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“TRIDENT” MODEL OF PLASTIC ZONE AT THE END OF A MODE I CRACK 
APPEARING ON THE NONSMOOTH INTERFACE OF MATERIALS 

M. V. Dudyk1,2  and  Yu. V. Dikhtyarenko1 UDC 539.375 

By using the Wiener–Hopf method, within the framework of the “trident” model, we compute a small-
scale plastic zone formed under conditions of plane deformation at the corner point of the interface 
of two different elastoplastic materials in the presence of a mode I crack originating from this point.  
The indicated zone is modeled by two symmetric lateral lines of discontinuities of tangential displace-
ments and the line of discontinuity of normal-displacement on the continuation of the crack.  We deduce 
analytic expressions for the evaluation of the sizes of the plastic zone and crack opening displacements.  
On the basis of numerical investigations, we analyze the dependences of parameters of this zone on the 
opening angle of the interface and the elastic characteristics of the materials.  

Keywords: corner point of the interface of different media, mode I crack, “trident” model of plastic 
zone, crack opening displacement. 

The theoretical and experimental investigations demonstrate that the plastic zone formed near pointed stress 
concentrators in elastoplastic materials has a complex structure and contains a fairly developed plastic domain in 
which shear strains are predominant and a much smaller plastic process zone adjacent to the tip of the concentra-
tor with high levels of both shear and tensile strains.  With regard for these features and symmetry conditions, 
the “trident” model was proposed in [1] for the description of the plastic zone formed at the end of a mode I 
crack originating from the corner point of the interface of two media.  According to this model, the zone devel-
ops in two stages.  In the first stage, two narrow lateral plastic strips (modeled by segments of discontinuities of 
tangential displacements) symmetrically propagate from the crack tip at a certain angle to its initial direction in 
one of the materials of the joint.  If the appearance of these strips does not remove the stress concentration near 
the crack tip, then, in the next stage, the plastic process zone modeled by a segment of discontinuities of normal 
displacements can be formed on the continuation of the crack (Fig. 1).  

The numerical analysis of the plastic zone performed within the framework of the “trident” model with re-
gard for the two stages of its development is reduced to the solution of four problems (for the slopes of plastic 
strips  β   greater and smaller than a half of the opening angle of the interface  α )  by the Wiener–Hopf method.  
A similar problem for a plastic strip on the interface of two materials was solved in [2].  

Parameters of the Initial Lateral Plastic Zone 

Assume that, under the conditions of plane deformation in a piecewise homogeneous isotropic elastoplastic 
body, a mode I crack originates from a corner point of the interface of materials into the material with Young’s 
modulus  E1   and Poisson’s ratio  ν1 .  
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Fig. 1.  “Trident” model of plastic zone. 

Since the corner point of the interface of two materials playing the role of the origin of mode I crack is 
a stress concentrator with power singularity [3], this leads to the formation of a plastic zone in its neighborhood.  
We assume that, in the initial stage of development of the plastic zone, two narrow lateral plastic strips of 
the same length are formed in the material with elastic constants  Ei   and  νi   (i = 1, 2) .   Their length is much 
smaller than the crack length (here and in what follows, subscript  і  marks the quantities corresponding to 
the plastic strips in the  і th material).  According to the hypothesis of localization [4], we model these strips by 
two rectilinear segments of discontinuities of tangential displacements inclined at an angle  βi   to the direction 
of crack continuation.  The tangential stresses on these segments are equal to the yield limit of the i  th materi-
al  τis . 

We compute the lengths of the lateral plastic strips according to the Wiener–Hopf method by analogy with 
the problem of plastic strips in the connecting material [5, 6] and arrive at the following expression:   

 li =
C
τis

⎛
⎝⎜

⎞
⎠⎟
−1/λ

Ri (βi ) , (1) 

where  C   is a constant characterizing the intensity of external force field (it is specified by the conditions of the 
problem),  λ   in the least root, in the interval  (−1, 0) ,  of the equation [3]:  

 D0(−1− x) = 0 , (2) 

 D0(p) = 4e2[κ2 sin 2pα − p sin 2α][p2 sin2 α − sin2 p(π − α)]  

  + e (1+ κ1)(1+ κ2 ) sin 2pπ − 4 κ2 sin 2pα − p sin 2α[ ][p2 sin2 α − sin2 p(π − α)]{  

  − (p sin 2α + sin 2pα)[(1+ κ1)(1+ κ2 ) − 4(p2 sin2 α + κ1 sin2 p(π − α))]}  
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  + (p sin 2α + sin 2pα) (1+ κ1)2 − 4[p2 sin2 α + κ1 sin2 p(π − α)]{ } , 

 κ i = 3− 4νi ,      e = E1
E2

1+ ν2
1+ ν1

; 

 Ri (θ) =
π Fi (θ) Γ(1+ λ)Ii (0,θ)
2Γ(1.5 + λ)Ii (λ,θ)

⎡

⎣
⎢

⎤

⎦
⎥
−1/λ

, 

 Fi (θ) =
F1(θ), α ≤ θ ≤ π,

F2(θ), 0 ≤ θ ≤ α;

⎧
⎨
⎪

⎩⎪
 

 F1(θ) =
(2π)λ

4λϕ2
(λ + 2)ϕ1 sin(λ + 2)(π − θ) − λϕ1 sin λ(π − θ){  

  − λϕ2 cos(λ + 2)(π − θ) + λϕ2 cos λ(π − θ)} , 

 F2(θ) =
− (2π)λ

4λϕϕ2 cos λα
[(λ + 2)ψ1ϕ1 + λψ2ϕ2 ] cos λα sin (λ + 2){ θ +λ(ψ 3ϕ1 + ψ 4ϕ2 ) sin λθ} , 

 ϕ = − [(λ + 1) sin 2α + sin 2(λ + 1)α] , 

 ϕ1 = ϕ (e − 1)λ sin (λ + 2)(π − α) − [(e −1)(λ + 2) − e(1+ κ2 ) + (1+ κ1)]{ sin λ(π − α)}  

  − 2e(1+ κ2 )λ cos πλ sin (λ + 1)α sinα , 

 ϕ2 = ϕ [(e −1)(λ + 2) − e(1+ κ2 ) + (1+ κ1)] cos λ(π − α){  

  − (e −1)(λ + 2) cos (λ + 2)(π − α)} − 2e(1+ κ2 ) sin πλ(λ sin (λ +1)α sinα + cos λα) , 

 ψ1 = − 2λ cos(πλ − α) sinα + 2 sin (λ + 2)(π − α) cos λα , 

 ψ2 = − 2λ sin(πλ − α) sinα + 2 cos λπ − 2 cos (λ + 2)(π − α) cos λα , 

 ψ 3 = − ϕ cos λ(π − α) − 2 sin πλ(λ sin (λ +1)α sinα + cos λα) , 

 ψ 4 = − ϕ sin λ(π − α) + 2λ cos πλ sin (λ +1)α sinα ; 
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 Ii (x,θ) = exp x +1
π

lnGi (it,θ)
t 2 + (x +1)2

dt
0

∞

∫
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

, 

 Gi (p,θ) =
Di (p,θ) cos pπ
D0(p) sin pπ

, 

 D1(p,θ) = 4(e −1)(Δ1Δ4 − Δ2Δ5 )[e(1+ κ2 ) sin 2pα − (e −1)Δ6 ]  

  − 4(e −1)(1+ κ1)Δ6[sin 2p(θ − α)Δ1 + sin2 p(θ − α)Δ5 ]  

  + e(1+ κ1)(1+ κ2 )[4 sin (p −1)θ sin (p +1)θΔ1 + (Δ6 − Δ3)Δ5 ]− (1+ κ1)2Δ5Δ6 , 

 D2(p,θ) = e(1+ κ1)(1+ κ2 )[Δ3(Δ4 − Δ5 ) + 4(Δ1 − Δ2 − Δ7 ) sin(p −1)θ sin(p +1)θ]  

  + [4Δ2 sin(p −1)θ sin (p + 1)θ − Δ3Δ4 ][(1+ κ1)2 + 4(e − 1)(1+ κ1) sin2 p(π − α)  

  − 4(e −1)2Δ7 ]+ 4e2(1+ κ2 )2Δ7 sin (p −1)θ sin(p +1)θ + 4(e −1)e(1+ κ2 )Δ7Δ8 , 

 Δ1 = p2 sin2 θ − sin2 p(π − θ) ,     Δ2 = p2 sin2(θ − α) − sin2 p(θ − α) , 

 Δ3 = p sin 2θ + sin 2pθ ,      Δ4 = p sin 2(θ − α) + sin 2p(θ − α) , 

 Δ5 = p sin 2θ − sin 2p(π − θ) ,      Δ6 = p sin 2α + sin 2pα ,  

 Δ7 = p2 sin2 α − sin2 p(π − α) , 

 Δ8 = p sin 2β sin 2p(α − θ) − 2 sin2 p(α − θ) cos 2θ + 2 sin p(α + θ) sin p(α − θ) ,   

and  Γ(p)   is the Euler gamma-function. 
As a criterion for choosing the direction of the propagation of plastic strips, it is customary to use the condi-

tion of maximum of the rate of energy dissipation [7], which yields the following conditions:  

 dWi
dt

= 8τis2 (1− νi2 )
πEi (2 + λ)

C πΓ(λ +1)
2τisΓ(1.5 + λ)

⎛
⎝⎜

⎞
⎠⎟

−2/λ

wi (βi )
1
C

dC
dt

→ max , 

   (3) 

 wi (θ) =
Fi (θ) Ii (0,θ)1+λ

Ii (λ,θ)
⎡

⎣
⎢

⎤

⎦
⎥
−2/λ

. 
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Fig. 2. Dependences of the stress-singularity indices on the opening angle of the interface of the media 2α  (ν1 = ν2 = 0.25) :  
(1) E1 /E2  = 0.2,  (2)  E1 /E2  = 5. 

We also determine the crack-tip opening displacement caused by the formation of plastic strips, which 
is expressed via the jump of tangential displacements in the strip determined in the course of solution of the 
problem: 

 δi
pl = 2 ur (0,βi ) sinβi = − 16(1− νi

2 )τisli
πEiIi (0,βi ) Gi (0,βi )

λ
1+ λ

sinβi . (4) 

The solution of the problem is used to find the principal terms of the expansions of stresses in asymptotic 
series in the vicinity of the crack tip after the formation of the plastic zone.  To do this, we use the roots  λi   
(−1 <  λi < 0 )  of the equation 

Di (−x −1,βi ) = 0 . (5)

The difference between the roots of Eqs. (2) and (5) reveals the transformation of the stress-strain state 
in the neighborhood of the corner point caused by the formation of the initial plastic zone.  In Fig. 2, we present 
the results of numerical analysis of the dependences of the stress-singularity indices on the opening angle of 
the interface of the media  2α   in the absence of the plastic zone  ( λ ,  solid curves) and after the formation of 
the plastic zone in the first  (λ1 ,  dotted lines) and second  ( λ2 ,  dashed lines) materials.  This analysis shows 
that, for some opening angles, stress concentration disappears as a result of the formation of the plastic 
strip  (λi = 0) .  At the same time, for the other angles, we observe its weakening after the formation of the plas-
tic zone  λi > λ( ) ,  except the case of propagation of the plastic strip in the second material where  E1/E2 < 1  
and  α  < 45°.   

Parameters of the Plastic Process Zone on the Continuation of the Crack 

In the presence of stress concentration in the neighborhood of the corner point, the plastic zone develops as 
the load increases not only due to the increase in the geometric sizes of plastic strips but also as a result of the 
formation of a new strip.  Due to symmetry conditions, it is assumed that a secondary plastic strip is formed on 
the crack continuation (plastic process zone).  Its length  di   is much smaller that the length of initial plastic 
strips.  Modeling this narrow plastic process zone by the segment of discontinuities of normal displacements, 
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where the normal stresses are equal to a given constant of the second material  σ2 ,  we find its length by analo-
gy with [2]: 

 
 
di =

τis
σ2 !Xi

⎛
⎝⎜

⎞
⎠⎟
−1/λi

li  (6) 

  
 

!Xi =
!Ii (λi )Ii (0,βi )

!Ii (0)Ii (λi ,βi ) Si (−1− λi ,βi )
,      

 

!Ii (x) = exp x +1
π

ln !Gi (it)
t 2 + (x +1)2

dt
0

∞

∫
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

, 

 
 
!G1(p) = − 2D3(p,β1) cos pπ

D1(p,β1) sin pπ
,     

 
!G2(p) = − 2D4 (p,β2 ) cos pπ

D2(p,β2 ) sin pπ
, 

 D3(p,θ) = 2(1+ κ1)e(1+ κ2 )(Δ1Δ24 − Δ5Δ26 ) − (1+ κ1)2Δ5Δ25  

  + 4(e −1)(1+ κ1)(Δ1 sin 2p(α − θ) − Δ5 sin2 p(α − θ))Δ25  

  + (Δ1Δ4 − Δ2Δ5 )[e2(1+ κ2 )2 − 4(e −1)e(1+ κ2 ) sin2 pα − 4(e −1)2Δ25 ] , 

 D4 (p,θ) = 2(1+ κ1)e(1+ κ2 )[(Δ1 − Δ2 − Δ7 )Δ3 + (Δ4 − Δ5 )Δ23]  

  + 2[Δ2Δ3 − Δ4Δ23]{(1+ κ1)2 + 4(e −1)(1+ κ1) sin2 p(π − α) − 4(e −1)2Δ7}  

  + 2e2(1+ κ2 )2Δ3Δ7 − 4(e −1)e(1+ κ2 )Δ7(2Δ3 sin2 p(α − θ) − 2Δ23 sin 2p(α − θ)) , 

 Si (p,θ) = fi (p,θ)
′Di (p,θ)

λ
λi (λi − λ)

,      ′Di (p,θ) = ∂Di (p,θ)
∂p

, 

 f1(p,θ) = 2(e −1){ [2Δ1Δ9 + Δ5(p sinα Δ11 + sin pα Δ12 ) + 2Δ10(p sinα Δ13 + sin pα Δ14 )]  

  + (1+ κ1)(Δ5Δ15 + 2Δ10Δ16 ) − e(1+ κ2 ) (Δ5Δ17 + 2Δ10Δ18 + 2Δ1 sin(p +1)β)} (1+ κ1) , 

 f2(p,θ) = e(1+ κ1)(1+ κ2 )[sin(p +1)θ(Δ2 − Δ1 + Δ7 ) + p sin θ Δ19 − sin pθ Δ20 ]  

  + 2e(1+ κ2 )(e − 1)Δ7Δ21 − e2(1+ κ2 )2Δ7 sin(p +1)θ  

  − (p −1)[(1+ κ1)2 − 4(e −1)2Δ7 + 4(1+ κ1)(e −1) sin2 p(π − α)]Δ22 , 

 Δ9 = p sinα cos[(p +1)(α − θ) + pα]+ sin pα cos [p(α − θ) − θ] , 
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 Δ10 = p sin2 θ − sin2 p(π − θ) ,  

 Δ11 = p sin(α − θ) cos p(2α − θ) − sin p(α − θ) cos (pα + α − θ) , 

 Δ12 = p sin(α − θ) cos [p(α − θ) − α]− sin p(α − θ) cos θ , 

 Δ13 = p sin (α − θ) sin p(2α − θ) + sin p(α − θ) sin (pα + α − θ) , 

 Δ14 = p sin (α − θ) sin [p(α − θ) − α]− sin p(α − θ) sin θ , 

 Δ15 = p sinα sin (pθ + α − θ) − sin pα sin (p(α − θ) + θ) , 

 Δ16 = p sinα cos (pθ + α − θ) + sin pα cos (p(α − θ) + θ) , 

 Δ17 = p sin(α − θ) sin (pθ + α) − sin p(α − θ) sin (pα + θ) , 

 Δ18 = p sin (α − θ) cos (pθ + α) + sin p(α − θ) cos (pα + θ) , 

 Δ19 = p sinα sin (pθ + 2θ − α) − sin p(π − α) sin p(π + α − θ) , 

 Δ20 = p sinα sin (α − θ) − sin p(π − α) sin[p(π + α − 2θ) − θ] , 

 Δ21 = (p −1) sin θ cos p(2α − θ) + sin (p +1)θ , 

 Δ22 = p sinα sin (α − θ) sin pθ − sin pα sin p(α − θ) sin θ , 

 Δ23 = p2 sin2 θ − sin2 pθ ,     Δ24 = p sinα cos(α − 2θ) + sin pα cos p(α − 2θ) , 

 Δ25 = p2 sin2 α − sin2 pα ,     Δ26 = p2 sinα cos θ sin (θ − α) − sin pα cos pθ sin p(θ − α) . 

The solution of the problem enables us to determine the additional contribution to the crack-tip opening dis-
placement caused by the formation of the plastic process zone modeled by the jump of normal displacements 
given by the formula 

 
 
δi
pf = − uθ(0, π) + uθ(0, −π) = − 64πσ2e(1+ κ2 )(1− ν12 )Ji !Gi (0)diλi

E1 !Ji !Ii (0)(1+ λi )
,  (7) 

 J1 = g1[e(1+ κ2 )g2 − (1+ κ1)g3] ,      J2 = g4[e(1+ κ2 )g5 − (1+ κ1)g2 ] , 

 g1 = (π − β) cosβ − sinβ ,      g2 = cosα sin (α − β) + (α − β) cosβ ,  
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 g3 = sinα cos(α − β) + α cosβ ,      g4 = sinβ + β cosβ , 

 g5 = sinα cos(α − β) − (π − α) cosβ ;  

 
 
!J1 = lim

p→0
p−3D3(p), !J2 = lim

p→0
p−3D4 (p) . 

The total crack opening displacement  δi   is determined as the sum of opening displacements caused by the 

formation of the lateral plastic zone (4) and the plastic process zone (7):  δi = δi
pl + δi

pf .  Equating the crack 
opening displacement to its critical value, we can find the ultimate load corresponding to the onset of crack 
propagation.  

After the formation of the plastic process zone, the stress field near the corner point is characterized by the 
roots of the equations  D3(−1− x,β1) = 0   or  D4 (−1− x,β2 ) = 0   specifying the stress-singularity index for  
−1 < Re x < 0 .  The numerical results show that these equations have no roots in the strip  −1 < Re x < 0   in 
broad ranges of the elastic parameters of the joined materials and opening angles of the interface.  Hence, 
the stress concentration disappears at the corner point. 

Analysis of the Accumulated Results 

As follows from relations (1) and (6), plastic strips nonlinearly increase with the external load appearing in 
the expressions for their lengths via the factor  C .  Moreover, the lower the yield limit of the material  σ i ,  
the greater the length of the lateral plastic zone and the smaller the constant  σ2 ,  the greater the length of plas-
tic process zone.  Formula (6) also implies that the sizes of plastic strips synchronously increase with the load. 

If only one material in the analyzed piecewise homogeneous body is elastoplastic, then the lateral plastic 
strips propagate in it in the directions determined from the corresponding condition (3).  However, if both mate-
rials of the joint are elastoplastic, then it is necessary to additionally compare the maximal rates of the dissipa-
tion of energy in the strips in each material.  The ratios of these rates and the lengths of plastic strips are as fol-
lows: 

 dW1/dt
dW2 /dt

= τ2s
τ1s

⎛
⎝⎜

⎞
⎠⎟
− 2(λ+1)/λ

Z ,      l1
l2

= τ2s
τ1s

⎛
⎝⎜

⎞
⎠⎟
−1/λ

X , (8) 

 Z = 1− ν1
e(1− ν2 )

F1(β1) I1(0,β1)1+λ I2(λ,β2 )
F2(β2 ) I2(0,β2 )1+λ I1(λ,β1)

⎡

⎣
⎢

⎤

⎦
⎥
− 2/λ

, 

 X = F1(β1) I1(0,β1)I2(λ,β2 )
F2(β2 ) I2(0,β2 )I1(λ,β1)

⎡

⎣
⎢

⎤

⎦
⎥
−1/λ

. 

In Table 1, we present the results of numerical analysis of the dependences of the parameters of plastic 
zones on the opening angle of the interface of the media  2α   for the ratios of Young’s moduli of the materials  
E1/E2 = 0.2   and  E1/E2 = 5 ,  equal Poisson’s ratios  (ν1 = ν2 = 0.25) ,  and equal yield limits of the joined 
materials  (τ1s = τ2s ) .  
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Table 1.  Parameters of the Process Zone within the Framework of the “Trident” Model 

 
2α°

 

E1/E2 = 0.2  E1/E2 = 5  

 β1
!     β2

!  X  Z   
!X1   

!X2  
 β1
!   β2

!  X  Z   
!X1   

!X2  

20 99.1 10 7.336 78.09 3.869 0.169 69.4 10 5.649 6.045 0.233 0.134 

40 110.6 20 3.635 23.09 10.591 0.284 61.5 20 1.984 1.345 0.275 0.226 

60 114.5 30 4.960 44.68 6.302 0.259 30 30 1.009 1 0.296 0.296 

80 115.3 40 16.797 504.2 2.152 0.149 40 40 1.009 1 0.344 0.344 

100 115.6 40.5 341.66 4.1⋅105
 0.861 0.042 50 50 1.009 1 0.367 0.366 

120 116.1 60 115.86 2.2⋅104
 0.274 0.061 60 60 1.009 1 0.358 0.357 

140 116.8 70 12.67 254.1 – 0.122 70 67.1 1.060 0.996 0.305 0.323 

160 117.5 80 4.159 26.20 – 0.118 80 70.6 1.091 0.958 0.191 0.284 

180 117.6 65.1 0.854 3.121 0.121 0.317 90 73.9 1.063 0.877 – 0.232 

200 115.9 61.2 0.168 0.128 0.135 0.439 100 77.0 0.984 0.747 0.169 0.185 

220 110 61.6 0.053 0.011 0.106 0.448 110 80.0 0.861 0.574 0.258 0.165 

240 120 63.9 0.024 2.1⋅10–3
 0.079 0.264 120 83.0 0.707 0.387 0.277 0.184 

260 130 66.7 0.011 4.9⋅10–4
 0.052 – 130 85.8 0.547 0.228 0.253 0.241 

280 140 69.5 4.7⋅10–3
 9.0⋅10

–5
 0.032 – 140 87.6 0.397 0.116 0.212 0.329 

300 150 72.1 1.6⋅10–3
 1.1⋅10

–5
 0.017 – 150 87.4 0.248 0.045 0.164 0.418 

320 160 74.1 3.2⋅10–4
 5.5⋅10

–7
 7.3⋅10

–3
 – 160 83.5 0.096 7.1⋅10–3

 0.105 0.469 

340 170 75.4 2.2⋅10–5
 3.8⋅10

–9
 1.8⋅10

–3
 0.109 170 78.2 0.010 8.9⋅10–5

 0.036 0.458 
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It is easy to see that if  E1 < E2   and the opening angles of the interface of two media are  2α ≤ 180° ,  then  
dW1/dt > dW2 /dt   (Z > 1) .  According to the accepted energy criterion, this leads to the formation of two 
symmetric lateral plastic strips in the first material.  At the same time, if  180° < 2α < 360° ,  then  
dW1/dt < dW2 /dt   and, hence, the formation of two lateral strips in the second material is predominant.  
If  E1 > E2 ,  and the opening angles 2α ≤ 40° ,  then  dW1/dt > dW2 /dt ,  i.e., two symmetric plastic strips are 
formed in the first material.  For opening angles from 2α ≈ 60°  up to a certain value  2α1 ! 120° ,  which can be 
found from the condition  dW1/dt = dW2 /dt ,  the plastic strip propagates along the interface of the media either 
in the first or in the second material (β1 = β2 = α)  depending on their yield limits. For the angles  2α > 120°   
and  E1 > E2 ,  we have  dW1/dt < dW2 /dt   and, hence, we observe the formation of two symmetric lateral 
strips in the second material.  

For  τ1s ≠ τ2s ,  the direction of propagation of the strips according to condition (8) also depends on the ra-
tio of the yield limits of the materials.  For the joint of identical materials, the slope of the plastic strips is equal 
to 75.8°, which is close to the value ≈ 72° obtained in [8].  Their difference is explained by the use of the condi-
tion of maximum of the strip lengths in [8].  The comparison of the ratios of strip lengths  (X)   and the rates of 
energy dissipation  (Z )   in different materials shows that the conditions of their maximum for some parameters 
of the joint  (E1/E2 < 1 ,  α ! 90°   and  E1/E2 > 1   α ! 70°−90° )  may lead to different conclusions concerning 
the orientation of the strips.  

The sizes of the plastic process zone are presented in Table 1 in the form of the factors   
!Xi   specifying the 

ratio of the lengths of the plastic process zone and the lateral plastic zone in the corresponding material 
(the missing values correspond to vanishing of the stress concentration in the stage of formation of the initial 
plastic strips).  Note that the condition  di << li   accepted in the formulation of the problem requires the validity 
of the inequality   

!Xi >> τis /σ2 ,  which can be violated for small values of   
!Xi .  

CONCLUSIONS 

Under the conditions of plane deformation, within the framework of the “trident” model, we perform the 
numerical analysis of a small-scale plastic zone at the end of a mode I crack originating from the corner point of 
interface of two different elastoplastic materials.  We reveal the possibility of prediction of the direction of prop-
agation of lateral plastic strips.  It  is shown that the formation of the plastic process zone on the continuation of 
the crack after propagation of the initial lateral plastic strips removes stress concentration at the crack tip in 
a broad range of parameters of the investigated joint.  Finally, we determine the crack-tip opening displace-
ments, which enables one to find the ultimate loads.  

The authors are grateful to Prof. L. A. Kipnis for his valuable advice and comments. 
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