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GREEN’S FUNCTION FOR AN ELASTIC LAYER 
WITH TEMPERATURE-DEPENDENT PROPERTIES 

S. J. Matysiak1  and  D. M. Perkowski2 UDC 539.3 

The distributions of stresses and displacements in a thermoelastic layer with temperature-dependent 
properties are investigated.  The problem is considered for the case of antiplane strain state.  The bound-
ary planes are assumed to be kept at constant temperatures.  The upper boundary plane is free of loading, 
and the lower plane is loaded by a concentrated force.  The solution is found in the form of integrals and 
the singularities of stresses are determined. 

Keywords:  temperature, displacements, stresses, elasticity, temperature-dependent properties, concen-
trated load. 

The study of the behavior of stresses in elastic materials with temperature-dependent properties is of impor-
tance for many engineering applications.  Some elastic materials change their mechanical moduli under the in-
fluence of  temperature.  In these cases, the application of Hookean strain-stress relations is not appropriate to 
describe stress distributions.  The theory of thermoelasticity of materials with temperature-dependent properties 
seems to be the most adjusted for modeling of the interaction between mechanical and thermal fields.  One of 
the first researchers who considerably developed the theoretical basis for the investigation of elastic bodies with 
temperature-dependent modulus was J. L. Nowiński (see [1–3] and the monograph [4]).  Many experimental 
results on the determination of the mechanical properties of solids as functions of temperature are presented in 
the monograph [5] (mainly for metals), as well as in the papers [6–11].  Some theoretical investigations of solid 
mechanics with temperature-dependent properties can be found in [12–15].  

In the present paper, we consider the antiplane strain state for an elastic layer with temperature-dependent 
properties.  The boundary planes are assumed to be kept at given constant temperatures, which leads to a linear 
temperature distribution in the considered layer.  The lower boundary plane is loaded by a concentrated force 
and the upper boundary plane is free of loading.  The shear modulus  μ   as a function of temperature  θ   is 

taken into account in the form of a linear function.  The assumption connected with the temperature dependence 
of the shear modulus leads to the problem of FGM layer in which the material properties continuously depend 
on the space variables.  It can be observed that, in the case of classical thermoelasticity for homogeneous iso-
tropic bodies in the antiplane strain state, the distributions of stresses are independent of temperature, unlike the 
analyzed problem. 

Formulation and Solution of the Problem 

Consider an isotropic elastic layer with thickness  h .  Let  (x1, x2, x3)   be a Cartesian coordinate system 
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such that the planes  x2  = 0  and  x2 = h   are boundaries of the body, and the 0x3 -axis is perpendicular to the 

boundaries.  Let the lower and upper boundary planes be kept at given constant temperatures  θ0   and  θ1 ,  re-

spectively. 
Moreover, the investigated layer is loaded by forces linearly distributed along the 0x3 -axis and concen-

trated forces with intensity  P  acting in the direction of the 0x3 -axis.  The shear modulus  μ   is assumed to be a 

function of temperature  θ   of the following form:  

 μ(θ) = μ0 (1− Aθ) , (1) 

where  μ0   and  A   are constant.  The form of the dependence of shear modulus (1) agrees with the experimen-

tal results presented in [5].  
The assumptions made above lead to the antiplane strain state described by the displacement vector  

u(x1, x2 ) = (0, 0, u3 (x1, x2 )) ,  and the considered problem is stationary and independent of  x3 .  The tempera-

ture  θ = θ(x1 , x2 )   satisfies the following equation:  

 
∂2θ
∂x1

2 +
∂2θ
∂x2

2 = 0, x1 ∈R, x2 ∈(0, h) , 

and boundary conditions  

 θ(x1, 0) = θ0, θ(x1, h) = θ1, x1 ∈R , 

causing the distribution of temperature  

 θ(x1, x2 ) =
(θ1 − θ0 )x2

h
+ θ0, x1 ∈R, x2 ∈〈0, h〉 . (2) 

It follows from Eqs. (1) and (2) that 

 μ(x1, x2 ) = μ0 (α0 + α1x2 ), α0 = 1− Aθ0, α1 = −
A(θ1 − θ0 )

h
. (3) 

The stress state is described by the nonzero components σ13 and σ23 of the form  

 σ13(x1, x2 ) = μ0 (α0 + α1x2 )
∂u3

∂x1
, σ23(x1, x2 ) = μ0 (α0 + α1x2 )

∂u3

∂x2
.

 

 (4) 

The equilibrium equation in the case of stresses given by relations (4) can be written as  

 
∂2u3

∂x1
2 +

∂2u3

∂x2
2 +

α1

α0 + α1x2

∂u3

∂x2
= 0, x1 ∈R, x2 ∈(0, h) . (5) 
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The boundary conditions have the form  

 σ23(x1, 0) = Pδ(x1), σ23(x1, h) = 0, x1 ∈R , (6) 

where  δ (⋅)   is the Dirac delta function.  We now use the Fourier integral transform [16] with respect to variable  

x1   and denote  

 

 

�u3(s, x2 ) =
1

2π
u3(x1, x2 )e−isx1

− ∞

∞

∫ dx1

 

. 

Thus, it follows from Eq. (5) that  

 
 

d2 �u3(s,x2 )

dx2
2 +

α1

α0 + α1x2

d �u3(s,x2 )

dx2

− s2 �u3(s,x2 ) = 0 . (7) 

The linear ordinary second-order differential equation (7) is reduced to the form 

 

 

d2 �u3

dω2 +
1

ω
d �u3

dω
−

s2

α1
2

�u3 = 0

 

, (8) 

where  

 ω = α0 + α1x2 . (9) 

The general solution of Eq. (8) can be written as [17]  

 
 
�u3(s,ω) = C1J0

iωs

α1

⎛
⎝⎜

⎞
⎠⎟
+ C2Y0

iωs

α1

⎛
⎝⎜

⎞
⎠⎟

 

 (10) 

where  C1   and  C2   are constants and  J0 (x)   and  Y0 (x)   are Bessel functions of the first and the second kind, 

respectively.  In view of relations [8] 

 J0 (ix) = I0 (x), Y0 (ix) = K0 (x), x ∈R , 

where  I0 (⋅)   and  K0 (⋅)   are modified Bessel functions, and relations (9) and (10), the general solution of equa-

tion (7) can be written as follows:  

 
 
�u3(s, x2 ) = C1I0

sω
α1

⎡
⎣⎢

⎤
⎦⎥
+ C2K0

sω
α1

⎡
⎣⎢

⎤
⎦⎥

.

 

 (11) 

The constants  C1   and  C2   are determined from the boundary conditions (6).  By using Eqs. (4), (6), (11) 
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and the following relations [19]: 

 
d

dz
I0 (z) = I1(z),

d

dz
K0 (z) = − K1(z) , (12) 

where  I1(x)   and  K1(x)   are modified Bessel functions, we conclude that a1   and  a2   must satisfy the follow-

ing system of algebraic equations:  

 a1I1
sω*

α1

⎡

⎣
⎢

⎤

⎦
⎥ − a2K1

sω*

α1

⎡

⎣
⎢

⎤

⎦
⎥ = 0, a1I1

sα0

α1

⎛
⎝⎜

⎞
⎠⎟
− a2K1

sα0

α1

⎛
⎝⎜

⎞
⎠⎟
=

P

2πsμ0α0
. (13) 

where  ω* = α0 + α1h . 

In view of Eqs. (13) and (11), by applying the inverse Fourier transformation [16], we rewrite the displace-
ment u3  in the following form:  

 u3(x1, x2 ) = −
P

πα0μ0

1

sW
K1

sω*

α1

⎡

⎣
⎢

⎤

⎦
⎥

⎧
⎨
⎪

⎩⎪0

∞

∫ I0
sω
α1

⎡
⎣⎢

⎤
⎦⎥
+ I1

sω*

α1

⎡

⎣
⎢

⎤

⎦
⎥ K0

sω
α1

⎡
⎣⎢

⎤
⎦⎥
⎫
⎬
⎭

cos (sx1) ds , (14) 

where 

 W = I1
sω*

α1

⎡

⎣
⎢

⎤

⎦
⎥ K1

s

α1
α0

⎛
⎝⎜

⎞
⎠⎟
− K1

sω*

α1

⎡

⎣
⎢

⎤

⎦
⎥ I1

sα0

α1

⎛
⎝⎜

⎞
⎠⎟

.

 

. 

The components of stresses σ13   and  σ23   are computed from relations (4) and (14).  

Substituting (14) in (4), we find  

 σ13(x1, x2 ) =
Pω
πα0

1

W
K1

sω*

α1

⎡

⎣
⎢

⎤

⎦
⎥

⎧
⎨
⎪

⎩⎪0

∞

∫ I0
sω
α1

⎡
⎣⎢

⎤
⎦⎥
+ I1

sω*

α1

⎡

⎣
⎢

⎤

⎦
⎥ K0

sω
α1

⎡
⎣⎢

⎤
⎦⎥
⎫
⎬
⎭

sin (sx1) ds , (15) 

 σ23(x1, x2 ) =
Pω
πα0

1

W
−K1

sω*

α1

⎡

⎣
⎢

⎤

⎦
⎥

⎧
⎨
⎪

⎩⎪0

∞

∫ I1
sω
α1

⎡
⎣⎢

⎤
⎦⎥
+ I1

sω*

α1

⎡

⎣
⎢

⎤

⎦
⎥ K1

sω
α1

⎡
⎣⎢

⎤
⎦⎥
⎫
⎬
⎭

cos (sx1) ds . (16) 

Relations (14)–(16) give the fundamental solution (Green’s function) for the considered problem in the in-
tegral form. 

From the viewpoint of mechanics, it is necessary to study the singularities of stresses at the point of action 
of the concentrated forces.  For this purpose, we analyze the asymptotic behavior of the integrand functions in 
(15) and (16).  



GREEN’S FUNCTION FOR AN ELASTIC LAYER WITH TEMPERATURE-DEPENDENT PROPERTIES 611 

 

Fig. 1. Dimensionless stresses  σ23(
�
x1,

�
x2 )h /P  as a function of the parameter θ1 /θ0  for θ0 = 819°K ,  

�
x1 = 0.0 , and  

�
x2 = 0.1 :  

(1) A = 0.00051K−1 ;  (2) 0.00025 K−1 ; (3)  0.000125 K−1 . 

Singularities of Stresses 

By using relations (see [19])  

 Iν(x) ≈
x→∞

ex

2πx
, Kν(x) ≈

x→∞

π
2x

e−x , I0 (x) ≈
x→0

1, 

 I1(x) ≈
x→0

1

2
x, K1(x) ≈

x→0

1

x
, K0 (x) ≈

x→0
ln

2

x
, (17) 

and Eq.(14), we conclude that  

 W ≈
s→0

α1h(2α0 + α1h)

2α0 (α0 + α1h)
= const, W ≈

s→∞

α1

α0 (α0 + α1h)

sinh (sh)

s
.

 

 (18) 

Denote 

 L0 ≡ K1
sω*

α1

⎡

⎣
⎢

⎤

⎦
⎥ I0

sω
α1

⎡
⎣⎢

⎤
⎦⎥
+ I1

sω*

α1

⎡

⎣
⎢

⎤

⎦
⎥ K0

sω
α1

⎡
⎣⎢

⎤
⎦⎥

, 

 L1 ≡ − K1
sω*

α1

⎡

⎣
⎢

⎤

⎦
⎥ I1

sω
α1

⎡
⎣⎢

⎤
⎦⎥
+ I1

sω*

α1

⎡

⎣
⎢

⎤

⎦
⎥ K1

sω
α1

⎡
⎣⎢

⎤
⎦⎥

. (19) 

Thus, by using (17) and (18) we obtain 
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Fig. 2.  Dimensionless stresses as a function of the parameter  A :  (a) σ23h /P ;  (b) σ13h /P :  θ0 = 819°K , θ1 = 0.5θ0 ,  
�
x2 = 0.25 . 

 
L0

W
≈

s→∞

α0

ω
e−sx2 ,

L1

W
≈

s→∞

α0

ω
e−sx2 .

 

 (20) 

 In view of Eqs. (15), (16), (19), and (20), the singularities of the stress components can be represented in the 
form 

 σ13(x1, x2 ) =
P

π
ω
α0

x1

x1
2 + x2

2 + 0(1), σ23(x1, x2 ) =
P

π
ω
α0

x2

x1
2 + x2

2 + 0(1) . (21) 

 Equation (21) now implies that the order of singularities of the stress components  σ13   and  σ23   is the 

same as in the elastic homogeneous isotropic layer.  However, the difference is observed in the coefficients of 
singularities.  

The integrals in expressions (15) and (16) for the stresses  σ13   and  σ23   can be found numerically.  For 

this purpose, we use the following dimensionless variables:  

 
 

�
x1 =

x1

h
,

�
x2 =

x2

h
,

�
s = sh , 

The physical data taken into account are the same as in [20], where the copper material is investigated.  In 
Fig. 1, we observe the influence of the parameter  A   and the difference between the boundary temperatures  θ0   

and  θ1   on the stresses  σ23 .  The dimensionless stresses  σ23   at the point   
�
x1 = 0.0 ,   

�
x2 = 0.1  as a function 

of the ratio  θ1 /θ0   are presented in Fig. 1 for three values of the parameter  A .  It is easy to see that the compo-

nent of stresses is a linear function of the ratio  θ1 /θ0   and, for  θ1 /θ0 ,  the solutions are reduced to the case of a 

homogeneous body with constant material properties.  

In Fig. 2 the cases  A  = 0  are adequate for the homogeneous elastic body.  Small variations of the stresses  
σ23   with respect to the boundary temperatures near the boundary plane loaded by a concentrated force can be 

observed for the following three values of  A :  A = 0.00051K−1 ,  A = 0.00025 K−1 ,  and  A  = 0. 
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The stresses  σ13   change their sign at   
�
x1 = 0   (the curve representing  σ13   is antisymmetric but the curve 

representing  σ23   is symmetric).  The maximal values of  σ23   are attained at the point of action of the concen-

trated force.  

CONCLUSIONS 

The problem of distribution of stresses in the thermoelastic layer with temperature-dependent properties 
loaded by a concentrated force in the boundary plane is solved under the conditions of antiplane strain state.  It 
is assumed that the shear modulus is a linear function of temperature.  The obtained results for stresses at the 
point of action of the concentrated force are characterized by the singularity of the same order as in the case of 
an isotropic homogeneous body with constant material properties.  The singularities observed for the two men-
tioned materials differ by the singularity coefficients.  Moreover, we can emphasize that, for the case of ordinary 
elasticity (when the shear modulus is constant), the boundary temperatures affect the stresses  σ13   and  σ23 .  In 

the considered problem of the layer with temperature-dependent properties, the temperature is coupled with the 
displacement  u3.  
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