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Abstract Mixture regression models are an important method for uncovering
unobserved heterogeneity. A fundamental challenge in their application relates
to the identification of the appropriate number of segments to retain from the
data. Prior research has provided several simulation studies that compare the
performance of different segment retention criteria. Although collinearity be-
tween the predictor variables is a common phenomenon in regression models,
its effect on the performance of these criteria has not been analyzed thus far.
We address this gap in research by examining the performance of segment
retention criteria in mixture regression models characterized by systematically
increased collinearity levels. The results have fundamental implications and
provide guidance for using mixture regression models in empirical (marketing)
studies.
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1 Introduction

When researchers use regression models, they typically assume that the regression
coefficients are constant and that the same regression equation can satisfactorily describe
all the population members. More often than not, this assumption of homogeneous data
structures does not hold (Wedel et al. 1999). If not addressed adequately, heterogeneity
leads to inaccurate results and inappropriate conclusions (Jedidi et al. 1997). To account
for heterogeneity, researchers usually rely on observable characteristics, which allow for
partitioning data into subsets, or they introduce interaction terms to consider group-
related effects. However, in the light of the manifold limitations of those ap-
proaches—especially in the context of model-based clustering (Wedel and
Kamakura 2000; Jedidi et al. 1997)—research interest during the last decade
has been devoted to uncovering unobserved heterogeneity. Numerous re-
searchers emphasize the importance of accounting for unobserved heterogeneity
and call for a routine application of appropriate analysis techniques (e.g.,
Hutchinson et al. 2000; Grewal et al. 2010).

In this context, mixture regression models have gained increasing prominence. They
help researchers uncover and treat unobserved heterogeneity and decide on a suitable
number of segments to retain from the data. This method clusters observations of a pre-
determined number of segments, while simultaneously estimating the parameters, thus
avoiding well-known biases, which occur when segment-specific models are evaluated
independently (e.g., DeSarbo and Cron 1988; McLachlan and Peel 2000). Not surpris-
ingly, studies using mixture regression models are abundant in marketing research and
other business disciplines (Andrews et al. 2007; Grewal et al. 2008; Mantrala et al. 2007).
The increasing dissemination of finite mixture conjoint models (Andrews et al. 2002a, b;
Jagpal et al. 2007) and the finite mixture partial least squares approach (Hahn et al. 2002;
Sarstedt and Ringle 2010), both of which are based on the mixture regression concept, has
further bolstered their popularity. With recent research supporting mixture regression
models’ ability to reveal segmentation structures in markets and the nature of regression
relationships in segments (Andrews et al. 2010), their importance for empirical research is
expected to further increase.

In the application of mixture regression models, a fundamental challenge is the
selection of the number of segments to retain from the data. A priori, this number is
unknown in most empirical applications, but has a substantial effect on results’ inter-
pretation. A misspecified number of segments results in under- or oversegmentation,
which easily leads to inaccurate management decisions regarding, for example, custom-
er targeting, product positioning, or determining the optimal marketing mix (Andrews
and Currim 2003a). Specifically, if managers underestimate the number of customer
segments in a market, they fail to identify distinct segments. If certain segments, such as
lucrative niches, are ignored, companies maymiss the opportunity to gain revenues from
these customers due to their inability to address them separately and to satisfy their
varying needs more precisely (Boone and Roehm 2002). In contrast, oversegmentation
is likely to cause specific marketing activities that target non-relevant segments,
resulting in a misallocation of resources. Given that companies spend considerable
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sums developing and targeting market segments, the costs of overestimating the appro-
priate number of segments can be substantial.

In order to determine the number of segments to retain from the data, researchers can
use a broad range of segment retention criteria (i.e., information and classification
criteria) to compare different segmentation solutions in terms of their model fit (based
on likelihood or entropy measures; Claeskens and Hart 2009; Hawkins et al. 2001).
Previous research has provided simulation studies that compare the efficacy of different
segment retention criteria to identify a pre-specified number of segments in different
situations that could potentially affect the criteria’s performance (e.g., Hawkins et al.
2001). In this line of research, Andrews and Currim (2003b) provide the most compre-
hensive study by investigating the performance of seven segment retention criteria.
Their results reveal that researchers should revert to AIC3 (Akaike’s Information
Criterion with a penalty factor of 3; Bozdogan 1994), as it yields the highest success
rate and only a minor underfitting across a wide variety of data constellations.

A key aspect that neither Andrews and Currim (2003b) nor other studies in this research
stream (e.g., Hawkins et al. 2001; Sarstedt 2008) have considered is how collinearity affects
the retention criteria’s performance. Researchers working with regression-based marketing
models usually face situations with collinearity between two or more predictor variables.
Collinearity leads to analytical problems such as unstable estimates of the regression
coefficients and inflated standard errors (Mason and Perreault 1991; Ofir and Khuri
1986). Mixture regression models intensify these collinearity effects, since estimating the
regression model in each segment relies on fewer observations than estimating it at the
aggregate data level (DeSarbo et al. 2004). However, collinearity not only affects themixture
regression coefficients and the estimates’standard errors—a characteristic that is problematic
in studies that aim at identifying segment structures—but also the likelihood of the model
and the observations’ probabilities of segment membership, because collinearity between
the predictor variables masks some of the population heterogeneity (DeSarbo et al. 2004).
Since information criteria primarily build on the model’s likelihood values, increased levels
of collinearity negatively affect their ability to determine the underlying number of segments.
The same holds true for classification criteria that primarily rely on the entropy, which is a
function of the segment membership probabilities (McLachlan and Peel 2000).
Consequently, in the presence of collinearity, segment retention criteria are likely to
misspecify the number of segments, fostering inaccurate management implications.

Against this background, we provide the first study on the effect of collinearity inmixture
regressionmodels. Specifically, we analyze several segment retention criteria and the impact
that increased collinearity levels between the predictor variables have on their performance.
The results show that collinearity has a substantial impact on the segment retention criteria’s
performance and identify four particularly well-performing criteria, as well as a critical level
of collinearity for their effective application. Our study’s findings contribute to the knowl-
edge of mixture regression models and their application in the presence of collinearity levels
that marketing researchers and practitioners are likely to encounter in empirical applications.

2 Study and simulation design

Reverting to prior studies (e.g., Claeskens and Hart 2009; Hawkins et al. 2001) allows
us to identify and select nine information criteria (i.e., AIC, AIC3, AIC4, BIC, CAIC,
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HQ, ICOMP, MDL2, and MDL5) and eight classification criteria (i.e., AWE, CLC, EN,
ICL-BIC, PC, PE, NFI, and NEC) to decide on the number of segments in mixture
regression models.1 To evaluate their performance, we systematically manipulate seven
data characteristics (i.e., factors) on different levels. The selection of factors and factor
levels draws primarily on Andrews and Currim’s (2003b) seminal study on the
performance of segment retention criteria. Specifically, we consider the following
factors and levels: number of segments [2; 3; 4], sample size [5×100; 10×100;
5×300; 10×300], 2 explained variance R2 [40 %; 60 %; 80 %], mean separation
between (standardized) segment-specific coefficients [0.2; 0.3; 0.4], 3 and relative
segment size [balanced; unbalanced; very unbalanced]. 4 In line with Mason and
Perreault’s (1991) seminal study on the effects of collinearity in regular regression
models, we consider four continuous predictor variables and one dependent variable.

Most importantly, our research considers the effects of collinearity between the
predictor variables on the segmentation outcome. We generate data with different
collinearity levels, following Mason and Perreault’s (1991) study on regular regression
models and Grewal et al.’s (2004) study on structural equation models. To summarize
these authors’ approaches, data is generated on the basis of a pre-specified correlation
matrix of the four independent variables in the regression model. The higher the
correlation between the independent variables, the more severe the presence of collin-
earity (Kim et al. 2013). In line with Mason and Perreault (1991), we use the variance
inflation factor (VIF) to characterize the level of collinearity. Our study considers the
situation without collinearity and eight levels of collinearity, representing levels that
marketing researchers and practitioners regularly encounter in (mixture) regression
studies. In particular, the pre-specified correlation matrices of these nine situations,
which we use for data generation, result in VIF values of [1.00; 1.35; 1.80; 2.40; 3.00;
3.80; 5.50; 7.30; 10.70].5

In addition, we consider whether the segments exhibit the same correlation matrix in
terms of the independent variables or not. Usually, heterogeneity between segments is
represented in terms of the regression coefficients’ heterogeneity and, therefore, in
terms of different correlations between the independent and the dependent variables.
However, heterogeneity can also occur in the correlations between the independent
variables, thus resulting in different correlation matrices across segments in terms of the
independent variables. This situation is not unlikely, because the entire covariance
matrix between all the variables can be segment-specific and not only the covariance

1 For the mathematical specification of the criteria, see Table A1 in the Online Supplement of this paper.
2 These factor levels combine Andrews and Currim’s (2003b) two factors “number of individuals” (100 or
300) and “number of observations per individual” (5 or 10).
3 Note that prior studies used unstandardized mean separations with a random distribution of coefficients,
which makes a full replication impossible as detailed information on the specified variances is missing.
4 The balanced factor level involves equally sized segments, while the unbalanced factor levels characterize
the existence of one segment that is considerably larger than the other segments. Specifically, the unbalanced
segments exhibit the following relative sizes: 65 %/35 % (unbalanced) and 80 %/20 % (very unbalanced) in a
situation with two segments, 50 %/25 %/25 % (unbalanced) and 66.66 %/16.66 %/16.66 % (very unbalanced)
in the case of three segments, and 40 %/20 %/20 %/20 % (unbalanced) and 55 %/15 %/15 %/15 % (very
unbalanced) in the case of four segments.
5 For the correlation matrices, see Table A2 in the Online Supplement of this paper.
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between the dependent and the independent variables (Marcoulides et al. 2012). To
account for this phenomenon, we distinguish between two situations: consistent versus
inconsistent between-segment correlation matrices [consistent; inconsistent]. In the first
condition, the correlation matrix is the same across all segments, independently of the
true segment differences. Thus, the independent variables (e.g., X1 and X2) always
exhibit the same correlation in all the segments that depend on the collinearity level. In
contrast, in the second condition, the correlation matrix differs across segments,
because it is aligned with the pre-specified, segment-specific differences; consequently,
high correlations occur between those variables that separate the segments more
strongly. Hence, two specific independent variables (e.g., X1 and X2) could have a high
correlation in one segment and a low correlation in another. Even though we use the
same level of collinearity (i.e., the same correlation pattern, but assigned to different
independent variables) in both situations (i.e., consistent and inconsistent), we expect
that it is more difficult to identify the segments in the second condition, leading to a
decline in performance of the segment retention criteria.6

The full factorial design of the study results in 2×34×4×9=5,832 different
combinations of the design factors. We created a program with the statistical software
R (R Core Team 2014) to generate sets of data for the pre-specified factor levels. To
analyze the simulated data, we use the R package FlexMix (Grün and Leisch 2008),
which uses an expectation-maximizatio (EM) algorithm to solve the maximum likeli-
hood estimation. To ensure the robustness of the results, 30 datasets per factor
combination are generated and analyzed. Moreover, since the EM algorithm does not
always converge to the global optimum, we select the best log-likelihood result of ten
FlexMix runs with different starting values per dataset (Wedel and Kamakura 2000).

3 Results

3.1 Performance of segment retention criteria

Table 1 shows the average success (S), the underestimation (U), and overestimation (O)
rates of the information and classification criteria. According to these results, AIC4, for
example, identifies the correct number of segments in 82 % of all simulation runs
where the number of segments is held constant at S=2 (Factor 1) and all the other
factors are varied according to the factor levels described above. Similarly, at this factor
level, AIC4 underestimates (overestimates) the correct number of segments in 11 %
(6 %)7 of all simulation runs.

Overall, our results are similar to those of Andrews and Currim (2003b) when no
collinearity is present (i.e., VIF=1.0). For instance, Andrews and Currim (2003b) find
that AIC identifies the pre-specified number of segments in 59 % of the cases, while it
underestimates (overestimates) this number in 10 % (30 %) of the cases. These results
compare well with ours, where AIC’s success rates, as well as its under- and

6 For an illustration of the difference between consistent and inconsistent correlation matrices between
segments, see Table A3 in the Online Supplement of this paper.
7 Note that the numbers do not always add to 100 % because of rounding inaccuracies. The more precise
numbers of 82.38, 11.21, and 6.41 % add to 100 %.
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overestimation rates, are 52, 3, and 44 % when no collinearity is present. More
pronounced differences can be observed regarding Bayesian information criterion
(BIC) and consistent Akaike information criterion (CAIC).

Taking the full range of design factors into account, the results show that AIC3, AIC4,
HQ, and ICOMP are the best-performing criteria with overall success rates of 57 to
58%.With regard to deviations from the pre-specified number of segments, information
complexity criterion (ICOMP) exhibits both over- and underestimation tendencies,
whereas AIC3, AIC4, and HQ (Hannan-Quinn criterion) show clear underestimation
tendencies. AIC, BIC, and CAIC achieve success rates of between 43 and 47%,whereas
all the other criteria have overall success rates of only 38 % and lower (Table 1).

The classification criteria that do not allow for computing a one-segment solution (i.e.,
NEC, PE, EN, NFI, and PC) also achieve relatively high overall success rates regarding two
groups, which is not surprising, as no underestimation is possible in this situation. However,
the success rates of these criteria regarding three and four groups decline strongly, regardless
of the other data characteristics. Hence, it is usually not advisable to apply these criteria in
mixture regression model analyses to determine the number of segments.

In the following, we will focus our analysis of the collinearity effects on the best-
performing information and classification criteria in this study; that is, AIC3, AIC4,
ICOMP, and HQ. Our study reveals two major results. First, the segment retention
criteria’s overall performance declines significantly at higher levels of collinearity.
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Fig. 1 Success rates for different levels of collinearity and consistent vs. inconsistent correlation matrix (four
best-performing Criteria)
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Second, higher levels of collinearity substantially increase the criteria’s underestimation
rates, while their overestimation rates generally remain unaffected.

On average, the success rates of the best-performing criteria (i.e., AIC3, AIC4, ICOMP,
and HQ) decrease by 21, 32, and 47 percentage points when the VIF increases from 1.0 to
low (VIF=2.4), intermediate (VIF=3.8), and large (VIF=10.7) values. While the success
rates of AIC3 and ICOMP decrease by 44 and 45 percentage points, those of AIC4 and HQ
even decline by 50 percentage points. These declines in the success rates go hand in hand
with pronounced increases in the criteria’s underestimation tendencies. Thus, when collin-
earity is present, the criteria offer only limited guidance in terms of clearly pinpointing the
number of segments to extract; instead, their underestimation tendency should be taken as
evidence of a higher number of segments than actually indicated.

In addition, we also analyze the effect of inconsistent versus consistent correlation
matrices across segments.When correlation matrices are inconsistent across segments, the
segment retention criteria’s ability to correctly detect the pre-specified number of segments
is considerably reduced. On average, the success rate of the best-performing criteria (i.e.,
AIC3, AIC4, HQ, and ICOMP) declines by 18 percentage points when the correlation
matrix is inconsistent instead of consistent across segments (Table 1).

Moreover, we find a strong interaction effect between collinearity and the consistency of
the correlation matrix across segments (Fig. 1). Correlation matrices that are inconsistent
across segments reinforce collinearity’s negative effect on the success rates, while correlation
matrices that are consistent across segments only moderately affect the success rates. A
possible explanation for collinearity’s strong effect in situations with inconsistent correlation
matrices across segments might be that these models have not been properly identified
(Hennig 2000). One of the identification conditions for mixture regression models requires
the independent variable matrix in each segment to not be singular (DeSarbo et al. 2007).
Moreover, the predictor variables should not be collinear but should also be prevented from
being too close to collinearity to derive consistent estimates (Hennig 2000).

To shed further light on the simulation design factors’ effects on the criteria’s perfor-
mance, we meta-analyzed the results of the four best-performing criteria (AIC3, AIC4,
ICOMP, and HQ) by fitting multinomial logistic regression models to the success data.
We coded the dependent variable as −1 if the criterion underestimated the correct number of
segments, 0 if the criterion identified the correct number of segments (reference category),
and 1 if the criterion overestimated the correct number of segments.We confirmed the above
results as increasing the number of segments, or the level of collinearity, significantly
increases the log-odds of underestimating the correct number of segments, while increasing
the sample size, the explained variance, or the mean separation between segment-specific
coefficients, significantly reduces the log-odds of underestimating the correct number of
segments. Moreover, an inconsistent correlation matrix across segments significantly in-
creases the log-odds of underestimating the correct number of segments.8

3.2 Quality of correctly extracted segments

The next step of the analysis involves assessing the clustering accuracy of the identified
segments.9 A well-known criterion for this purpose is the adjusted Rand index (ARI;

8 For detailed results, see Table A4 in the Online Supplement of this paper.
9 We thank an anonymous reviewer for this suggestion.
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Hubert and Arabi 1985), which depicts the similarity between the clustering of the
identified segments and the pre-specified groups. An ARI value of 0 indicates the
expected value of random (uniform) clustering solutions, whereas an ARI value close
to its maximum value of 1 indicates that the segmentation solution substantially
matches the expected data grouping, and thus has a high clustering accuracy (Hubert
and Arabi 1985).

Table 2 shows the average ARI values of the four best-performing segment retention
criteria and all the factor levels analyzed in this study.10 We computed ARI values for
(1) the number of segments that each segment retention criterion indicated and (2) for

10 For the complete table with all criteria’s results, see Table A5 in the Online Supplement of this paper.

Table 2 Adjusted rand index for the four best-performing criteria

Pre-specified AIC3 AIC4 ICOMP HQ

Groups 2 0.631 0.602 0.608 0.596 0.609

3 0.460 0.453 0.448 0.446 0.450

4 0.366 0.359 0.351 0.354 0.353

Sample size 5×100 0.360 0.339 0.330 0.331 0.334

10×100 0.583 0.572 0.567 0.564 0.569

5×300 0.392 0.379 0.380 0.373 0.380

10×300 0.609 0.595 0.598 0.594 0.598

Relative segment size Balanced 0.476 0.456 0.455 0.452 0.456

Unbalanced 0.482 0.466 0.464 0.461 0.466

Very unbalanced 0.500 0.491 0.487 0.483 0.489

Mean separation 0.20 0.288 0.270 0.259 0.264 0.262

0.30 0.510 0.496 0.494 0.491 0.496

0.40 0.660 0.647 0.653 0.641 0.653

R2 0.40 0.346 0.330 0.323 0.321 0.325

0.60 0.461 0.447 0.443 0.439 0.445

0.80 0.650 0.636 0.640 0.636 0.641

VIF 1.00 0.669 0.657 0.655 0.654 0.656

1.35 0.608 0.594 0.590 0.590 0.592

1.80 0.558 0.543 0.540 0.537 0.542

2.40 0.513 0.497 0.495 0.491 0.497

3.00 0.478 0.460 0.458 0.453 0.460

3.80 0.443 0.425 0.423 0.418 0.424

5.50 0.402 0.386 0.385 0.379 0.386

7.30 0.369 0.355 0.353 0.348 0.354

10.70 0.333 0.322 0.320 0.317 0.321

Correlation matrix Consistent 0.568 0.559 0.555 0.554 0.556

Inconsistent 0.403 0.383 0.383 0.376 0.385

Overall 0.486 0.471 0.469 0.465 0.470

Italic is the column with the pre-specified number of groups
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the pre-specified number of segments. The ARI values of the pre-specified number of
segments serve as benchmarks for the criteria’s ARI values, as this value would result if
the correct number of segments were chosen. Analogous to the success rates, AIC3,
AIC4, ICOMP, and HQ show the best overall performance with ARI values between
0.465 and 0.471, which are close to the benchmark value of 0.486.

Our analyses show that those factors that negatively affect the success rates of the
segment retention criteria also negatively affect their ARI values. Most notably, we find
that at higher levels of collinearity, the ARI declines considerably. For example, the
ARI value of AIC3 declines from 0.657 in situations without collinearity (VIF=1.0) to
0.322 in situations with very high collinearity (VIF=10.7). On average, the ARI values
of the best-performing criteria (i.e., AIC3, AIC4, ICOMP, and HQ) show an overall
decline (i.e., the difference between the situation without collinearity and the highest

Table 3 Parameter recovery accuracy

ME MAE RMSE

Groups 2 −0.0027 0.051 0.065

3 −0.0019 0.080 0.107

4 −0.0016 0.105 0.145

Sample Size 5×100 −0.0025 0.122 0.166

10×100 −0.0013 0.065 0.088

5×300 −0.0028 0.083 0.111

10×300 −0.0016 0.044 0.059

Relative Segment Size Balanced −0.0020 0.073 0.097

Unbalanced −0.0019 0.076 0.103

Very unbalanced −0.0023 0.086 0.118

Mean Separation 0.20 −0.0020 0.097 0.130

0.30 −0.0020 0.077 0.104

0.40 −0.0023 0.060 0.083

R2 0.40 −0.0029 0.113 0.151

0.60 −0.0021 0.081 0.109

0.80 −0.0012 0.042 0.058

VIF 1.00 −0.0001 0.027 0.035

1.35 −0.0022 0.039 0.051

1.80 −0.0025 0.051 0.067

2.40 −0.0023 0.064 0.084

3.00 −0.0022 0.075 0.099

3.80 −0.0023 0.087 0.117

5.50 −0.0024 0.104 0.141

7.30 −0.0025 0.119 0.163

10.70 −0.0022 0.140 0.194

Correlation Matrix Consistent 0.0000 0.059 0.083

Inconsistent −0.0042 0.098 0.129

Overall -0.0020 0.078 0.106
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collinearity level) of 0.336. Furthermore, settings with inconsistent correlation matrices
entail considerably lower ARI values.

However, collinearity also affects the benchmark ARI values that one would obtain
if the correct pre-specified number of segments were chosen. This result implies that
even if one identified the correct number of segments, the collinearity between the
predictors would negatively influence the mixture regression results. Hence, collinear-
ity not only influences the segment retention negatively, but also the quality of the
mixture regression results in general.

We also ran separate ANCOVAs for each of the four best-performing criteria, using
the ARI values as dependent variables. The analysis results are highly consistent
regarding AIC3, AIC4, ICOMP, and HQ, showing that all factors have a significant
impact on the ARI.11 Moreover, the vast majority of the two-way interaction effects
between the factors are also significant (p≤0.01), but of minor relevance (based on their
partial η2, which is generally below 0.05), with the exception of the interaction between
the number of segments and the consistent vs. inconsistent correlation matrix, which
has a partial η2 of around 0.065 as well as VIF and the consistent vs. inconsistent
correlation matrix, which has a partial η2 of around 0.17. This result further illustrates
the importance of the interaction between the level of collinearity and the consistency
of the correlation matrix between segments, which we also show in Fig. 1.

3.3 Parameter recovery

To further investigate the effect of collinearity on the mixture regression results, we
examine the parameter recovery errors that collinearity induces by comparing the
estimated mixture regression coefficients with their pre-specified values. Table 3 shows
the mean error (ME), mean absolute error (MAE), and root mean squared error
(RMSE) of the parameter estimates.

We find a slightly negative ME (systematic negative bias) across all factor levels,
indicating an underestimation of the mixture regression coefficients. In terms of
collinearity effects, the ME remains relatively stable across all levels of collinearity
but increases considerably in size when the correlation matrices are inconsistent rather
than consistent. Furthermore, we find that the MAE and RMSE, which indicate the
magnitude of the estimation error, increase considerably with stronger levels of collin-
earity. Specifically, the MAE (RMSE) increases from 0.027 (0.035) in situations
without collinearity to 0.140 (0.190) in situations with very high collinearity (VIF=
10.7). This result implies that the variance of the estimated regression coefficients
strongly increases with increased levels of collinearity. This result is one we would also
expect from a normal regression case (Mason and Perreault 1991). While the difference
between the MAE and RMSE is relatively small in situations of low levels of
collinearity, it increases with higher levels of collinearity. Hence, at higher levels of
collinearity, the likelihood of obtaining segmentation results that differ significantly
from the true population results increases.

11 For the ANCOVA results, see Table A6 in the Online Supplement of this paper.
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4 Conclusion and recommendations

This study extends the research on mixture regression models, most notably the study by
Andrews and Currim (2003b), by examining the effect of collinearity on the performance of
a broad range of segment retention criteria. When using mixture regression models,
researchers should not apply (popular) segment retention criteria blindly—even at collin-
earity levels much smaller than those that popular textbooks on research methods judge as
critical (e.g., a VIF value of 10; Hair et al. 2010). In particular, our analysis reveals that VIF
levels as low as 2.4 affect the segment retention criteria’s performance by dramatically
increasing their underestimation tendencies. Our results also show that collinearity effects
differ clearly across the criteria. Collinearity affects some criteria, such as AIC3, AIC4, BIC,
CAIC, ICOMP, and HQ, more strongly than it does others (e.g., AIC, MDL5, and CLC).

The segment retention criteria’s underfitting tendencies in the presence of high collinearity
are particularly problematic when the segment retention criteria indicate a one-segment
solution, although the group-specific regression coefficients differ significantly across the
segments. In these cases, ignoring heterogeneity and analyzing the data on the aggregate level
can have adverse consequences for any conclusions drawn from such marketing models.

The negative effect of collinearity is evenmore pronounced if the correlationmatrices are
inconsistent across segments (i.e., when high correlations occur between those variables that
separate the segments more strongly). This kind of situation is not unlikely, as the entire
covariance matrix between all the variables can be segment-specific—not only the covari-
ance between the dependent and the independent variables (Marcoulides et al. 2012). The
overall sample covariance (correlation) matrix might not reveal the strong underlying group-
specific collinearity because the correlations are equaled out when the two groups are
combined. Researchers should therefore not only analyze the collinearity on the
aggregate-data level when conducting a mixture regression analysis, but also analyze the
group-specific correlations to assess whether collinearity threatens the segment retention.
Only if the collinearity diagnostics suggest that multicollinearity is not an issue for the
aggregate data level or the segment-specific outcomes, should researchers further interpret
the mixture regression results and draw conclusions from them (Grewal et al. 2013).

It seems common practice for authors to justify their segment decision solely on the basis
of segment retention criteria (e.g., Cortiñas et al. 2010; Dubois et al. 2005). Our results show
that such an approach is not without problems and suggest three main recommendations for
working with mixture regression models. First, given the criteria’s increased underestima-
tion tendencies even in the presence of low collinearity levels, researchers are well-advised
to consider higher segment solutions than the criteria actually indicate, even if all criteria
point at the same number of segments. This especially holds truewhen criteria point at a one-
segment solution, thus suggesting that heterogeneity is not a problem. In such a situation,
researchers should carefully evaluate whether using a segment-specific model provides
plausible insights and an increased predictive ability (Andrews et al. 2007). Second, the
risk of collinearity increases especially for survey-based research studies that do not use an
orthogonal (experimental) design (e.g., cross-sectional studies with complex models that
feature three- or four-way interactions), as higher-order interaction terms correlate increas-
ingly with lower-order interaction terms and the main effects (Grewal et al. 2013). Hence, in
mixture regression models with interaction terms (e.g., in moderated regression analyses),
researchers should be extra cautious about increasing levels of collinearity. Third, the criteria
should be perceived as providing a reasonable range of segment solutions that researchers
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can evaluate by following guidelines such as those that Kotler and Keller (2012) provide
(i.e., the segments should be actionable, differentiable, and substantial). In doing so,
researchers need to separately evaluate the collinearity between the predictors in each
segment when comparing different segment solutions. The corresponding results need to
be routinely provided (e.g., the VIF values of each segment regarding different segment
solutions), along with the segment retention criteria values, to increase confidence in the
findings.

This research is subject to limitations, which future studies should address. First,
researchers should develop segment retention criteria that perform well under varying
levels of those design factors that are relevant for mixture regression models, including
collinearity. Second, our study only provides evidence of collinearity effects on the
performance of segment retention criteria regarding the multivariate normal mixture
case. Future research could examine how collinearity affects their performance in other
types of exponential family mixture models. Third, examining the effects of collinearity
not only on parameter recovery but also on statistical power would be a fruitful research
endeavor. Replicating Mason and Perreault’s (1991) work in a mixture regression
context might be a promising first step toward calibrating the conditions under which
collinearity affects the interpretation of mixture regression results. Fourth, recent
publications have presented alternative methods for applying mixture regression
models that are more robust against irregularities in the data, such as strong collinearity
between the predictor variables (Kim et al. 2012, 2013).12 However, future research
should assess the effect of collinearity on the segment retention capabilities of such
novel approaches in greater detail. 13 For example, as extant research on these ap-
proaches solely relies on the log marginal likelihood (LML) for model selection. Future
studies should more broadly examine the efficacy of the LML under different model
conditions (including collinearity), and, if necessary, develop alternative model selec-
tion heuristics.
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