2  = 0.019 m. 

The stresses with maximum magnitude are formed in the А–А  section at  α  = 135°  and in the В–В section 
for all investigated angles of rotation (Figs. 2e, f).  For the “soft” inclusion, the maximum stresses were recorded 
in the А–А section for α  = 90°  and, in the В–В section, as for the “rigid” inclusion, for all values of the angle  α   
(Fig. 3e, f).  The “softer” inclusion causes a higher stress intensity  (∼ 20%);  the angle of orientation equal to  90° 
proves to be most dangerous in both cases.  Moreover, for the “more rigid” inclusion, the angle equal to  135°  is 
also dangerous.  

CONCLUSIONS 

The results of computer modeling of the SSS of plane elements of an elastic medium with elongated elliptic 
and rectangular inclusions of different sizes, orientations, and stiffnesses demonstrate that the stress intensity 
factor increases with the relative stiffness of the inclusions (for  k  > 1),  which may lead to the appearance of 
plastic strains and the nuclei of fracture.  By using the standard packages of finite-element analysis and varying 
the stiffness and geometric characteristics of the inclusions, their shapes, number, and orientations within broad 
ranges, we can also investigate the SSS for the other types of loading (biaxial tension–compression and torsion 
in combination with biaxial tension–compression).  

The results of our investigations can be used to model the technological processes of powder metallurgy and 
ceramic production, in the study of the influence of discrete hardening and discretization of the microstructure of 
the material under phase transformations, and in analyzing the SSS of stiffened plate-like structural elements.  
By using a package of applied programs, it is possible to investigate the formation of irregularities in the form of 
cracks in the zone of location of the inclusions and the specific features of local loading formed in this case be-
tween the inclusion and the cracks. 
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