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DEFORMATION AND FRACTURE OF MATERIALS NEAR SPHEROIDAL INCLUSIONS 

V. P. Sylovanyuk,1  R. Ya. Yukhym,1,2  and  P. V. Horbach1 UDC 539.3 

We have proposed a model of the deformation and fracture of an elastoplastic body with an elastic sphe-
roidal inclusion.  The problem has been reduced to the solution of an integro-differential equation, and 
its numeral solution has been obtained by the method of mechanical quadratures.  Using the strain crite-
rion of crack initiation in the neighborhood of an inclusion, we have established the main parameters af-
fecting local fracture.  The results of investigations are presented in the form of plots. 
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The strength of solids depends on the specific features of material structure and the presence of defects in it.  
Foreign inclusions and cavities induce stress concentration in materials.  In the present work, based on the strain 
criterion of strength, we study the features of deformation and fracture of elastoplastic bodies in the neighbor-
hood of elastic spheroidal inclusions. 

Formulation of the Problem 

Consider uniaxial tension of an infinite elastoplastic body, containing a thin elastic inclusion in the plane 
normal to the load axis.  We assume that the inclusion surface is a surface of revolution symmetric with respect 
to the plane  z = 0   (Fig. 1). 

With increase in the load, a zone is formed near the inclusion where the material is deformed beyond the limits 
of elasticity.  We mentally cut out the inclusion and prefracture zone, adjoining it, from the body.  Their action on 
the base material is replaced, in view of the small thickness of the inclusion and prefracture zone and the smooth-
ness of their surfaces, by certain stresses on the cavity surface.  In the region of contact of the materials of the in-
clusion and matrix, we represent the stresses according to the model of a compliant inclusion [1] 

 � z (r) =
[uz

*(r)]

2h(r)
E1 ,      �rz = 0  (1) 

and, at the boundary between inelastically and elastically deformed materials, take them constant and equal to  
�T : 

 � z = �T , �rz = 0 . (2) 

Here,  2h(r)   is the inclusion thickness,  [uz
*(r)]   is the displacement jump of points of the inclusion surface, 

and  E1   is the Young’s modulus of the material. 
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Fig. 1. Schematic illustration of the section of a body with a spheroidal inclusion and prefracture zones by the planes  � = 0   (a) and  
z = 0   (b). 

Since the thickness of the formed cavity is small, we may carry boundary conditions from the surface to 
median plane  (z = 0) .  As a result, we reduce the axially symmetric problem of tension of an infinite body with 
a thin inclusion to the solution of the following boundary-value problem for a circular cut of diameter  2(a + R) : 

 � zz =
� p +

[uz
*]

2h r( ) E1, 0 � r � a,

� p + �T , a � r � a + R,

�

�
�

�
�

 

 uz = 0, a + R < r < � , (3) 

 �rz = 0, 0 � r < � . 

In axially symmetric problems, the displacements and stresses are usually expressed via two harmonic func-
tions  �   and  � : 

 2μur = �
��
�r

� z
��
�r

, 2μuz = �� �
��
�z

� z
��
�z

, (4) 

 � z = 2(1� �)
��
�z

�
�2�
�z2 � z

�2�
�z2 , 

 �rz =
�
�r

(1� �)� �
��
�z

� z
��
�z

�
	


�
�

, (5) 

 � = 3 � 4�, μ =
2(1+ �)

E
, 

where  �   and  E   are the Poisson’s ratio and Young’s modulus of the base material. 
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The functions  �   and  �   can be represented by the Hankel integral expansions: 

 � = A1(�)e��zJ0 (�r)
d�
�

,
0

�

� � = A2 (�)e��zJ0 (�r) d�
0

�

� , (6) 

where  A1(�)   and  A2 (�)   are unknown functions.  Using the condition of absence of tangential stresses in the 

plane  z = 0 ,  we can establish the relation between the functions  A1(�)   and  A2(�) : 

 A2 (�) = �
A1(�)

1� �
. 

Then, in view of expressions (5) and (6), we obtain from two first conditions (3) a system of paired integral 
equations 

 � �A1(�)
0

�

� J0 (�r) d� =
� p +

[uz
*]

2h(r)
E1, 0 � r � a,

� p + �T , a � r � a + R,

�

	



�



 

 
1� �
μ

A1(�)
0

�

� J0 (�r) d� = 0, a + R � r < � . (7) 

Further, we differentiate the second of Eqs. (7) with respect to  r   and introduce the following notation of 
unknown displacements  uz (r)   of the cut surface on the segment  0 < r < a + R : 

 
1� �
μ

A1(�)
0

�

� J1(�r) �d� =
�uz (r)

�z z=0
= �uz (r), 0 < r < a + R , 

   (8) 

 
1� �
μ

A1(�)
0

�

� J1(�r) �d� = 0, a + R < r < � . 

Applying the inverse Hankel transformation to relations (8), we obtain from the first equation (7) after cer-
tain calculations an integro-differential equation in unknown displacements of the cut surface  ( z = 0 ,  
0 < r < a + R ): 

 
2

�
K (r, t)

0

a+R

� �uz (t) dt =
1� �
μ

� p +
[uz

*(r)]

2h(r)
E1, 0 � r � a,

� p + �T , a � r � a + R,

�

	



�



 (9) 

where 
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r
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��

	
�
 +

r2

t 2 � r2 E
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r
�
��

	
�
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t
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r
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 (10) 

Here, K (t /r)   and  E(t /r)   are the first- and second-kind complete elliptic integrals.  We assume that  

uz
*(r) � uz (r) + uz

0(r) ,  uz
0 (r) = ph(r)/E   is the displacement of points of the inclusion surface in a homogene-

ous (without inclusions) body under the action of external forces  p . 

Redefining the function  �uz   on the segment  � a � R < r < 0   and introducing dimensionless variables 

 � =
t

a + R
, � =

r

a + R
, 

we may write Eq. (9) in the form 

1

�
K1(�, �)

�uz ((a + R)�) d�
� � ��1

1

� =
1� �
μ

� p + p� + �
uz((a + R)�)
h((a + R)�)

E1
	

�

�
��

H
a

a + R
� �	


�
�
��

�

�
�  

 + �T H � �
a

a + R
�
��

�
�	


��

, �  1,  (11) 
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 (12) 

where  H (�)   is the Heaviside function, and  � = E1 /E . 

We establish the size of prefracture zones  R   near the inclusion, as in the  �c -model [2], from the condi-

tion of boundedness of the stresses at the cut edges.  The singular integro-differential equation is solved by the 
method of Gauss–Chebyshev quadrature formulas (see, e.g., [3]).  According to relation (1), we determine the 
strain in the inclusion as 

 �z
* =

[uz
*(r)]

2h(r)
. (13) 

In particular, at points close to the inclusion tip  (r � a) ,  this relation can be written in the form 

 �z
* �

[uz
*(a)]

2�
, (14) 

where  �   is the curvature radius of the inclusion tip. 
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Fig. 2. Dependence of  the size of prefracture zone near an inclusion on the load intensity (a) and inclusion rigidity (b) (dashed lines 
show the results of solution of the plane problem of tension of a body with an elliptic inclusion [4], and solid lines correspond to 
the solution of three-dimensional problem). 

 

Fig. 3. The critical load of a body with an inclusion vs. the inclusion rigidity (a) and thickness (b)  (E�c /� 0 = 10)   (for explanation, 

see Fig. 2). 

Using the condition of compatibility of strains of the inclusion and matrix at the point  x = a   (�z
* = �z ) ,  

we establish the maximal strain near the inclusion: 

 �z
max =

[uz
*(a)]

2�
. (15) 

The solution of Eq. (11) enables us to determine the sizes of prefracture zones  (R/a)   near a spheroidal inclu-

sion with semiaxes  a   and  b   (a > b)   (Fig. 2).  We have established (Fig. 2�) that smaller prefracture zones are 

formed in the neighborhood of a spheroidal inclusion than near a cylindrical elliptic one (plane problem), the 
load intensities and curvature radii of inclusions being equal. 

The influence of rigidity of the inclusion material on the size of prefracture zones in its neighborhood for 
fixed external load is illustrated in Fig. 2b.  We see that, with increase in Young’s modulus of the inclusion ma-
terial, the sizes of prefracture zones in its neighborhood decrease. 

To establish the critical load  pc ,  when a crack is initiated in the neighborhood of a spheroidal inclusion, 

we use the strain criterion of strength, according to which  local fracture takes place when the maximal tensile 
strain reaches its ultimate level  �c : 

 �max =
[uz

*(a)]

2�
= �c . (16) 
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Fig. 4.  Influence of the ultimate strain of materials on the critical load of a body with an inclusion (for explanation, see Fig. 2). 

We assume that the deformability and strength of the inclusion and its adhesion with the base material are 
sufficient for initial fracture to occur in the matrix near the inclusion.  In Figs. 3 and 4, we show the influence of 
geometrical and elastic parameters of the inclusion on the critical load. 

CONCLUSIONS 

The strain in the neighborhood of a spheroidal inclusion in an elastic isotropic body under uniaxial tension 
depends on the intensity of applied loads  (p) ,  the characteristic size of the inclusion  (a) ,  its thickness  

[h(r)] ,  and the mechanical properties of materials  ( E ,  Ei ,  and  �T ).  As to fracture, through plate-like inclu-

sions are more dangerous as compared with internal spheroidal.  The difference between the solutions of plane 
and three-dimensional problems of this type can reach 30%. 
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