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THERMOELASTIC STATE OF A SEMIINFINITE THERMALLY SENSITIVE  
THREE-COMPONENT ROD UNDER CONVECTIVE-RADIATIVE  
HEAT EXCHANGE 

B. V. Protsyuk1  and  О. P. Horun1,2 UDC 539.3 

We propose a numerical-analytic approach to the determination of the thermoelastic state of a semiinfi-
nite thermally sensitive three-component rod interacting with the ambient medium by convective-
radiative heat exchange.  The proposed approach is based on the use of the Kirchhoff transformation, 
generalized functions, Green functions of the linear nonstationary problem of heat conduction for 
a three-component space, and linear splines.  We investigate the influence of thermal sensitivity and 
heat-exchange parameters on the distributions of temperature, stresses, and displacements. 

Keywords: heat conduction, thermal sensitivity, thermoelasticity, layered bodies, convective-radiative 
heat exchange. 

Layered structural elements are extensively used in various branches of industry.  Under the conditions of 
high-temperature action, in order to give a more exact description of their thermoelastic state, it is necessary to 
use models taking into account the dependence of the physicomechanical characteristics on temperature and the 
conditions of convective-radiative heat exchange.  The numerical and numerical-analytic approaches to the solu-
tion of problems of heat conduction and thermoelasticity for one-layer and multilayer thermally sensitive bodies 
for various methods of heating, including the case of convective-radiative heating, were considered in [1–6]. 

In what follows, we propose an approach to the solution of quasistatic problems of thermoelasticity for 
semiinfinite three-component thermally sensitive bodies heated by convective-radiative heat exchange.  In this 
case, we use the Kirchhoff approach, generalized functions, and the Green functions of the linear nonstationary 
problem of heat conduction for a three-component space represented in the form of functional series and linear 
splines.  

Statement of the Problem 

Consider a semiinfinite three-component rod referred to a cylindrical coordinate system  r ,  ϕ,  z   (Fig. 1).  
We assume that the conditions of perfect thermomechanical contact are satisfied on the interfaces  z = z1 = 0  
and  z = z2 = h   and that the surface  r = R   is thermally insulated and smoothly fixed  (radial displacements and 
tangential stresses are absent).  The convective-radiative heat exchange with a medium of temperature  tc   oc-
curs through the bounding surface  z = z3   and the normal and tangential stresses are absent on this surface.   

The initial temperatures of the components are equal to zero.  In this body, we determine the nonstationary 
temperature field and the stresses and displacements induced by this field with regard for the temperature de-
pendences of the physicomechanical characteristics.  
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Fig. 1.  Semiinfinite three-component rod. 

Solution of the Problem of Heat Conduction 

For the determination of the temperature field, we use the heat-conduction equations, the conditions of con-
tact, and the boundary and initial conditions: 

 ∂
∂z

λt
(i)(ti )

∂ti
∂z

⎡
⎣⎢

⎤
⎦⎥
= cV

(i)(ti )
∂ti
∂τ

     (i = 1, 3); (1) 

 ti (z, τ) = ti+1(z, τ) ,      λt
(i) ∂ti (z, τ)

∂z
= λt

(i+1) ∂ti+1(z, τ)
∂z

      for    z = zi (i = 1, 2) ; (2) 

 λt
(3) ∂t3

∂z
+ εσ[T (t3) − T (tc )]+ α(t3 − tc )

⎡
⎣⎢

⎤
⎦⎥z=z3

= 0 ,     t1(z, τ) z→−∞ = 0 ,      ti τ=0 = 0 ,  (3) 

where  ti (z, τ)  is the temperature in the i th  layer,  T (η) = (η+ 273)4 ;  ε   is the  emissivity factor;  σ   is the 
Stefan–Boltzmann constant;  α   is the heat-exchange coefficient; the quantities corresponding to the first com-
ponent  − ∞ < z < 0   are marked by the superscript  i  = 1,  the quantities corresponding to the second component  
0 < z < z2   are marked by  i  = 2  (interlayer), and the quantities corresponding to the third component  z2 < z < z3  
are marked by  i  = 3. 

By using the Kirchhoff transformation

 θi = 1
λ0i

λt
(i)(x)

0

ti

∫ dx , 

under the assumptions that the thermal-conductivity coefficients are linear functions of temperature   

 λt
(i)(ti ) =  λ0i (1+ βiti ) ,   
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the coefficients of volumetric heat capacity have the form   

 cV
(i)(ti ) = c0ici (ti )       (i = 1, 2, 3),   

and the thermal diffusivities  ai   are constant within the boundaries of each component  

 λt
(i)(ti )

cV
(i)(ti )

≈ ai =
λ0i
c0i

, 

which is typical of numerous materials [7] , we reduce the problem of heat conduction (1)–(3) to a single equa-
tion with generalized derivatives with respect to  z   with boundary and initial conditions [5]: 

 ∂
∂z

λ0(z)
∂θ
∂z

⎡
⎣⎢

⎤
⎦⎥
= c0(z)

∂θ
∂τ

+ λ0, j+1Fj+1(τ) ′δ (z − z j )
j=1

2

∑ ; (4) 

 λ0,3
∂θ3
∂z z=z3

+ F1(τ) = 0 ,      θ1(z, τ) z→−∞ = 0 ,      θi τ=0 = 0 , (5) 

where 

 F1(τ) = εσ T (θ3∗ (z3, τ)) − T (tc )⎡⎣ ⎤⎦ + α(θ3∗ (z3, τ) − tc ) ; 

 Fi+1(τ) = 1− βi
βi+1

⎛
⎝⎜

⎞
⎠⎟

θi+1(zi , τ) − βi+1−1 ( 1+ 2βi+1θi+1(zi , τ) −1)⎡⎣ ⎤⎦; 

 θ3∗ (τ) = β3
−1( 1+ 2β3θ3(τ) −1);      θ3(τ) = θ3(z3, τ); 

 θ(z, τ) = θ1(z, τ) + θk+1(z, τ) − θk (z, τ)[ ]
k=1

2

∑ S(z − zk ) ; 

S(z)   is the Heaviside  function;  ′δ (z)   is the derivative of the Dirac delta-function, and  λ0(z)  and  c0(z)  take 
the form 

 p0(z) = p0,1 + (p0,i+1 − p0,i )
i=1

2

∑ S(z − zi ) . (6) 

By using the Green functions  G(z,ζ, τ)  of the linear nonstationary problem of heat conduction for a three-
component space [8], we represent the solution of problem (4), (5) in the form 

 θ(z, τ) = λ0, j+1
∂G(z,ζ, τ − ′τ )

∂ζ ζ=z j+0
Fj+1( ′τ ) d

0

τ

∫
j=1

2

∑ ′τ  

  − G(z,ζ, τ − ′τ )F1( ′τ ) + λ0,3θ3( ′τ ) ∂G(z,ζ, τ − ′τ )
∂z

⎧
⎨
⎩

⎫
⎬
⎭ z=z30

τ

∫ d ′τ . (7) 
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To determine  θ j+1(z j , τ)   ( j = 1, 2)  and  θ3(z3, τ)  appearing in integrands of relation (7), we approxi-
mate [5] the functions  Fi (τ) ,  θ3∗ (τ),  and  θ3(τ)  by linear splines of the form 

 g(τ) = s1
(1)(g)τ + s1

(0)(g) + (sk+1
(1) (g)τ + sk+1

(0) (g) − sk
(1)(g)τ − sk

(0)(g))S(τ − τk )
k=1

Kτ −1

∑ , (8) 

where  

 s1
(1)(ζ) = ζ(τi ) − ζ(τi−1)

Δτi
;      s1

(0)(ζ) = −ζ(τi )τi−1 + ζ(τi−1)τi
Δτi

; 

 Δτi = τi − τi−1    (i = 1,Kτ ), 

 0 =   τ0 < τ1 < τ2 … < τKτ ,   

and  Kτ   is the number of nodes in the spline. 
Substituting expressions for the Green functions in Eq. (7) and taking the corresponding integrals with re-

gard for (8), we get the following relation for the Kirchhoff variables: 

 θi (z , Fo) = ηi,1γ i,1(z , Fo, F2 ) + ηi,2γ i,2 (z , Fo, F3) 

  − ηi,3 γ i,3(z , Fo, F4 ) −
ai3∗

2ai0
γ i,4 (z , Fo,θ3(z3, Fo))

⎡

⎣
⎢

⎤

⎦
⎥ , (9) 

where 

 γ i, j (z , Fo,ζ) = s1
(0)(ζ)ψ1

i, j (z , Fo) + s1
(1)(ζ)ψ2

i, j (z , Fo) 

  + (sk+1
(0) (ζ) − sk

(0)(ζ))ψ 3
i, j (z , Fo− Fok )⎡⎣

k=1

Kτ −1

∑  

  + (sk+1
(1) (ζ) − sk

(1)(ζ))ψ 4
i, j (z , Fo− Fok ) ⎤⎦ , 

  F4 (Fo) = σ∗(T (θ∗(z3, Fo)) − T (tc )) + Bi(θ∗(z3, Fo) − tc ) , 

 η1,3 =
2δ2λ0,3

a0 (δ1 + δ2 )(δ2 + δ3)
,      η2,3 =

λ0,3

a0 (δ2 + δ3)
,      η3,3 =

λ0,3

2 a0δ3
, 

 ψρ
i, j (z , Fo) = lρi, j (z , Fo)     ( j = 1, 2), 

 ψρ
i,3(z , Fo) = ϑρ,χ

i,1 (z , Fo) ,      ψρ
i,4 (z , Fo) = ϑρ,ϕ

i,2 (z , Fo)      for   ρ = 1, 2 ; 
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 ψρ
i, j (z , Fo − Fok ) = lρi, j (z , Fo − Fok )     ( j = 1, 2), 

 ψρ
i,3(z , Fo) = ϑρ,χ

i,1 (z , Fo − Fok ),      ψρ
i,4 (z , Fo) = ϑρ,ϕ

i,2 (z , Fo − Fok )      for   ρ = 3, 4 ; 

 ϑρ,y
1,p (z , ξ) = (v1v2 )n yρ,11 (a12∗ (1+ 2n)h + a13∗ (z3 − h ) − z , ξ)

n=0

∞

∑ , 

 ϑρ,y
2,p (z , ξ) = yρ,21 (a23∗ (z3 − h ) + h − z , ξ)  

  + (v1v2 )n yρ,21 (a23∗ (z3 − h ) + 2nh − z + h , ξ)
n=1

∞

∑  

  − v1 (v1v2 )n yρ,21 (a23∗ (z3 − h ) + (1+ 2n)h + z , ξ)
n=0

∞

∑ , 

 ϑρ,y
3,p (z , ξ) = yρ,31 (z3 − z , ξ) + (−1)δp2 v2yρ,30 (2h − z3 − z , ξ)  

  + v2 (v1v2 )n yρ,31 (2nha32∗ + z3 + z − 2h , ξ)
n=1

∞

∑  

  − v1 (v1v2 )n yρ,31 (2(1+ n)ha32∗ + z3 + z − 2h , ξ)
n=0

∞

∑ , 

 χρ,i
′ρ (ζ, ξ) = (S(ξ))δρ3 2 ξ

π
exp − ζ2

4ai0ξ
⎡

⎣
⎢

⎤

⎦
⎥ −

ζ
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⎛
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⎞

⎠⎟
⎛
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⎞

⎠⎟
⎛

⎝
⎜

⎞

⎠
⎟       for   ρ = 1, 3; 

 χ2, i
′ρ (ζ, Fo) = Fo

π
exp −ζ2
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⎡

⎣
⎢

⎤

⎦
⎥

4
3
Fo + ζ2
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⎛

⎝⎜
⎞

⎠⎟
 

  − ζ
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3ai0
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⎛

⎝⎜
⎞

⎠⎟
(−1) ′ρ +1 − erf ζ

2ai0∗ Fo
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

, 

 χ4,i
′ρ (ζ, Fo − Fok ) = S(Fo − Fok )

Fo − Fok
π

exp − ζ2

4ai0(Fo − Fok )
⎡

⎣
⎢

⎤

⎦
⎥

⎛

⎝⎜
 

   × − 2
3
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⎠⎟
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⎠
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where   

 Fo = a0τ
l02

;      Fok = a0τk
l02

;      
 
Bi = αl0

λ0,3
;      σ∗ = εσl0

λ0,3
;   

δij   is the Kronecker symbol;  l0   is a linear size;  a0   is a quantity with dimensionality of thermal diffusivity;  

 aij∗ = ai
a j

;      δi =
λi
ai

;      v1 =
δ1 − δ2
δ1 + δ2

;      v2 = δ3 − δ2
δ3 + δ2

;     

 z = z
l0

;      zi =
zi
l0

;      h = h
l0

;      aij =
ai
a j

;  

the functions  χρ, i
′ρ (ζ, ξ)  or  ϕρ, i

′ρ (ζ, ξ)   correspond to the functions  yρ, i
′ρ (ζ, ξ)   if the subscript  “y”  in  ϑρ,y

i,p   
takes the values  ϕ  and  χ ,  respectively, and  ϕ(ζ, ξ)  and the remaining notation coincide with the notation 
presented in [6]. 

Setting  z = z j + 0   ( j = 1, 2),  z = z3,  and   Fo = Fok   (k = 1,Kτ )  in relations (9) for  θi (z , Fo)  (i = 2, 3) ,  
we arrive at the recurrent system of three nonlinear algebraic equations for θ2(z1, Fok ), θ3(z2, Fok ), 
and  θ3(z3, Fok ) .  As a result of the solution of this system, we obtain expressions for the Kirchhoff variables 
and determine the temperature field  ti (z , Fo)   from the relation  

 ti (z , Fo) = βi−1( 1+ 2βiθi (z , Fo) −1) . 

Solution of the Problem of Thermoelasticity 

In the body, the radial and circumferential stresses are not equal to zero [5, 9] 

 σrr = σϕϕ = σ0(z , Fo) = − E(z , Fo)
1− υ(z , Fo)

Φ(z , Fo). (10) 

Moreover, the radial displacements are absent and the axial displacements are given by the formula 

 w(z , Fo) = 1+ υ(z, Fo)
1− υ(z, Fo)

Φ(z , Fo) dz
z3

z

∫ . (11) 

Here, the functions  E(z , Fo) ,  υ(z , Fo),  and  Φ(z , Fo) ,  which have the form (6), coincide, within the bounda-
ries of the i th component with the moduli of elasticity  Ei (ti ) ,  Poisson’s ratios  υi (ti ),  and thermal strains 

 Φi (ti ) = αti (η) dη
0

ti (z ,Fo)

∫ , 

respectively; here,  αti (ti )  are the coefficients of linear thermal expansion. 
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Fig. 2. Dependences of temperature on time on the bounding surface z = z3  (a)  and on the coordinate for τ = 103 sec  (b) and  
τ = 104 sec  (c) and different parameters of heat exchange [(1) α = 400 W/(m2 ⋅ °C) , ε = 0.3 ;  (2) α = 400 , ε = 0 ;  (3) α = 200 ,  
ε = 0.3 ;  (4)  α = 0 ,   ε = 0.3 ;  (5)  α = 200 ,  ε = 0 ]:  (a) for  tc  = 1800°C  (І)  and  tc  = 1100°C  (ІІ);  (b, c) for  tc  = 1800°C. 

Numerical Investigations 

We tested the proposed procedure for different parameters of heat exchange in the case where the physi-
comechanical characteristics of the first and third components correspond to niobium  (αti (ti ) = (6.186 +  

 0.00236ti ) ⋅10
−6°C−1;  λt

(i) = 53.17(1+ 0.226 ⋅10−3ti )  W/(m2 ⋅ °C);   ai = 23.9 ⋅10−6m2 /sec ;  Ei (ti ) = (100 −  
918 ⋅10−5 ti − 411 ⋅10−8 ti2 ) ⋅109 N/m2 ,  υi = 0, 33),  and the physicomechanical characteristics of the interlayer 
correspond to platinum  (E2(t2 ) = (168 − 338 ⋅10−4 t2 ) ⋅109N/m2 ;  αt2(t2 ) = (8.865 + 0.00278t2 ) ⋅10−6 °C−1;  

 a2 = 24.4 ⋅10−6m2 /sec ;  λt
(2) = 71.301(1+ 0.207 ⋅10−3t2 )   W/(m2 ⋅ °C),  υ2 = 0.35 )  for   h = 5 ⋅10−3m   and  

z3 = 10h . 
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Fig. 3. Dependences of the stresses on time on the surfaces  z = z1 – 0   (І)  and  z = z1 + 0   (ІІ) (a),  on the coordinate within the third 
component (b) and in the interlayer (c); and of the displacements (d) on the coordinate for τ = 104 sec , tc = 1100°C, and dif-
ferent parameters of heat exchange [(1) α = 400 W/(m2 ⋅ °C) , ε = 0.3 ;  (2) α = 400 , ε = 0 ;  (3) α = 200 , ε = 0.3;  (4) α = 0 ,  
ε = 0.3;  (5) α = 200 , ε = 0 ]. 

To choose the step of the grid of splines in relations (9), we compared the distributions of temperature 
at fixed points for different time intervals depending on  Kτ .  It was shown that, for times  τ ≤ τ∗, where  

 τ
∗ = 12 ⋅103 sec   is a time close for the time of reaching the stationary mode, it suffices to restrict ourselves 

to Kτ = 10   because an increase in  Kτ   (a decrease in the step of the grid) exerts almost no influence on the ac-
curacy of calculations. 

The results of investigations in the form of plots are presented in Figs. 2–3 (the solid lines correspond to 
temperature-dependent physicomechanical characteristics, whereas the dotted and dashed lines correspond 
to constant physicomechanical characteristics measured at   700  and  0°С,  respectively). 
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Under the conditions of convective-radiative heat exchange (Fig. 2), the influence of heat losses is weaker 
than in the presence solely of convective heat exchange, which becomes more pronounced for higher tempera-
tures of the medium.  Thus, the increase in the heat-transfer coefficient under the conditions of convective-
radiative heat exchange causes an increase in temperature at  tc  = 1100°C  and  tc  = 1800°C  by up to 12 and 
8%, respectively, whereas under the conditions of convective heat exchange (in the absence of radiation), 
the corresponding increase constitutes 17 and 20%, respectively.  Thus, if the radiative heat exchange is neglect-
ed, then the temperature is underestimated by up to  25%  at  tc  = 1800°C  and up to  15%  at  tc  = 1100°C.  
The difference between the temperatures computed with and without regard for the convective heat exchange de-
creases as the temperature of the medium increases.  Thus, in particular, it can attain  55%  for  tc  = 1100°C  
and  20%  for  tc  = 1800°C. 

Within the boundaries of individual regions, the difference between the temperatures (Figs. 2b, c) obtained 
for temperature-dependent and constant characteristics taken at  0°C  is smaller (for some values of time) than in 
the case of characteristics taken at 700°C;  at the same time, for the other values of time, the indicated difference 
is larger.  The temperatures computed with and without regard for thermal sensitivity may differ by  10%. 

The character of the behavior of stresses on the surfaces  z = h  and  z = z3   is the same as on the sur-
face  z = 0  (Fig. 3а).  The stresses on interfaces are discontinuous.  At the same time, they remain almost con-
stant over the thickness of the interlayer and almost identical on the surfaces of the first and third layer on the 
boundary of the interlayer.  If the effect of radiation or heat transfer is neglected, then the absolute values of 
stresses are underestimated by up to 15 and 40%, their jumps on the interfaces are underestimated by up to 13  
and  50%,  respectively, and the displacements are underestimated by up to  11 and 38%.  

The difference between the stresses obtained with and without regard for thermal sensitivity (Fig. 3b, c) can 
be as high as  17%.  For fixed times, this difference for the characteristics measured at 0°C in the first and third 
components can be smaller than for the characteristics measured at 700°C, whereas in the interlayer this differ-
ence is larger.  Moreover, as in the case of temperature, within the boundaries of individual domains, this differ-
ence for characteristics measured at  0°C  can be smaller, at certain times, than for the characteristics measured 
at  700°C  but can become larger for the other times.  The difference between the displacements with and with-
out regard for thermal sensitivity (Fig. 3d) for the characteristics measured at  700°C  is always larger than for 
the characteristics measured at  0°C  and can be as high as  15%. 

CONCLUSIONS 

We propose and test a numerical-analytic approach to the solution of quasistatic problems of thermoelastici-
ty for a semiinfinite three-component thermally sensitive rod with regard for the convective-radiative heat  
exchange.  By using the Kirchhoff transformation, generalized functions, and Green functions in the form of 
functional series and linear splines, we reduce the corresponding problem of heat conduction to the solution 
of a recursive system of three nonlinear algebraic equations for the values of the Kirchhoff variable on the inter-
faces and on the bounding surface at the nodes of the spline grid.  The expressions for the radial and circumfer-
ential stresses, and axial displacements are obtained.  The influence of thermal sensitivity and the parameters of 
radiative and convective heat exchange on the distributions of temperature, stresses, and displacements are in-
vestigated. 
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