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ELASTIC HALF SPACE WITH LAMINATED COATING OF PERIODIC STRUCTURE 
UNDER THE ACTION OF HERTZ’S PRESSURE 

R. D. Kul’chyts’kyi-Zhyhailo  UDC 539.3 

We consider an axially symmetric problem of the theory of elasticity for a nonuniform half space loaded 
by Hertz’s pressure.  The half space consists of a uniform base and a system of two periodically depos-
ited elastic layers.  The solution of the problem of the theory of elasticity for the nonuniform coating is 
compared with the solution of the problem in which this coating is simulated by a homogenized uniform 
layer. 

Keywords:  stresses, laminated coating of periodic structure, Hertz’s pressure. 

In the mechanics of contact interaction, much attention is now given to coatings used for the improvement 
of the tribological characteristics of friction couples.  Thus, the coatings formed by periodically deposited elastic 
layers are now extensively investigated [7, 8] parallel with the uniform coatings [1–3] and nonuniform coatings 
whose mechanical properties are described by continuous functions of the distance from the surface [4–6].  In 
the analysis of the stressed state, the researchers, as a rule, focus their attention on the evaluation of the tensile 
and Huber–Mises stresses described by the second invariant of the deviator of the stress tensor.  In modeling 
laminated half spaces or coatings with periodic structures, it is customary to use two different approaches.  The 
first of these approaches takes into account the structure and treats the layers as separate elastic media.  The sec-
ond approach is based on the analysis of a homogenized uniform coating whose mechanical properties are de-
termined on the basis of the mechanical and geometric characteristics of the strip of periodicity [9–11].  The so-
lutions obtained for the laminated half space are compared in [12–14].  It is shown that if the ratio of the thick-
ness of the strip of periodicity to the characteristic size of the region of loading is smaller than 0.1, then the non-
uniform half space with periodic structure can be modeled by a homogenized half space.  The analyzed coating, 
unlike the laminated half space, contains finitely many slips of periodicity.  Hence, it is necessary to show how  
these approximations affect the difference between the solutions. 

In the present work, we consider an axially symmetric problem of the theory of elasticity of elastic half 
space with laminated coating of periodic structure loaded by Hertz’s pressure.  Since some components of the 
stress tensor can be noticeably different in different layers of the strip of periodicity, we choose the method of 
homogenization [10–11], which enables us to take this feature into account.  We analyze the difference between 
the vertical displacements of points on the surface of the nonuniform half space and the distributions of tensile 
and Huber–Mises stresses caused by the use of two different models of nonuniform coatings.  

Statement of the Problem 

Suppose that Hertz’s pressure 
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Fig. 1. Schematic diagrams of the problems of the theory of elasticity for half spaces covered with a laminated coating of periodic 
structure (a) or with a stack of layers (b).  

 p(r) = p0 1− r2 , r ≤ 1, (1) 

is applied to a circle of radius  a   on the surface  z = h = H /a   of the nonuniform elastic half space (Fig. 1а).  
Here, r , ψ , and z  are dimensionless cylindrical coordinates (relative to the linear size a )  and H  is the thick-

ness of the coating.  
The nonuniform half space is formed by the homogeneous isotropic half space with Young’s modulus  E0  

and Poisson’s ratio  μ0   and a system of two periodically deposited elastic layers with thicknesses  l1  and  l2  
(l = l1 + l2  is the thickness of the strip of periodicity), Young’s moduli  E1  and  E2,  and Poisson’s ratios  μ1  
and  μ2 ,  respectively.  Assume that the conditions of perfect mechanical contact are realized between the layers 

of the coating and between the coating and the base. 

Homogenized Uniform Coating 

The analyzed problem of the theory of elasticity is reduced to the solution of differential equations [14] 

 Ψ i, rr
(1) + r−1Ψ i,r

(1) + γ i
2Ψ i,zz

(1) = 0, i = 1, 2, (2) 

 d0Δu(0) + grad divu(0) = 0 (3) 

with boundary conditions on the surface of the nonuniform half space 

 σ zz
(1)(r, h) = − p(r)H (1− r), σrz

(1)(r, h) = 0 , (4) 

conditions of perfect mechanical contact between the coating and the uniform half space  

 u(1)(r, 0) = u(0)(r, 0),       σ(1)(r, 0) ⋅ n = σ(0)(r, 0) ⋅ n, (5) 
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and conditions imposed at infinity  

 u( j )(r, z) → 0, r2 + z2 → ∞, j = 1, 2 , (6) 

where  u( j )  is the dimensionless vector of elastic displacements (relative to the parameter  a ),  σ( j )  is the stress 
tensor, the superscript  j = 0  marks the parameters and functions of state in the uniform half space,  j = 1  cor-

responds to the homogenized coating,  Ψ i
(1),  i = 1, 2   are elastic potentials,  γ i ,  i = 1, 2   are the roots of the 

characteristic equation [14],  d0 = 1/(1− 2μ0 ),  H (r)  is the Heaviside function,  n  = (0, 0, 1),  and the sub-

scripts placed after commas denote the derivatives with respect to the corresponding variables.  

We seek the components of the vector of displacements and stress tensor in the coating in the form  

 ur
(1) = Ψ1,r

(1) + Ψ2,r
(1) , uz

(1) = κ1Ψ1,z
(1) + κ2Ψ2,z

(1) ; (7) 

 σrr
(1), k = Kkur,r

(1) + Lkr−1ur
(1) + M kuz,z

(1) , k = 1, 2, (8) 

 σψψ
(1), k = Lkur,r

(1) + Kkr−1ur
(1) + M kuz,z

(1) , k = 1, 2, (9) 

 σ zz
(1) = A3ur,r

(1) + A3r−1ur
(1) + A4uz,z

(1) ,      σrz
(1) = A5 (ur,z

(1) + uz,r
(1) ), (10) 

where  

 Lk = λk − hkλk
[λ]

λ + 2G
, Kk = Lk + 2Gk , M k = λk − hkλk

[λ] + 2[G]

λ + 2G
,     h1 = 1,     h2 = −

l1
l2

, 

λk   and  Gk   are the Lamé coefficients, the subscript  k   corresponds to the number of the layer in the strip of perio-

dicity, and the mechanical constants  A3 ,  A4 ,  A5 ,  κ1,  κ2 ,  [λ],  [G],  λ ,  and  G   can be found by using the 

well-known relations [14].  

Since the algorithm of solution of the analyzed problem is similar to the algorithm presented in [14], we re-
strict ourselves to its brief description.  By applying the Hankel integral transformation to Eqs. (2), (3) and rela-
tions (7)–(10), we find the Hankel transforms of the components of the vector of displacements and stress tensor 
satisfying the boundary conditions (6).  The obtained relations contain six unknown functions of the parameter 
of integral transformation.  To determine these functions, we use the boundary conditions (4) and (5) and arrive 
at a system of six linear algebraic equations.  Since only one equation of this system is nonuniform and its right-
hand side is equal to the Hankel transform of load (1), the solution of the system of equations is proportional to 
this transform.  Returning in these transforms to the space of originals, we arrive at the relationships (in the form 
of integrals) between the displacements and stresses, on the one hand, and the applied load, on the other hand. 
The integrals at internal points of the nonuniform half space  (z < h)  are taken with the help of the Gaussian 

quadrature.  On the surface  z = h ,  we take into account the asymptotic behavior of the solution of the system of 
equations obtained as the parameter of the integral transformation tends to infinity.  The integrals in which the 
integrands are replaced by their asymptotics are taken analytically.  To find the remaining integrals, we apply the 
Gaussian quadrature.  
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Modeling of the Nonuniform Coating by a Stack of Layers 

The layers of the nonuniform coating are enumerated from the bottom upward (starting from the layer in 
immediate contact with the uniform base) (Fig. 1b).  Their mechanical properties are described by Young’s 

moduli  E ( j )   [E (2k ) = E1,  E (2k−1) = E2 ,  k = 1,…, n/2]  and Poisson’s ratios  μ( j )   [μ(2k ) = μ1,  μ(2k−1) = μ2 ,  
k =  1,…, n/2].  Here, the superscript  j   corresponds to the number of layer in the stack and  n   is an even 

number corresponding to the total number of layers in the stack.  The general solution of equations of the theory 
of elasticity in the layers of the stack and in the uniform half space  z ≤ 0   can be found in [6].  By using this 
solution, we arrive at the following relations for the components of the vector of displacements and stress tensor 
in the layers of the stack:  

 
 
uk

( j ) = Uk
( j )(s, z) �p(s)Jk (sr)

0

∞

∫ ds, j = 1, ..., n, k = r, z , (11) 

 
 
σrr

( j ) = Sr1
( j )(s, z) �p(s)J0 (sr)s ds

0

∞

∫ − r−1 Sr2
( j )(s, z) �p(s)J1(sr) ds

0

∞

∫ , j = 1, ..., n , (12) 

 
 
σψψ

( j ) = (Sr1
( j )(s, z) − Sr2

( j )(s, z)) �p(s)J0 (sr) sds
0

∞

∫ + r−1 Sr2
( j )(s, z) �p(s)J1(sr) ds

0

∞

∫ , j = 1, ..., n , (13) 

 
 
σkz

j( ) r, z( ) = − Skz
j( ) s, z( ) �p s( ) Jk sr( ) s

0

∞

∫ ds, j = 1, ..., n, k = r, z , (14) 

 2Uz
( j )(s, z) = Djs ja4 j−3

( p) (s) + Djc ja4 j−2
( p) (s) + 2ss ja4 j−1

( p) (s) + 2sc ja4 j
( p)(s) , 

 2Ur
( j )(s, z) =

G(n)Sr2
( j )(s, z)

G( j ) = 2sc ja4 j−1
( p) (s) + 2ss ja4 j

( p)(s) 

  + ((2 + d j )s j + Djc j )a4 j−3
( p) (s) + ((2 + d j )c j + Djs j )a4 j−2

( p) (s), 

 
G(n)Sr1

( j )(s, z)

G( j ) = 2Ur
( j )(s, z) + (d j − 1)s ja4 j−3

( p) (s) + (d j − 1)c ja4 j−2
( p) (s) , 

 
G(n)Szz

( j )(s, z)

G( j ) = 2Ur
( j )(s, z) − (1+ d j )s ja4 j−3

( p) (s) − (1+ d j )c ja4 j−2
( p) (s) , 

 
G(n)Srz

( j )(s, z)

G( j ) = 2Uz
( j )(s, z) + (1+ d j )c ja4 j−3

( p) (s) + (1+ d j )s ja4 j−2
( p) (s) , 

where   �p(s)  is the Hankel transform of load (1), the functions  ai
( p)(s),  i = −1,…, 4n ,  are the solutions of the 

system of linear algebraic equations  
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 Aij
(2)a j−2

( p)

j=1

4n+2

∑ = δi,4n+1, i = 1, 2, ..., 4n + 2, (15) 

 d =
1

1− 2μ( j ) ,      c j = cosh (s(hj − z)) ,      s j = sinh (s(hj − z)),      Dj = d js(hj − z), 

hj   is the z -coordinate of the point of intersection of the upper plane bounding the layer of the stack with the z -

axis,  G( j ) = E ( j ) /2/(1+ μ( j ) ),  Jr (sr) = J1(sr),  Jz (sr) = J0 (sr) ,  J0 (sr)  and  J1(sr)   are the Bessel functions, 
and  δij   is the Kronecker symbol.  

The nonzero coefficients of system (15) are found by using the well-known relations from [6].  As in the 
previous section, we take integrals (11)–(14) at internal points of the nonuniform half space  (z < h)   with the 

help of the Gaussian quadrature.  On the surface  z = h ,  we take into account the asymptotic behavior of the 

functions  a4n−2
( p) (s)  and  a4n

( p)(s)  as  s → ∞: 

 lim
s→∞

a4n−2
( p) (s) = − (1− 2μ(n) )      and      lim

s→∞
a4n

( p)(s) = − (1− μ(n) ).  

Analysis of the Results 

Estimating the original relations, we conclude that the distributions of displacements and stresses in the 
problem of homogenized coating depend on seven dimensionless parameters: the thickness of the coating h ,  the 
ratios of Young’s moduli  E1 /E0   and  E2 /E0 ,  Poisson’s ratios  μ0 ,  μ1,  and  μ2 ,  and the ratio of the thick-
nesses of layers in the strip of periodicity  l1 /l2.  Similar distributions for the nonuniform coating additionally 

depend on the number of layers in the stack  n .  To decrease the number of input parameters, we assume that the 
mechanical properties of one layer in the strip of periodicity coincide with the mechanical properties of the base 
and that Poisson’s ratios and the thicknesses of all layers in the stack are identical.  We also assume that  μ0  = 
0.25,  E1 /E0  (or E2 /E0) = 2, 4, or 8,  h  = 0.2, 0.4, or 0.8,  and  n  = 10, 20, or 40.  The results of calculations 

demonstrate that  P,  O,  and  Q  (see Fig. 1а) are characteristic points of the analyzed problem.  We compare 
the obtained solutions by using the following parameters: the displacements  uz   at the points  P  and  Q ,  the 
first principal stress  σ1  at the points  P  and  O,  and the second invariant of the deviator of stress tensor  J2  at 

points of the z -axis and at the point  P.  
The values computed for the homogenized coating are presented in the columns marked “hom.” in Table 1.  

In the columns with  n  = 10, 20,  and 40, we present the solutions obtained for the nonuniform coatings with the 
indicated numbers of layers.  The first number in the entries corresponds to the parameters  E1 /E0  = 8  and  
E2 /E0  = 1,  whereas the second number (without brackets) corresponds to  E1 /E0  = 1  and  E2 /E0  = 8.  The 
relative deviations of the displacement  uz (Q)E0 / p0   from the corresponding displacement obtained as a result 

of modeling of the nonuniform coating by the homogenized layer are presented in the parentheses (in %).  We 
see that these values are in good agreement even in the case where the Young’s moduli of the layers in the strip 
of periodicity are strongly different.  If we consider the stacks containing at least ten layers, then the indicated 
deviations depend not on the number of layers but on the ratio  δ   of the thickness of the slip of periodicity to the 
radius of the circle of loading.  For the same values of  δ ,  larger deviations are observed for thicker coatings.  

In finding the stresses, we assume that  E1 /E0  > 1  but  E2 /E0 = 1.  In Figs. 2 and 3, the rhombs mark the 

numerical results obtained for the nonuniform laminated coating, whereas the solid lines correspond to the ho-
mogenized uniform coating.  
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Fig. 2. Distributions of the values of J2  along the z -axis ( ′z = h − z)  for the parameters:  (a) E1 /E0  = 4, h  = 0.2, n  = 20;  (b) E1 /E0  = 
4,  h  = 0.4,  n  = 20;  (c) E1 /E0  = 4,  h  = 0.8,  n  = 20;  (d)  E1 /E0  = 4,  h  = 0.8,  n  = 40;  (e)  E1 /E0  = 2,  h  = 0.4,  n  = 20.  

Table 1.  Dependence of the Displacement  uz   at the Points  Q  and  P  on the Parameter  h  

uz (Q)E0 / p0  uz (P)E0 / p0 
h  

hom. n  = 10 n  = 20 n  = 40 hom. n  = 10 n  = 20 n  = 40 

0.2 –1.3354 
–1.3316 (0.28) 

–1.3398 (–0.33) 

–1.3334 (0.15) 

–1.3375 (0.16) 

–1.3344 (0.08) 

–1.3364 (–0.08) 
–0.7043 

–0.7044 

–0.7043 

–0.7044 

–0.7043 

–0.7044 

–0.7043 

0.4 –1.2306 
–1.2236 (0.57) 

–1.2400 (–0.76) 

–1.2267 (0.32) 

–1.2350 (–0.36) 

–1.2288 (0.15) 

–1.2327 (–0.17) 
–0.6814 

–0.6818 

–0.6815 

–0.6817 

–0.6813 

–0.6816 

–0.6813 

0.8 –1.0747 
–1.0580 (1.55) 

–1.0960 (–1.98) 

–1.0655 (0.86) 

–1.0851 (–1.01) 

–1.0699 (0.45) 

–1.0798 (–0.47) 
–0.6240 

–0.6251 

–0.6250 

–0.6245 

–0.6240 

–0.6243 

–0.6238 

Curves 1 and 2 correspond to the stresses acting in the layers with larger and smaller Young’s moduli, re-
spectively.  It should be emphasized that, in the case of homogenized coating, we do not know which layer of 
the slip of periodicity is located at the analyzed point of the coating.  Hence, the stressed state at every point of 
the coating is described by the two stress tensors given by relations (8)–(10). 
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Fig. 3.  Distribution of the first principal stress along the line  r = 1  ( ′z = h − z);  E1 /E0  = 4,  E2 /E0  = 1,  h  = 0.4,  n  = 40. 

Depending on the analyzed layer in the strip of periodicity, one of the tensors given by these relations corre-
sponds to the stress tensor in the nonuniform coating (see Figs. 2 and 3).  In the uniform base, curves 1 and 2 
coincide.  

Comparing the stresses obtained in both analyzed problems, we conclude that, only in the case of stresses 
acting in the uniform base, we get deviations comparable with the deviations of displacements.  In the layers of 
the coating, the deviations of stresses vary from  1–5%  (E1 /E0  ≤ 4,  n  = 20)  up to 10–20% for the stresses  σ1  

acting on the boundary of the region of loading.  The indicated deviations strongly depend on the gradient of the 
analyzed parameter in the investigated layer of the slip of periodicity, which explains the following observa-
tions: in the layers with lower Young’s modulus, the deviations are much smaller (Figs. 2 and 3) and the maxi-
mum deviations are observed at the point  P  (Figs. 1а and 3).  As could be expected, the agreement between the 
solutions improves as the number of layers in the coating increases (Fig. 2d) or the ratio of the Young’s moduli 
of layers in the slip of periodicity decreases (Fig. 2e). 

By analogy with the case of uniform half space, the principal stress  σ1  is positive near the points of the un-

loaded surface  (z = h ,  r ≥ 1).  Its highest value in this domain is attained at the point  P.  Tensile stresses may 
appear in the layers with higher Young’s modulus on the interface of the coating and the base.  The highest 
value of these stresses is attained at the point  O.  As a rule, the tensile stresses at the point  P  are higher than at 
the point O.  However, as the parameter  E1 /E0  and the thickness of the coating increase, the global maximum 

may appear at the point  O .  
The distribution of the parameter  J2  in the layers with higher Young’s modulus is characterized by the 

presence of three local maxima at the points  P,  Q,  and  O.  With the exception of thin coatings with signifi-
cant difference between Young’s moduli  (h  = 0.2,  E1 /E0  = 4),  the global maximum is attained on the bound-

ary of the coating and the base.  

CONCLUSIONS 

It is shown that the solution of the axially symmetric problem of the theory of elasticity for the elastic half 
space with laminated coating of periodic structure loaded by Hertz’s pressure is in good agreement with the so-
lution of the problem in which the coating is modeled by a homogenized uniform layer.  The smallest deviations 
are obtained in finding the displacements and stresses in the uniform base.  This is a strong argument in favor of 
the application of the method of homogenization for the evaluation of the actual contact pressure in the problems 
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of indentation of punches into nonuniform half spaces of this sort.  Although the deviations of stresses in the 
coating are much higher than the deviations of displacements, we observe very good qualitative agreement of the 
solutions.  Except the boundary of the region of loading, where it is necessary to perform additional calculations 
with regard for the structure of the coating, the stresses obtained for the homogenized coating can be used to es-
timate the strength of laminated coatings with periodic structure.  

The character of distributions of the first principal stress and the Huber–Mises stresses is the same as for the 
uniform half space covered with a uniform layer with different mechanical characteristics.  

This present work was carried out according to the Project S/WM/2/2008 realized at the Politechnika Biało-
stocka and financed by the Polish Committee of Scientific Research.  
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