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THERMAL STRESSED STATE OF A DISK IN THE PROCESS  
OF MULTIPLE BRAKING 

А. Adamowicz  UDC 536.12:621.891:539.3 

On the basis of the finite-element method, we propose a mathematical model of frictional heating of 
a disk in the process of multiple braking.  We obtain the numerical solution of the axisymmetric initial 
boundary-value problem of heat conduction and the boundary-value problem of quasistatic thermoelas-
ticity for a disk periodically heated on the friction surface by a heat flow whose intensity is proportional 
to the specific power of friction.  The numerical analyses of temperature and temperature stresses in the 
process of multiple braking are performed for a disk made of cast iron and a cermet pad.  
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For the determination of the temperature field and thermal stressed state of a disk in the course of single 
braking, the analytic solutions of axisymmetric thermal problems of heating were constructed in [1–3] for a half 
space with circular boundary of changes in the boundary conditions on the surface. However, the replacement of 
a disk of finite thickness by a half space and of the actual heated region determined by the shape and sizes of the 
brake pad by a circle may lead, under certain conditions, to significant errors in the determination of the temper-
ature mode of braking [4].  This is why it became customary to use numerical procedures based on the finite-
element method (FEM) for the solution of the thermal problems of friction in the course of braking [5, 6].  
The space-time distributions of axisymmetric nonstationary temperature fields in homogeneous disks were ana-
lyzed in [7].  The temperature of the multidisc brakes of tractor wheels was studied for the case where the friction 
power linearly decreases [8].  The temperature and quasistatic stresses in a metallic disk with friction material de-
posited on its surface were investigated by the method of finite differences and FEM [9, 10].  The nonstationary 
temperature field and thermal stressed state of a pad–disk braking system were analyzed by using the ANSYS 8.1 
software and the mechanism of initiation of thermal fatigue cracks in the disk was discussed in [11]. 

All investigations were carried out for the case of one-time braking.  However, just high temperatures 
formed in the process of multiple braking may lead to a decrease in the friction coefficient and the correspond-
ing temperature stresses may result in the formation of cracks on the friction surface of the disk [12].  The evolu-
tion and space distribution of the nonstationary temperature field in the disk caused by friction in the course of 
multiple braking with constant deceleration were studied in [13].  In what follows, we study the influence of the 
number of brakings on the thermal stressed state of the brake disk. 

Statement of the Problems of Heat Conduction and Thermoelasticity 

Consider a disk of thickness of  2δ   with inner radius  rd   and outer radius  Rd   rotating with a constant an-
gular velocity  ω0.  At the initial time  t  = 0,  under the action of a pressure  p0 ,  a pad with arc length θ0 ,  inner 
radius  rp  and outer radius  Rp = Rd   is pressed to each end face of the disk.   
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Fig. 1.  Schematic diagram of heating of the disk. 

Under the action of friction forces, the angular velocity of the disk linearly decreases to zero at the time of 
stop  t = ts ,  and the kinetic energy transforms into the heat energy in the contact area.  When the disk stops, the 
pads are removed from its surfaces and then the disk speeds up once again to an angular velocity  ω0   for time  
t = tc   after which the process of braking is repeated.  In total, we performed  n   cycles of braking and accelera-
tion of this kind and the duration of each cycle was  tsc = ts + tc .  After the last nth braking, the immobile disk is 
cooled down for time  t = tcn .  Thus, the entire cycle of heating and cooling of the disk is realized for 

  tend = ntsc – tc + tcn .  

Assume that its free surfaces remain adiabatic (the heat exchange coefficient is  h  = 0)  for the entire period  
t = tend .  Here and in what follows, all parameters corresponding to the disk and the pad are denoted by the sub-
scripts  d   and  p ,  respectively.  

In view of the axial symmetry of the thermal load, we consider the process of heating and cooling of the 
disk with thickness δ  in a cylindrical coordinate system rθz  (Fig. 1).  The intensity of the heat flow qd  directed 
along the normal from the friction surface into the disk is proportional to the specific friction power q  [14]: 

 qd (r, t) = γηq(r, t) ,     q(r, t) = fp0p∗(t)rω0ω∗(t),     rp ≤ r ≤ Rp , 0 < t ≤ tend , (1) 

 p(t) =
1, i ⋅ tsc ≤ t < i ⋅ tsc + ts ,

0, i ⋅ tsc + ts ≤ t < (i +1)tsc ∧ (n −1) ⋅ tsc − tc ≤ t ≤ tend, i = 0,1,…, n −1,

⎧

⎨
⎪

⎩
⎪

 (2) 

 ω∗(t) =

1− t − i ⋅ t sc
ts

, i ⋅ tsc ≤ t < i ⋅ tsc + ts , i = 0,1,…, n −1,

t − (i ⋅ tsc + ts )
tc

, itsc + ts ≤ t < (i +1)tsc , i = 0,1,…, n − 2,

0, (n −1)tsc − tc ≤ t ≤ tend,

⎧

⎨

⎪
⎪⎪

⎩

⎪
⎪
⎪

 (3) 

γ = θ0 /(2π) is the coefficient of overlapping of the pad and the disk [15], η = Kd kp /(Kd kp + Kp kd ) is 
the coefficient of distribution of heat flows between the disk and the pad [16];  Kd, p   and  kd, p   are, respective-
ly, the heat-conduction coefficient and thermal diffusivity of the materials of the disk and the pad, and  f   is the 
friction coefficient.  

We determine the distribution of the nonstationary axisymmetric temperature field  T (r, z, t)   in the disk from 
the solution of the following initial-boundary-value problem of heat conduction (Fig. 1): 
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,      rd ≤ r ≤ Rd ,      − δ < z < 0 ,      0 < t < tend , (4) 

 Kd
∂T
∂z z=0

=
qd (r, t), rp ≤ r ≤ Rp , 0 < t ≤ tend,

0, rd ≤ r ≤ rp , t > 0,

⎧

⎨
⎪

⎩
⎪

 (5) 

 ∂T
∂z z=−δ

= 0, rd ≤ r ≤ Rd ,   t > 0 , (6) 

 ∂T
∂r r=rd

= ∂T
∂r r=Rd

= 0 ,      − δ ≤ z ≤ 0 ,      t > 0 , (7) 

 T (r, z, 0) = T0 ,      rd ≤ r ≤ Rd ,      − δ ≤ z ≤ 0 , (8) 

where  T0  = 20°C  is the initial temperature of the disk and the function  qd (r, t)  is given by relations (1)–(3).  
Given the temperature field, we determine the components of the stress tensor  σr ,  σθ ,  σ z ,  and  σrz   from 

the solution of the boundary-value problem of quasistatic thermoelasticity (Fig. 1) 

 (1− 2νd )∇2u +∇divu = 2αd (1+ νd )∇T ,      rd ≤ r ≤ Rd ,      − δ < z < 0 ,      0 ≤ t ≤ tend , (9) 

 σ z (r, 0, t) = σrz (r, 0, t) = 0, rd ≤ r ≤ Rd ,     0 ≤ t ≤ tend , (10) 

 uz (r, −δ, t) = 0, σrz (r, −δ, t) = 0, rd ≤ r ≤ Rd ,     0 < t < tend , (11) 

 σr (rd , z, t) = 0, σrz (rd , z, t) = 0, − δ ≤ z ≤ 0 ,     0 < t < tend , (12) 

 σr (Rd , z, t) = 0, σrz (Rd , z, t) = 0, − δ ≤ z ≤ 0 ,     0 < t < tend , (13) 

where  u = {ur , uz}   is the vector of displacements,  νd   is Poisson’s ratio,  αd   is the coefficient of linear ther-
mal expansion of the material of the disk, and  ∇   is a Hamiltonian operator in a cylindrical coordinate system.  
The stresses and displacements in Eq. (9) and the boundary conditions (10)–(13) are related by the Duhamel–
Neumann relations [17]. 

Solution of the Problems and Numerical Analysis  

For the numerical analysis, we used the known input data [13].  We studied the changes in temperature and 
thermal stresses for a disk made of ChNMKh cast iron after ten events of braking  (n  = 10).  For this disk, 
we have  rd  = 66 mm,  Rd  = 113.5 mm,  δ  = 5.5 mm,  Kd = 51W ⋅m–1⋅K–1,  kp = 14.4 ⋅10–6m2 ⋅ sec–1,  αd =  
0.108 ⋅10–6 K–1,  and  νd  = 0.29.  

The sizes and thermal properties of the FMK-11 cermet pad are as follows:  rp = 76.5 mm,  Rp  = 113.5 mm,  
θ0  = 64.5°,   Kp = 34.4 W ⋅m–1⋅K–1,   and   kp = 14.6 ⋅10–6m2 ⋅ sec–1.    It  was  also  assumed  that  p0  = 1.47 MPa,   
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Fig. 2. Plots of the dimensionless functions P(t) :  the dotted lines correspond to P(t) = p*(t) , the dashed lines correspond to  
P(t) = ω*(t),  and the solid lines correspond to  P(t) = p*(t)ω*(t). 

ω0 = 88.46 sec–1 ,  ts  = 3.96 sec,  tc  = 10 sec,  tcn  = 300 sec,  and  f  = 0.5.  The time of the entire braking process 
is determined as follows:  tend  = 10⋅(3.96 + 10) – 10 + 300 = 429.6 sec = 7.16 min.  According to the accepted 
scheme of heating and cooling of the disk, we plotted the dimensionless functions that describe the variations of 
pressure  p*(t)   (2) and angular velocity  ω*(t)   (3) with time (Fig. 2).  In this figure, we also illustrate the time 
dependence of the product  p*(t)ω*(t)   that describes the time profile of the intensity of heat flow  qd (r, t)  (1).  

The initial-boundary-value problem of heat conduction (1)–(7) and the boundary problem of thermoelastici-
ty (8)–(12) were successively solved by the FEM in the environment of the MSC.Patran software package with 
the use of the MSC.Nastran computational module [18].  The computational model consisted of 33,193 nodes 
and 65,243 CTRIAX6 axisymmetric triangular elements.  The density of these elements was made higher near 
the region of frictional heating characterized by high gradients of temperature and thermal stresses.  The mini-
mum size of elements was  0.02 mm  and the maximum size was equal to  0.2 mm. 

The solution of the thermal problem of friction (1)–(7) was sought with time steps  Δt  = 0.001 sec  in the 
course of braking  and  Δt  = 0.01 sec  in the course of acceleration of the disk.  The obtained values of the tem-
perature field at the nodes of the space mesh at each time step were used as initial values for the determination of 
temperature stresses from the solution of the boundary-value problem of thermoelasticity (9)–(13).  The numeri-
cal calculations required significant amounts of computer time because, in the case of recording the values of 
temperature field only at every tenth time step, to find the components of the stress tensor, it is necessary to 
solve 7860 boundary-value problems of thermoelasticity of the form (9)–(13) in order to reach the time  tend .  
This is why, for the automation of the process of reading of the values of temperature at the nodes of the finite-
element mesh at each time step and their subsequent application as input parameters for the solution of the prob-
lem of thermoelasticity, the MSC.Nastran module was additionally equipped with a special program in the  
Python language [19].  Another author's program in the same language made it possible to perform simultaneous 
calculations for four time steps.  One more program made it possible to the process results of calculations in  
individual files in each time step.  

Since the maximum temperature is attained on the working surface of the disk  (z  = 0),  we analyzed the 
time dependences of temperature and stresses on this surface for four values of the radial variable:  on the sur-
face of the disk  r = rd   (free of heating), on the inner boundary  r = rp,  on the outer  boundary  r = Rp   inside 
the contact zone, and on the mean radius of this area  r = rm = 0.5(rp + Rp ). 

As the number of the events of braking increases, the temperature of the disk surface becomes higher 
(Fig. 3a).  However, the character of its elevation is different for the chosen values of the radial variable.  
The temperature of the free surface increases with time almost monotonically and attains the steady-state value  
Ta  = 582.9°C  after the tenth braking.  In the zone of contact of the disk with the pad,  the temperature fluctuates,  
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Fig. 3. Time dependences of temperature T  (а)  and radial  σr   (b),  circumferential σθ  (с),  and octahedral tangential τokt   (d)  tem-
perature stresses on the surface of the disk  z  = 0  for different values of the radial variable:  (1) r = rd ;  (2) rp ;  (3) rm ;  (4) Rp . 

namely, it increases in the course of each braking and decreases down to a certain value (somewhat higher than 
the initial value) as the disk accelerates.  The temperature  Tmax  = 624°C  is attained during the last braking.  As 
soon as the disk stops, the temperature of its working surface gradually takes its initial value  T0 .  The oscillat-
ing character of the behavior of temperature as a function of time is especially well visible on the mean radius 
and on the outer boundary of the contact zone. 

The variations of temperature in the course of multiple braking are responsible for a similar character of 
changes in the temperature stresses as functions of time.  On the inner boundary  r = rd   of the friction surface 
of the disk, the radial stresses  σr   are absent (Fig. 3b).  At the beginning of each of the ten events of braking, 
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the radial stresses  σr   are compressive within the zone of contact of the disk with the pad and its maximum ab-
solute value  σr  = 30.2 MPа  is attained on the mean radius of the disk  r = rm   during the first braking.  
In each braking, it changes its sign and attains the maximum value  σr  = 30.2 МPа  for  r = rm   when the disk 
stops after the tenth braking.  The increase in the number of the events of braking insignificantly affects the ex-
treme values of the radial stresses. 

Within the entire period of ten events of braking and acceleration of the disk, the circumferential stresses  
σθ  on the surface  z  = 0  are tensile for  r = rd   and  r = rp  and compressive for  r = rm   and  r = Rp   (Fig. 3c).  
At the beginning of each braking, these stresses monotonically increase with time, attain their maximum value 
when the disk stops, and decrease in the course of cooling and acceleration.  The maximum level of tensile cir-
cumferential stresses is attained on the inner boundary of the disk  r = rd . 

According to the boundary condition (10), the stresses  σ z  = σrz  = 0  on the friction surface of the disk  z  = 0.  
Therefore, to determined the general stressed state of this surface in the course of multiple braking, we used 
the octahedral tangential stresses  τokt = [(σr − σθ )2 + σr

2 + σθ
2 ]/6   [20].  The fluctuating character of chang-

es in this quantity in the course of multiple braking is preserved on the entire surface of the disk (Fig. 3d).  
Its maximum value  72.97 МPа  is attained on the inner boundary of the disk at the end of the last braking cycle 
for  t  = 128.54 sec.  

CONCLUSIONS 

We study the distributions of temperature and thermal stressed state of the disk in the course of multiple 
braking.  For this purpose, we first formulate an axisymmetric initial-boundary-value problem of heat conduc-
tion for a disk periodically heated in an annular region on the friction surface by a frictional heat flow and then 
a quasistatic boundary-value problem of thermoelasticity for a disk with known temperature field.  The numeri-
cal solution of these problems was obtained by the FEM with the help of the MSC.Patran/Nastran software.  
The calculations were performed for the tenfold process of braking of a “cermet pad–cast-iron disk” couple.  
At the beginning of each individual event of braking, the temperature of the friction surface of the disk mono-
tonically increases to the maximum value and then decreases.  The temperature maximum increases with each 
next braking.  The most (least) heated is a part of the friction surface located near the outer (inner) boundary of 
the disk.  

The variations of temperature in the course of each braking determine the evolution of temperature stresses.  
Near the inner boundary of the friction surface of the disk, we observe the formation of significant  (≈ 70 МРа) 
tensile circumferential stresses and the effect of these stresses is especially pronounced for the octahedral tan-
gential stresses.  This part of the friction surface proves to be especially dangerous.  This conclusion agrees with 
the experimental data presented in [12], where it was shown that the thermal cracking of the working surface of 
the disk in the radial direction is observed near its inner boundary. 
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