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PLANE PROBLEM OF THE THEORY OF ELASTICITY FOR A  
QUASIORTHOTROPIC BODY WITH CRACKS 

M. P. Savruk1,2,3  and  А. V. Chornen’kyi1 UDC 539.3 

We write basic relations of the plane problem of the theory of elasticity for a quasiorthotropic body.  
The integral representations for the complex stress potentials are constructed for a quasiorthotropic 
plane in terms of the jumps of displacements on open curvilinear contours.  The first basic problem for 
a plane with cracks is reduced to singular integral equations.  We find the asymptotic distribution of 
stresses near the tip of a curvilinear crack.  The analytic solution of the problem is obtained for an arbi-
trarily oriented rectilinear crack. We numerically compute the stress intensity factors for a parabolic 
crack and analyze the influence of the ratio of the basic moduli of elasticity of the material on their be-
havior. 

Keywords: stress intensity factor, elasticity theory, quasiorthotropic medium, curvilinear crack, method 
of singular integral equations. 

The plane problems of the theory of elasticity for anisotropic and orthotropic bodies with cracks were con-
sidered in [1–6] and the roots of the characteristic equation were assumed to be different.  A degenerate aniso-
tropic material, i.e., the case where the roots of the characteristic equation are multiple, was also studied [7].  
A degenerate orthotropic material is called quasiorthotropic [8–10].  Isotropic materials and various kinds of 
composite materials based on ceramic, fibrous and layered composites, etc. belong to this class of materials [11].  
In the literature [12], these bodies are also called pseudoisotropic and, in the problems of the theory of ortho-
tropic shells with rectilinear cracks, they are called specially orthotropic [13–16]. 

In what follows, by the method of singular integral equations, we consider the plane problem of the theory 
of elasticity for a quasiorthotropic plane with curvilinear cracks.  We obtain the stress intensity factors (SIF) for 
an arbitrarily located rectilinear and parabolic cracks.  

Basic Relations of the Plane Problem of the Theory of Elasticity for Quasiorthotropic Media 

The linear relations between the components of the stress tensors  σ x ,  σ y ,  τxy   and strain tensors  εx ,  
εy ,  εxy   (Hooke's law) under the conditions of plane stressed state for an orthotropic body in a Cartesian coor-
dinate system  xyz   in the case where the coordinate axes  x   and  y   are directed along the principal axes of or-
thotropy take the form [17]: 

 εx = a11σ x + a12σ y , εy = a12σ x + a22σ y , εxy = 2a66τxy  
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where a11 = 1/Ex ; a22 = 1/Ey, a12 = −νxy /Ex , and a66 = 1/G .  Here, Ex = E1  and Ey = E2   (Ex = E2 , Ey = E2 )  
are the elasticity moduli in tension–compression along the x - and y-axes,  νxy = ν12   (νxy = ν21 = ν12E2 /E1)  is 
Poisson’s ratio in the case of compression of the plane in the direction of the y(x) -axis if tension is realized 
along the x(y)-axis, and  G = G12 = Gxy = G21 = Gyx   is the shear modulus, which characterizes the variations 
of the angles between the principal axes. 

We assume that the elastic constants  aij   satisfy the relation  

 a66 = 2( a11a22 − a12 ), (1) 

or  

 G = E1/2( E1/E2 + ν12 )  

for the plane stressed state.  Relation (1) may serve as an indication of the quasiorthotropic body. 
For the plane deformation of the orthotropic body, it is necessary to replace the elastic constants  aij   in 

Hooke's law by the quantities  ′aij = aij − (ai3a j3)/a33,  where  a13 = −ν13 /E1,  a23 = −ν23 /E2 ,  a33 = 1/E3  are 
the corresponding elastic characteristics of the material.  

We introduce the function of stresses  F(x, y)  by the following formulas [17]: 

 σ x = ∂2F
∂y2

,      σ y = ∂2F
∂x2

,       σ z = − ∂2F
∂x ∂y

. (2) 

In the absence of mass forces, the function  F(x, y)  for the quasiorthotropic body satisfies the elliptic dif-
ferential equation of the fourth order 

 ∂4F
∂y4

+ 2γ 2 ∂4F
∂x2 ∂y2

+ γ 4 ∂4F
∂x4

= 0 . (3) 

Its characteristic equation has the form 

 µ4 + 2γ 2µ2 + γ 4 = 0 . (4) 

Here,  γ = a22 /a114   is the parameter of orthotropy.  For the plane stressed state, we have γ = Ex /Ey4 .  Equa-
tion (4) has multiple complex conjugate roots  µ1 = µ2 = iγ   and  µ1 = µ2 = −iγ .  For the isotropic materi-
als,  γ = 1. 

The general solution of Eq. (3) for the quasiorthotropic body can be represented via the analytic functions  
ϕ1(z1)   and  χ1(z1)   of the complex argument  z1 = x + iγy   in the form [17] 

 F(z1) = Re[z1ϕ1(z1) + χ1(z1)]. (5) 

In view of relations (2) and (5), we express the components of stresses via the complex potentials 

 Φ1(z1) = ′ϕ1(z1)     and     Ψ1(z1) = ′ψ1(z1) = ′′χ1(z1) 
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Fig. 1.  Parabolic crack in a quasiorthotropic plane. 

by the following formulas:

 

σ x (z1) = − γ 2 Re Ψ1(z1) + z1 ′Φ1(z1) − 2Φ1(z1){ } ,

σ y(z1) = Re Ψ1(z1) + z1 ′Φ1(z1) + 2Φ1(z1){ } ,

τxy(z1) = γ Im Ψ1(z1) + z1 ′Φ1(z1){ } .

⎧

⎨

⎪
⎪

⎩

⎪
⎪

  

The Cartesian components of the vector of displacements  u   and  v   can also be represented via the com-
plex potentials  ϕ1(z1)   and  ψ1(z1) = ′χ1(z1)   as follows [18]: 

 2G u + i
γ

⎛
⎝⎜

⎞
⎠⎟
ν

⎡

⎣
⎢

⎤

⎦
⎥ = κϕ1(z1) − z1 ′ϕ1(z1) − ψ1(z1) , (6) 

where 

 κ =
3 a22 /a11 + a12 /a22
a22 /a11 − a12 /a22

. 

For the plane stressed state,  κ = (3γ 2 − νxy )/(γ 2 + νxy ) . 
It follows from equality (6) that 

 2G d
dt1

u + i
γ

⎛
⎝⎜

⎞
⎠⎟
v

⎛
⎝⎜

⎞
⎠⎟
= κΦ1(t1) − Φ1(t1) −

dt1
dt1

t1 ′Φ1(t1) +Ψ1(t1)( ) , t1 = x + iγy ∈L1, (7) 

where  L1   is the contour in the auxiliary plane  z1 = x + iγy   corresponding to a curvilinear contour  L   in the 
complex plane  z = x + iy . 

Let  Xn   and  Yn   be the Cartesian components of the stress vector acting from the side of positive nor-
mal  n   on the curvilinear contour  L   (Fig. 1).  They are connected with the normal and the tangential compo-
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nent of stresses  N   and  T   by the formula [19] 

 Xn + iYn = − i dt
ds

(N + iT ) = d
ds

∂F
∂y

− i ∂F
∂x

⎛
⎝⎜

⎞
⎠⎟

, (8) 

where  s   is the arc abscissa on the contour  L   corresponding to a point  t = x + iy ∈L . 
By using representations (5) and (8), we find 

 i
γ

⎛
⎝⎜

⎞
⎠⎟
Xn − Yn

⎛
⎝⎜

⎞
⎠⎟
ds
dt1

= Φ1(t1) + Φ1(t1) +
dt1
dt1

(t1 ′Φ1(t1) +Ψ1(t1)), t1 ∈L1 . (9) 

Relations (7) and (9) enable us to reduce the basic problems of the theory of elasticity to the boundary-value 
problems of the theory of functions of a complex variable. 

Integral Representations of Complex Potentials 

We now find the solution of the auxiliary problem in the case where the stresses are continuous and the dis-
placements are discontinuous on the open curvilinear contour  L   in the quasiorthotropic plane: 

 i
γ

⎛
⎝⎜

⎞
⎠⎟
Xn − Yn

⎡

⎣
⎢

⎤

⎦
⎥
+

− i
γ

⎛
⎝⎜

⎞
⎠⎟
Xn − Yn

⎡

⎣
⎢

⎤

⎦
⎥
−

= 0, t ∈L , (10) 

 u + i
γ

⎛
⎝⎜

⎞
⎠⎟
v

⎡

⎣
⎢

⎤

⎦
⎥
+

− u + i
γ

⎛
⎝⎜

⎞
⎠⎟
v

⎡

⎣
⎢

⎤

⎦
⎥
−

= 4iγ 2

Ex
g(t), t ∈L , (11) 

and, at infinity, stresses and rotation are absent.  Here, the superscripts  “+” and “–” indicate the limit values of 
the corresponding values if  z → t ∈L ,  respectively, from the left (+) or from the right (–) relative to the chosen 
positive direction of tracing of the contour  L   (Fig. 1). 

After differentiation, equality (11) takes the form 

 d
dt1

u + i
γ

⎛
⎝⎜

⎞
⎠⎟
v

⎛
⎝⎜

⎞
⎠⎟

+

− u + i
γ

⎛
⎝⎜

⎞
⎠⎟
v

⎛
⎝⎜

⎞
⎠⎟

−⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
= 4iγ 2

Ex
′g1(t1),      t1 = x + iγy ∈L1, (12) 

where   

 g1(t1) = g(t) . 

Using relations (7), (9), (10), and (12), we arrive at the boundary-value problem 

 Φ1
+ (t1) − Φ1

− (t1) = i ′g1(t1) , 

 t1 ′Φ1(t1) +Ψ1(t1)[ ]+ − t1 ′Φ1(t1) +Ψ1(t1)[ ]− = i ′g1(t1) − ′g1(t1)⎡⎣ ⎤⎦
dt1
dt1

, t1 ∈L1. 
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The solution of this problem is known [20] 

 Φ1(z1) =
1
2π

′g1(t1)dt1
t1 − z1L1

∫ , Ψ1(z1) =
1
2π

′g1(t1)dt1
t1 − z1

− t1 ′g1(t1)dt1
(t1 − z1)2

⎡

⎣
⎢

⎤

⎦
⎥

L1
∫ . (13) 

Relations (13) can be regarded as integral representations of the complex stress potentials  Φ1(z1)  and  
Ψ1(z1)  via the derivative of the jump of the vector of displacements on the curvilinear contour  L   in the case 
where the stresses acting on the contour are continuous. 

Integral Equation 

By using the representation of complex potentials (13), we can consider various boundary-value plane prob-
lems for elastic quasiorthotropic bodies with holes and cracks [20].  Assume that the balanced stresses  

 N + + iT + = N − + iT − = p(t), t ∈L   (14) 

are given on the crack lips  L   (first basic problem) in the absence of stresses at infinity. 
The boundary condition (14) can also be represented in the form  

 
 

i
γ

⎛
⎝⎜

⎞
⎠⎟
Xn
± − Yn±

⎡

⎣
⎢

⎤

⎦
⎥
ds
dt1

= !P(t) = !P1(t1) =
1
2γ

(1+ γ )p(t) − (1− γ )p(t) dt
dt

⎡
⎣⎢

⎤
⎦⎥
dt
dt1

. (15) 

By using relation (9) and satisfying condition (14) with the help of potentials (13), we obtain the following 
singular integral equation for the unknown function  ′g1(t1) [9]: 

 
 

1
π

[K1(τ1, t1) ′g1(τ1)dτ1 + L1(τ1, t1) ′g1(τ1)d τ1]
L1
∫ = !P1(t1) , (16) 

where  

 K1(τ1, t1) =
1
2

1
τ1 − t1

+ 1
τ1 − t1

dt1
dt1

⎡
⎣⎢

⎤
⎦⎥
, L1(τ1, t1) =

1
2

1
τ1 − t1

− τ1 − t1
(τ1 − t1)2

dt1
dt1

⎡

⎣
⎢

⎤

⎦
⎥ . (17) 

Note that the integral equation (16) agrees with the well-known equation for a degenerate anisotropic 
body [13] obtained by the limit transition from the general case of an anisotropic plane with curvilinear cracks.  
Its solution must satisfy the following condition:  

 ′g1(t1)dt1 = 0
L1
∫ , (18) 

which guarantees the single-valuedness of displacements in traversing the contour of the crack  L . 
The complex stress potentials (13) and singular integral equation (16) also take place for a system of curvilin-

ear cracks in the quasiorthotropic plane in the case where the symbol  L   denotes the collection of contours of the 
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cracks but the auxiliary condition of single-valuedness of displacements (18) must be satisfied for each crack sepa-
rately. 

Distribution of Stresses Near the Crack Tip 

The asymptotic distribution of stresses formed near the crack tip located on the x -axis in a two-dimensional 
quasiorthotropic body is described by the following dependences [7, 8]: 

 

 

σ x 
KΙ

2πr
Re γ 2(2 cos θ − iγ sin θ)

2(cos θ + iγ sin θ)3/2
⎡

⎣
⎢

⎤

⎦
⎥ −

KΙΙ

2πr
Re 4iγ cos θ − 3γ 2 sin θ

2(cos θ + iγ sin θ)3/2
⎡

⎣
⎢

⎤

⎦
⎥ ,

σ y 
KΙ

2πr
Re 2 cos θ + 3iγ sin θ

2(cos θ + iγ sin θ)3/2
⎡

⎣
⎢

⎤

⎦
⎥ +

KΙΙ

2πr
Re sin θ

2(cos θ + iγ sin θ)3/2
⎡

⎣
⎢

⎤

⎦
⎥ ,

τxy 
KΙ

2πr
Re γ 2 sin θ

2(cos θ + iγ sin θ)3/2
⎡

⎣
⎢

⎤

⎦
⎥ +

KΙΙ

2πr
Re 2 cos θ + iγ sin θ

2(cos θ + iγ sin θ)3/2
⎡

⎣
⎢

⎤

⎦
⎥ ,

⎧

⎨

⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪

 (19) 

where  KI   and  KII  are the SIF at the crack tip,  r   is the distance from the crack tip, and  θ  is the angle meas-
ured from the crack line.  Hence, we get the following formulas for the determination of the SIF via the stresses 
acting on the continuation of the crack: 

 KΙ − iKΙI = lim
r→0

2πr[σ y(r, 0) − iτxy(r, 0)]. (20) 

Relations (19) and (20) hold for an arbitrarily oriented crack and, in particular, for a curvilinear crack if  x , 
y   and  r , θ  are local Cartesian and polar coordinates connected with the direction of tangent at the crack tip 
and with the crack tip itself.  

By using the corresponding results obtained for an anisotropic body containing a curvilinear crack [7], we 
get the following expressions for the SIF in a quasiorthotropic body both at the beginning  (KΙ

− ,KΙI
− )  and at the 

end  (KΙ
+ ,KΙI

+ )  of the crack as a result of the solution of the singular integral equation:  

 KΙ
± = ± π Im u1(±1) ′ω1(±1)

i ′ω (±1) ′ω (±1)
, 

   (21) 

 KΙΙ
± = ± π Re u1(±1)[(1+ γ ) ′ω (±1) − (1− γ ) ′ω (±1)]

2i ′ω (±1) ′ω (±1)
 

where 

 t1 = ω1(ξ) = x(ξ) + iγy(ξ) ;    t = ω(ξ) = x(ξ) + iy(ξ), − 1 ≤ ξ ≤ 1; 

 u1(ξ)

1− ξ2
= ′g1(ξ) = ′g1(t1) ′ω1(ξ) . 

The quantities  u1(±1)  are found from the solution of the integral equation (16) [20]. 
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Rectilinear Crack of Arbitrary Orientation in the Quasiorthotropic Plane 

In the quasiorthotropic plane, we consider a rectilinear crack  L   of length  2l   inclined at an angle  α  to the 
x -axis whose lips are subjected to the action of given self-balanced stresses  

 N + + iT + = N − + iT − = p(t), t ∈L . 

Moreover, the stresses and rotation are absent at infinity.  We also assume that the crack lips are not in contact. 
We represent the parametric equations of the contours  L   and  L1   in the form 

 τ = ω(ξ) = ξleiα ,     t = ω(η) ,     τ1 = ω1(ξ) =
ξlΓ
2

,     t1 = ω1(η) , 

where  

 Γ = (1+ γ )eiα + (1− γ )e−iα ,    ξ, η ∈[−1;1]. 

Then the kernels (17) and the right-hand side of Eq. (16) have the form 

 K1(ξ, η) =
2

(ξ − η)lΓ
,      L1(ξ, η) = 0,     

 
!P1(η) =

1
γΓ
⌢
P1(η), 

where  

  
⌢
P1(η) = (1+ γ )p(η) − (1− γ )p(η)e−2iα . 

We represent the integral equation of the problem in the dimensionless form 

 
 

1
π

u1(ξ)dξ

1− ξ2 (ξ − η)−1

1

∫ = 1
2γ
⌢
P1(η), −1 ≤ η ≤ 1. 

The solution of this equation under condition (18) is given by the following formulas (see, e.g., [20]): 

 
 
u1(ξ) =

1
2γπ

1− η2 ⌢P1(η)dη
ξ − η−1

1

∫ ,      
 
u1(±1) = ± 1

2γπ
1± η
1∓ η

⌢
P1(η)dη

−1

1

∫ . 

In view of expressions (21), we get the SIF in the form  

 
 
KΙ

± − iKΙΙ
± = − 2 l

π
Re 1± η

1∓ η−1

1

∫ p(η) dη. 
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Table 1.  Values of the Relative SIF  FI  and  FII   at the Tips of  Parabolic Cracks in the  
Quasiorthotropic (Numerator) and Orthotropic (Denominator) Planes 

Material CF2 Lu-1 EF 

ε  FI FII  FI FII  FI FII  

0.5 
0.86815
0.85873

 0.28717
0.30618

 0.72574
0.74313

 0.46623
0.44546

 0.80187
0.80097

 0.34519
0.35669

 

1.0 
0.83099
0.80473

 0.27569
0.32273

 0.60567
0.64063

 0.54230
0.47425

 0.72076
0.71933

 0.40820
0.40532

 

1.5 
0.86871
0.83451

 0.25195
0.30581

 0.60626
0.65577

 0.54631
0.45868

 0.73932
0.73921

 0.41821
0.40659

 

2.0 
0.92626
0.88796

 0.24624
0.29514

 0.64320
0.70294

 0.54520
0.44767

 0.78529
0.78691

 0.42392
0.40687

 

2.5 
0.98768
0.94710

 0.25112
0.29173

 0.69160
0.75875

 0.54570
0.44016

 0.83883
0.84203

 0.43064
0.40967

 

If the crack lips are loaded by constant normal  (σ)   and tangential  (τ) stresses  ( p(η) = − σ − iτ = const ), 
then we get 

 KΙ
± − iKΙΙ

± = 2 πl (σ − iτ). 

If the infinite plane containing a crack free of loads is subjected to tension by external stresses  σ y
∞ = p   and  

σ x
∞ = q   at infinity, then we can write 

 KΙ
± − iKΙΙ

± = πl (p + q − (p − q)e2iα ). 

Thus, the SIF formed at the tip of an arbitrarily oriented crack in the quasiorthotropic body in the case 
where self-balanced loads are applied to the crack lips are identical to the SIF in the isotropic body, although the 
stresses formed on the continuation of the crack are different. 

Crack Along the Parabolic Arc 

Consider a plane problem of the theory of elasticity for a quasiorthotropic plane weakened by an arbitrarily 
located parabolic crack.  The parametric equation of the contour  L   of this crack has the form 

 t = ω(ξ) = l[ξ + iε(ξ2 −1)]eiα ,      −1 ≤ ξ ≤ 1, 

 t1 = ω1(ξ) =
l
2
[(ξ + iε(ξ2 −1))(1+ γ )eiα + (ξ − iε(ξ2 −1))(1− γ )e−iα ],      −1 ≤ ξ ≤ 1, 

where  ε = δ/l   is the relative deflection of the crack and  α   is the angle of its orientation (Fig. 1). 
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Fig. 2. Dependences of the relative SIF  FI   (a, c) and  FII   (b, d) for a parabolic crack with relative deflection  ε  = 0.25  (a, b) and 2.0 
(c, d) on the angle  α   for different values of the parameter of orthotropy  γ . 

The numerical solution of the integral equation (16) was obtained by the quadrature methods [20] in 
the case where the crack lips are free of loads and the stresses  σ y

∞ = p and  σ x
∞ = q are given at infinity.  

We compared the relative SIF  FΙ = KΙ
+ /p πl and  FΙI = KΙI

+ /p πl in the case where the angle  α = 0 and the 
stresses q = p   for the quasiorthotropic and orthotropic materials with the same ratio of the moduli of elasticity 
(see Table 1).  

The numerical results are presented for the following orthotropic materials:  CF2 glass-reinforced plastic   
(Ex  = 15,  Ey  = 232,  Gxy  = 5.02,  νxy  = 0.28,  and  νyx  = 0.0181),  Lu-1 carbon-reinforced plastic  (Ex  = 96,   
Ey  = 10.8,  Gxy  = 2.61,  and  νxy  = 0.21),  and EF carbon-reinforced plastic  (Ex  = 32.8,  Ey  = 21,  Gxy  = 5.7,  and  
νxy  = 0.21)  [5]. 

The obtained relative values of the SIF for the quasiorthotropic plane are close to the values obtained for the 
orthotropic body for equal ratios of the moduli of elasticity of these materials.  Earlier, by comparing the powers 
of singularities of stresses at the vertices of orthotropic and quasiorthotropic wedges, the authors of [21] made 
a conclusion that the ratio of the moduli of elasticity is the main mechanical parameter of the orthotropic materials.  
This justifies the term “quasiorthotropic material” accepted in the present work.  
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We computed the relative SIF  FI  and  FII   for the arbitrarily oriented parabolic crack in the quasiortho-
tropic plane subjected to uniaxial tension at infinity  (q = 0)   for different values of the orthotropy parameter  γ   
(Fig. 2).  The dashed line describes the SIF for the isotropic material  (γ = 1). 

In the quasiorthotropic body, the SIF at the tip of an arbitrarily oriented rectilinear crack under the action of 
self-balanced load on its lips are identical to the SIF in the isotropic body, although the stresses formed on the 
continuation of the crack are different. 

CONCLUSIONS 

We deduce the basic relations of the plane problem of the theory of elasticity for a quasiorthotropic body.  
The first basic problem for a plane with cracks is reduced to singular integral equations.  The asymptotic distribu-
tion of stresses near the crack tip is presented.  We establish the analytic expressions for the SIF at the tip of an ar-
bitrarily oriented rectilinear crack in the quasiorthotropic body.  We compute the SIF for a curvilinear crack along 
the parabola for different values of the parameter of orthotropy and compare their values with the values of SIF 
obtained for the orthotropic body with the same ratio of the moduli of elasticity.   The difference between the ob-
tained results is insignificant, which means that the ratio of the moduli of elasticity in the orthotropic material is the 
main mechanical parameter.  In the quasiorthotropic plane, the SIF at the tip of an arbitrarily oriented crack are 
the same as in the isotropic plane.  At the tip of the curvilinear crack, the value of the SIF depends on the orthotro-
py parameter and this dependence becomes stronger as the deviation of the crack contour from the rectilinear contour 
becomes more pronounced. 

The present work was performed within the framework of the Project No. 2011/03/B/ST8/06456 financed 
by the National Science Center (Poland). 
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