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STRESS INTENSITY FACTORS FOR A RANDOMLY LOCATED ARC-SHAPED CRACK  
IN A CIRCULAR DISK IN THE COURSE OF ROTATION 

О. P. Datsyshyn,1  H. P. Marchenko,1,2  and  І. А. Rudavs’ka1 UDC 539.375 

We study a plane problem of the theory of elasticity for a circular disk containing a randomly located 
arc-shaped crack under the action of a rotating load.  The problem is reduced to a singular integral equa-
tion, which is solved numerically by the method of mechanical quadratures.  We determine the numeri-
cal values of the stress intensity factors and angles of initial propagation of the crack depending on its 
location and geometric parameters (curvature and length). 

Keywords: circular disk, arc-shaped crack, rotating load, centrifugal forces, method of singular integral 
equations, stress intensity factors. 

Various contemporary machines and mechanisms have rotating parts in which centrifugal forces are formed 
in the course of rotation.  This type of loading and the circular shape of rotating parts itself often play the role of 
causes of initiation of arc-shaped cracks, which may lead to emergency situations.  This is especially important 
in the case of high-speed rotating loads typical, e.g., of the rotors of steam or gas turbines whose rotational speed 
can be as high as tens thousands revolutions per minute.  This is why it is important to determine the stressed 
state of these parts of machines and mechanisms containing cracks, including the stress intensity factors (SIF). 

The stress intensity factors determined in the process of rotation of a disk weakened by a rectilinear crack 
about its center are known from the literature. Thus, in [1], the values of the SIF were obtained by the method of 
boundary collocations for a randomly located rectilinear crack and, for a special case of eccentrically located 
diametric crack, the results were described by approximating relations.  

However, the formation of arc-shaped cracks in a disk is possible under the action of rotating loads.  For 
a concentric crack, the SIF were found by the boundary element method [2].  In what follows, we solve a plane 
problem of the theory of elasticity for a circular disk weakened by a crack randomly located along an arc of the 
circle rotating with a constant angular velocity.  A rectilinear crack can be regarded as a special case of an arc-
shaped crack.  We determine numerical values of the SIF and the angles of initial propagation of the crack. 

Formulation of the Problem 

Consider an elastic isotropic circular disk of radius  R   bounded by a contour  L0   centered at the origin of 
the principal coordinate system  xOy   (Fig. 1).  The disk is weakened by an internal arc-shaped crack randomly 
located along the contour  L   relative to a local coordinate system  x1O1y1 .  The O1x1-axis  of the local coordi-
nate system is inclined to the Ox-axis  at an angle  α   and the affix of its center  O1  in the principal system is 
given by the formula  z10 = r0eiθ0 . 
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Fig. 1.  General scheme of the problem. 

We assume that the edge of the disk and the crack lips are free of loads.  Thus, the boundary conditions of 
the problem take the form 

 N (t) + iT (t) = 0 ,      t ∈L0 ; (1) 

 N ± (t) + iT ± (t) = 0 ,      t ∈L , (2) 

where  N and  T are the normal and tangential components of the forces, respectively.  The superscripts in 
formula (2) indicate the limiting values of the corresponding quantities on the crack  contour  L   in the case 
where it is approached from the left  (+)  or from the right  (–). 

The disc rotates about its center with a constant angular speed  ω as a result of which the stresses formed at 
each point of the disc for the plane stressed state take the following form in a polar coordinate system  (r,θ)   
centered at the point  O   [3]: 

 σr = σ0 1− r2

R2
⎛

⎝⎜
⎞

⎠⎟
;      σθ = σ0 1− 1+ 3ν

3+ ν
r2

R2
⎛

⎝⎜
⎞

⎠⎟
;      τrθ = 0 , (3) 

where   

 σ0 = 1
8
(3+ ν)ρω2R2     

is the maximum level of stresses at the center of the disk,  ν   is Poisson’s ratio,  ρ  is the density of the material, 
and  ω   is the angular rotational speed of the disk.  In relations (3), under the conditions of plane deformation,  
ν   should be replaced by  ν/(1− ν) . 

By using the well-known formulas relating the components of the stress tensor in Cartesian and polar coor-
dinate systems [4], we find the components of stresses in the disk in Cartesian coordinates in the form 
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 σ x = 1
2

σr + σθ − (σθ − σr ) cos 2θ[ ] ;     σ y = 1
2

σr + σθ + (σθ − σr ) cos 2θ[ ]; 
   (4) 

 τxy = 1
2
(σr − σθ ) sin 2θ. 

In the presence of a single crack, by using the boundary conditions of problem (1), (2), we obtain the follow-
ing singular integral equation (SIE) of the posed problem with the help of the Kolosov–Muskhelishvili complex 
potentials for a disk with curvilinear cracks [5]: 

 1
π

K (t, τ) ′g (t) dt + L(t, τ) ′g (t) dt⎡⎣ ⎤⎦
L
∫ = p(τ),      τ ∈L . (5) 

The kernels of this equation are given by the following formulas:  

 K (t, τ) = f1(T , ′T ) + f2(T , ′T ) + −2iαe
dτ
dτ

′T g2(T , ′T ) + h2(T , ′T )⎡⎣ ⎤⎦ ; (6) 

 L(t, τ) = f2(T , ′T ) + f1(T , ′T ) + −2iαe
dτ
dτ

′T g1(T , ′T ) + h1(T , ′T )⎡⎣ ⎤⎦  , (7) 

where 
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 T = t iαe + z10 ;      ′T = τeiα + z10 . (11) 

We determine the right-hand side of the SIE (5) by the method of superposition.  To this end, we find the 
normal  σn   and tangential  τn   stresses on the crack contour in the solid disk in the form 

 p(τ) = − (σn − iτn ) ,      τ ∈L , (12) 
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where 

 σn = σ x cos2 ′α + σ y sin2 ′α − 2τxy sin ′α cos ′α ; 

   (13) 
 τn = (σ y − σ x ) sin ′α cos ′α − τxy(cos2 ′α − sin2 ′α ) , 

σ y , σ x ,  and  τxy   are given by relations  (3), (4), in which  r = (Re ′T )2 + (Im ′T )2 , θ =  arctan (Im ′T /Re ′T ) , 
and the angle  

 ′α = π/2 − arctan (d Im ′T /d Re ′T ) . 

For the single-valuedness of solution of the SIE (5), it is necessary to satisfy the auxiliary condition  

 ′g (t)
L
∫ dt = 0 , (14) 

guaranteeing the single-valuedness of displacements in tracing the contour  L .  
The parametric equation of the crack contour  L   along a circular arc in the local coordinate system  x1O1y1   

has the following form [4]:  

 t = ω(ξ) = l (ξ − iε)
(1− iξε)

,      t ∈L ,    ξ ≤ 1, (15) 

where  ε = δ/l ,  l   is the length of the chord connecting the crack tips, and  δ   is the distance from the center of 
the crack to this chord (Fig. 1).  If  ε  = 0,  then we get a special case of rectilinear crack.  On the basis of the 
parametric equation of the crack contour (15), by the change of variables   

 t = ω(ξ),    ξ ≤ 1,      and      τ = ω(η) ,    η ≤ 1,   

in the SIE (5) and in the additional condition (14), we get a system of two integral equations in the normalized 
form for the derivative of the discontinuity of displacements on the crack lips  ′g (ω(ξ)),  ξ ≤ 1.  We numerical-
ly solve these equations by the Gauss–Chebyshev method of mechanical quadratures [4] and use their solution to 
find the SIF by the following formula [4]: 

 
 
KI

± − iKII
± = ∓ ′ω (±1) u(±1)

′ω (±1)
, (16) 

where the upper signs correspond to the right tip of the crack, the lower signs correspond to its left tip, and the 
required function is given by the formula  

 u(ξ) = ′g (ω(ξ)) ′ω (ξ) 1− ξ2 . 

We also assume that the local fracture at both crack tips occurs by the mechanism of mode I fracture.  Thus, 
to determine the angles of its initial propagation  θ∗

± ,  we use the generalized criterion of mode I fracture   
(σθ-criterion).  
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Fig. 2. Relative SIF  FI±   (a) and  FII±   (b) at the tips of an arc-shaped crack vs. the angle of orientation  α   for different values of the 
parameter of curvature  ε = δ /l ;  the solid lines correspond to the right crack tip  (+) and the dashed lines correspond to the left 
crack tip (–).

Fig. 3. Arc-shaped cracks whose tips are directed from the boundary of the disk for  α = π/2   (a)  and toward the boundary of the disk 
for  α = 3π/2   (b). 

Numerical Results 

The relative SIF  FI,II± = KI,II
± /(σ0 πR )  at both tips of the arc-shaped crack were found (depending on the 

angle of orientation of the crack  α )  for different values of the parameter of curvature  ε = δ/l  = 0, 0.1,  and 0.3  
and fixed relative quantities  r0 /R  = 0.75,  l /R  = 0.24,  and the angle  θ0  = 0°  (Fig. 2). 

As follows from Fig. 2a, we get the highest values of the SIF  KI   for the right crack tip if the crack is max-
imally close to the boundary of the disk  (α  = 0°).  As the angle  α   changes from 0° to 90° and the right tip 
moves away from the boundary, the SIF first rapidly decrease intensively and then, only for  α  = 90°,  slightly 
increase.  The range of the SIF  KI   for the right tip is much larger than for the left tip because the former is 
closer to the boundary of the disk.   
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Fig. 4.  Arc-shaped crack whose curvature is equal to the curvature of the disk contour for  α = π/2 . 

Table 1.  Relative SIF and the Angles of Initial Propagation for Concave  (αα == ππ /2 )  and  
Convex  (αα == 3ππ /2)  Cracks;  r0 /R  = 0.8;  l /R  = 0.3 

ε  FI+ = FI−  FII+ = − FII−  θ∗+ = − θ∗−  

0 0.4152/0.4152  0.1323/− 0.1323 – 30°/30° 

0.1 0.3308/0.4786  0.1564/− 0.0769 – 39°/17° 

0.2 0.2468/0.5091 0.1474/− 0.0021 – 44°/0° 

0.3 0.1826/0.5077  0.1144/0.0779 – 45°/– 17° 

0.4 0.1483/0.4830  0.0711/0.1534  – 39°/– 30° 

0.5 0.1469/0.4440 0.0302/0.2204 – 22°/– 40° 

Comment:  Results for the concave and convex cracks are presented in the numerator and denominator, respectively.  

It is worth noting that the highest values of the SIF  KI   are observed for the rectilinear crack (both for its 
right and left tips) and decrease as the curvature increases.  For the right tip, the range of the SIF  KII   is also 
larger (Fig. 2b). 

We considered two special cases in which an arc crack is located symmetrically about the radius of the disk.  
In the first case, the crack tips are directed from the boundary of the disk (concave crack; Fig. 3a), whereas in the 
second case, they are directed toward the boundary of the disk (convex crack; Fig. 3b).  As could be expected, 
the SIF  KI   are higher for the convex crack (Table 1).  For small curvatures of the convex crack, its tips  
approach each other.  At the same time, for large curvatures, the tips move in the opposite direction.  For all cur-
vatures, the distance between the  tips of the concave crack increases.  However, in both cases, the crack propa-
gates toward the boundary of the disk. 
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Table 2.  Dependence of the Relative SIF and the Angles of Initial Propagation of an Arc-Shaped  
Crack on the Distance between the Crack and the Boundary of the Disk;  αα == ππ /2  

d /R  0.1 0.3 0.5 0.7 

FI+ = FI−  0.2192 0.3373 0.4291 0.4936 

FII+ = − FII−  0.1345 0.0944 0.0882 0.0869 

θ∗+ = − θ∗−  – 44° – 28° – 22° – 19° 

Table 3. Comparison of the Relative SIF for a Concentric Crack in a Disk (in the Numerator) with  
the Available Data [2] (in the Denominator) 

β  
r /R  = 0.5 r /R  = 0.5 r /R  = 0.5 

FI+  FII+  FI+  FII+  FI+  FII+  

15° 0.982/0.963 0.131/0.132 1.02/1.01 0.148/0.148 1.258/1.257 0.297/0.291 

30° 0.924/0.916 0.257/0.259 1.01/1.00 0.341/0.341 1.302/1.322 0.770/0.773 

45° 0.827/0.825 0.367/0.372 0.898/0.899 0.514/0.520 0.966/0.986 1.025/1.047 

60° 0.704/0.704 0.447/0.457 0.721/0.728 0.621/0.633 0.572/0.592 1.050/1.097 

75° 0.575/0.578 0.495/0.510 0.536/0.548 0.663/0.682 0.281/0.288 0.991/1.049 

Comment:  FI,II+ = KI,II
+ /(σ0 r sinβ) , where  σ0 = (3+ ν)ρω2(R2 − r2 )/8   for the plane stressed state.  

Note that, for a concentric crack with the radius of curvature  r   and opening angle  2β,  the obtained results 
agree with the available data [2] (Table 3).  

We also considered the case of symmetric location of an arc-shape crack about the radius of the disk with an 
opening angle of 30° and a curvature angle  R   for different relative distances  d /R   from the center of the crack 
to the boundary of the disk for  α = π/2   (Fig. 4).  Note that cracks of this kind are often initiated, e.g., in the 
course of operation of railway wheels [6]. 

It is shown (Table 2) that the highest values of the SIF  KI
±   are attained for the crack located at the maxi-

mum distance from the boundary of the disk and the highest values of the SIF  KII
± ,  on the contrary, are attained 

for the crack closest to the edge.  For any locations of the crack, it propagates from both tips toward the bounda-
ry of the disk. 

CONCLUSIONS 

For a randomly located arc-shaped crack in a disk rotating with a constant angular speed, the maximum val-
ues of the SIF  KI   are attained near the tip closest to the boundary of the disk.  
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For an arc-shaped cracks symmetrically located about the radius of the disk, the SIF  KI   at both tips are al-
ways higher for the convex crack (Fig. 3b) than for the concave crack (Fig. 3a).  The convex and concave cracks 
propagate toward the boundary of the disk. 

For the symmetrically located concave crack whose radius of curvature is equal to the radius of curvature of 
the contour of the disk (Fig. 4), the highest values of the SIF  KI

±   are obtained for the crack located at the max-
imum distance from the boundary.  
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