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Abstract
Habitat mapping data are increasingly being recognised for their importance in underpinning marine spatial planning. The 
ability to collect ultra-high resolution (cm) multibeam echosounder (MBES) data in shallow waters has facilitated understand-
ing of the fine-scale distribution of benthic habitats in these areas that are often prone to human disturbance. Developing 
quantitative and objective approaches to integrate MBES data with ground observations for predictive modelling is essential 
for ensuring repeatability and providing confidence measures for habitat mapping products. Whilst supervised classification 
approaches are becoming more common, users are often faced with a decision whether to implement a pixel based (PB) or 
an object based (OB) image analysis approach, with often limited understanding of the potential influence of that decision on 
final map products and relative importance of data inputs to patterns observed. In this study, we apply an ensemble learning 
approach capable of integrating PB and OB Image Analysis from ultra-high resolution MBES bathymetry and backscatter 
data for mapping benthic habitats in Refuge Cove, a temperate coastal embayment in south-east Australia. We demonstrate 
the relative importance of PB and OB seafloor derivatives for the five broad benthic habitats that dominate the site. We 
found that OB and PB approaches performed well with differences in classification accuracy but not discernible statisti-
cally. However, a model incorporating elements of both approaches proved to be significantly more accurate than OB or PB 
methods alone and demonstrate the benefits of using MBES bathymetry and backscatter combined for class discrimination.

Keywords  Multibeam echosounder · Marine habitat mapping · Object based image analysis · Random forests

Introduction

Coastal zones represent a small area of the Earth’s oceans 
but are regarded as one of the most productive and diverse 
environments on the planet (Gray 1997). They are often 

those most vulnerable to threats due to resource exploita-
tion, habitat destruction, pollution and susceptibility to a 
changing climate (Jackson 2008). Habitat maps that depict 
the distribution of marine natural resources are becoming a 
prerequisite for marine spatial planning, design and imple-
mentation of monitoring programs, and management of 
physical and biological resources (Baker and Harris 2012). 
However, our knowledge of the extent, geographical range 
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and ecological functioning of benthic habitats remains 
relatively poor. This poses challenges for implementing 
strategies to safeguard our ocean systems, and our ability 
to detect change in benthic habitats in a rapidly changing 
climate (Wernberg et al. 2016). Often we set aside areas for 
protection with limited knowledge of their representative-
ness, raising questions on the robustness of spatial planning 
decisions that are based on limited information (Devillers 
et al. 2015). This is compounded by the fact that only 5–10% 
of the world’s seafloor has been mapped to resolutions at an 
appropriate scale for marine management (Sandwell et al. 
2003; Wright 2003).

MBES have become the system of choice for marine 
habitat mapping studies due to their ability to collect co-
located full coverage bathymetry and seafloor backscatter 
data. Whilst bathymetric LIDAR systems mounted on aerial 
platforms are increasingly used in coastal zones due to the 
rapidity of data acquisition over large areas, this approach 
lacks the sounding accuracy typically achieved with MBES 
data acquisition (Costa et al. 2009). The ability to collect 
high precision MBES data on relatively small platforms has 
opened new opportunities for seabed mapping data and ben-
thic habitat characterisation in shallow water environments. 
Ultra-high resolution MBES data provide new prospects for 
how we characterise marine geomorphometry (Lecours et al. 
2016), with the potential to provide data at resolution suf-
ficiently high to gain information on individual biogenic fea-
tures. For example Montereale-Gavazzi et al. (2016) found 
that MBES backscatter data at the resolution of 0.05 and 
0.2 m allowed identification of individual sponges and map-
ping their distribution in the shallow heterogeneous Venice 
lagoon. They also identify a clear trade-off between accuracy 
of model predictions and the type of features that can be 
mapped at such high resolution.

The development of approaches using seafloor backscat-
ter data acquired by MBES as a means to remotely charac-
terize the properties of the seafloor has received increasing 
attention from the research community (Lucieer et al. 2017). 
Despite the growing use of MBES backscatter data, stand-
ards of seabed backscatter acquisition, processing and clas-
sification are still under development, which results in chal-
lenges for data comparison across platforms and processing 
packages. In 2015 the Backscatter Working Group (BSWG) 
proposed the first set of guidelines for acquisition, process-
ing and use of backscatter data (Lurton and Lamarche 2015) 
and provided recommendations for further development of 
backscatter acquisition systems and processing software. 
Acoustic backscatter is typically applied for sediment class 
discrimination (Diesing and Stephens 2015). The interpreta-
tion of backscatter to inform seabed type is typically done by 
using acoustic facies that are defined as the “the character-
istics and spatial organization of seafloor patches with com-
mon acoustic responses and the measurable characteristics 

of this response” (Lamarche and Lurton 2017). Backscat-
ter is combined with other environmental variables such as 
those from bathymetry for habitat characterisation (Ierodi-
aconou et al. 2011; Rattray et al. 2009).

The concept of habitat lies at the core of ecological the-
ory. In the field of benthic habitat mapping the definition of 
habitat has evolved to reflect the objectives and applications 
of the data (Dauvin et al. 2008). Definitions of habitat from 
earlier studies underlie the field’s origins in marine geol-
ogy and geophysics. Acoustic geophysical tools including 
echosounders and later, MBES, allowed the delineation of 
meaningful geological facies based the acoustic response of 
the seabed, supported by appropriate physical samples. Ben-
thic taxa often exhibit strong links with seafloor geology, for 
example macroalgae species are generally associated with 
hard reef. The biological component of habitat is therefore 
often inferred directly under the assumption that geologi-
cally defined substrate is the primary determinant of the spe-
cies and community types that develop there (Greene et al. 
1999). Subsequent adoption of this technology by ecologists 
for mapping from a biophysical perspective has given rise 
to an increasingly biocentric notion of habitat (Brown et al. 
2011). This reflects both the needs of natural resource man-
agement agencies for primarily biological information, and 
also the recognition that many other physical, chemical and 
biological determinants are also central to patterns of bio-
logical distribution (McArthur et al. 2010). Kostylev et al. 
(2001) defined habitat as: ‘a spatially defined area where the 
physical, chemical, and biological environment is distinctly 
different from the surrounding environment’. Knowledge of 
the relative contribution of MBES backscatter data com-
pared to other variables such as those derived from bathym-
etry in differentiating between habitats is important for end 
users when developing classification approaches.

With the increasing volumes of MBES data becoming 
available, there is an urgent need to develop robust methods 
for mapping marine habitats to establish their geographical 
location, extent, and condition (Brown et al. 2011). Habitat 
mapping products need to be created using repeatable meth-
odologies where uncertainty in model outputs is quantified. 
Repeatability is particularly important as habitat mapping 
studies are undertaken to form a baseline for assessment which 
implies the ability to undertake repeat surveys to monitor 
change through time (Montereale-Gavazzi et al. 2017; Rattray 
et al. 2013). Thus, habitat mapping products need to be created 
using repeatable methodologies where uncertainty in model 
outputs is quantified. Habitat classification generally involves 
the integration of seafloor structure information with biologi-
cal ground-truth samples or observations. Uncertainty may 
compromise classification outputs due to propagation of errors 
in the repeatability of classification by observers (Rattray et al. 
2014), artefacts associated with seabed mapping acquisition 
and processing (Lecours et al. 2016; Schimel et al. 2015b) 
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and spatial mismatch between observations and acoustic data 
(Mitchell et al. 2017).

There are two different approaches commonly used to 
generate marine geomorphic variables for input to benthic 
habitat classification. Pixel based (PB) approaches involve 
the use of a neighbourhood analysis (typically 3 × 3) to gen-
erate derivative products for model input (i.e. slope, rough-
ness measures). The classification approach involves assign-
ing each image pixel either to a cluster that is later assigned 
to a benthic habitat class (unsupervised), or to a predefined 
benthic habitat class based on statistics derived signatures 
from the pixel’s digital values (supervised) that is provided 
from often multiple spatial derivatives (Ierodiaconou et al. 
2007, 2011; Rattray et al. 2009). Object based (OB) image 
analysis approach involves grouping spatially contiguous 
pixels with similar properties into “objects” in such way 
that maximizes both within-object homogeneity in terms 
of pixel values, and between-object differences (Blaschke 
2010). OB image analysis approaches have been increasingly 
and successfully applied to marine habitat mapping over the 
past decade (Diesing et al. 2014; Hasan et al. 2014, 2012b; 
Lacharité et al. 2017; Lucieer et al. 2013). Whilst both PB 
and OB approaches are now well developed in the benthic 
habitat mapping literature, few studies have systematically 
compared them in terms of map accuracy or importance 
of input variables in explaining patterns observed (Hasan 
et al. 2014).

We apply an ensemble learning classification integrating 
PB and OB analysis for mapping benthic habitats in a high 
use coastal embayment in south-east Australia. We com-
bine ultra-high resolution MBES bathymetry and backscat-
ter data with groundtruth data provided by a combination 
of autonomous underwater vehicle (AUV) surveys, benthic 
grabs and drop video sampling. We evaluate three classifi-
cation approaches—PB, OB and a hybrid approach—and 
investigate both classification performance and variable 
importance for model outputs.

Methods

Study area

The study site is Refuge Cove; a small embayment within 
the Wilsons Promontory National Park, in the state of Vic-
toria, Australia (39° 02′ 17.6″ S 146° 27′ 48.4″ E, Fig. 1). 
Refuge Cove is located within the shallow temperate sea 
of Bass Strait separating mainland Australia from Tasma-
nia. With the Pacific Ocean in the east, and the Southern 
Ocean to the southwest, Bass Strait marks the confluence 
of the warm waters of the Eastern Australian Current and 
the colder waters of western Bass Strait from the South 
Australian Current, which is likely driving the high species 

richness and diversity observed in monitoring programs 
(Edmunds et al. 2012). Prevailing westerlies drive the west 
to east water currents observed in Bass Strait (James and 
Bone 2011). During the winter, winds are predominantly 
from the south west, driving a south westerly swell of up to 
8 m in height (mean 2 m) on the west and south coast of the 
promontory (Kennedy et al. 2014). The cove being on the 
east coast of the promontory is protected from most swell 
directions, making it a unique and popular safe anchorage 
for vessels transiting through the southeast coast of Aus-
tralia. Refuge cove covers approximately 0.39 km2 with the 
seafloor extending to 22 m deep at the entrance. The south 
side consists of large (2–3 m) granitic boulders, whilst the 
northern arm is characterised by a sloping granitic bedrock 
with occasional cracks and overhangs gently sloping to a 
sediment dominated seabed. The sediment-dominated parts 
of the seabed support filamentous algal mats and seagrass 
communities, whilst hard-bottom areas are dominated by 
diverse algal dominated assemblages (Edmunds et al. 2013).

MBES data acquisition and processing

The MBES data were acquired on the 11th June 2013 using 
a Kongsberg Maritime EM2040C MBES, operated with 
Kongsberg Maritime’s acoustic data acquisition software 
SIS, and integrated with an Applanix POS MV WaveMas-
ter, all fitted to Deakin University’s 9.2 m research vessel 
Yolla. Lines were run so as to ensure 100% overlap of adja-
cent lines. The MBES was operated at a constant frequency 
of 300 kHz, a varying ping rate and pulse length (resp. 
up to 50 Hz and down to 0.025 ms) automatically adjust-
ing to water depth, in high-density equidistant mode (400 
soundings per ping) and with a constant sector coverage 
of ± 65° athwartships. Sound velocity in the water column 
was obtained from a profile captured at the start of survey 
with a Valeport Monitor Sound Velocity Profiler, while 
sound velocity at the depth of the transducer was measured 
continuously during the survey with a Valeport mini SVS 
sensor. These information were combined by SIS to cor-
rect soundings in real time for variation of sound velocity 
in the water column. The POS MV WaveMaster measured 
the position of the vessel in Differential GNSS mode using 
GPS/GLONASS corrections received by radio from the 
Fugro MarineStar satellite positioning service. The POS 
MV WaveMaster also measured precise vessel motion data 
(roll, pitch, yaw, true heave), which were recorded and set 
aside for post-processing.

Bathymetry data processing was carried out using Appla-
nix software POSPac Mobile Mapping Suite (MMS) and 
CARIS software HIPS & SIPS 8.1A. POSPac MMS was 
used to obtain a post-processed kinematic (PPK) solution 
of the vessel navigation (with a horizontal resolution greater 
than + 0.2 m), motion and GPS modelled tides. This solution 
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was imported in HIPS & SIPS to replace realtime naviga-
tion data. Soundings were then manually cleaned, vertically 
referenced to the Lowest Astronomical Tide datum and grid-
ded into a DEM using the CUBE algorithm at a resolution 
of 0.25 m (Fig 1).

Backscatter data processing was carried out in QPS 
software Fledermaus geocoder toolbox (FMGT 7.4.1). The 
backscatter “beam time series” data type was used as a data 
source, and all beams were kept (setting starting and cut-
off beam angles as 0 and 90 degrees, respectively, in the 

“Adjust” settings panel). FMGT provides much freedom in 
setting the parameters of the processing but little explana-
tion as to the algorithms being applied and the sequence in 
which they are implemented (Schimel et al. 2015a). Given 
this lack of information and as recommended by Lurton and 
Lamarche (2015) our backscatter data processing procedure 
favours consistency in parameters in order to ensure consist-
ency of backscatter mosaics between surveys, to the poten-
tial detriment of the subjective quality of each individual 
mosaic. Thus for this dataset as for others, the processing 

Fig. 1   Location of refuge cove 
within the Wilsons Promon-
tory National Park, Victoria, 
Australia (top panels) and the 
site bathymetry in June 2013 
(bottom panel)
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parameters were kept as close to the FMGT defaults as pos-
sible. The “Pipeline” settings were all kept as default. The 
“Navigation” settings were kept to the default “Use adjacent 
lines within time window of 5” without any other setting 
enabled. FMGT operates the same standard geometric and 
radiometric corrections as prior iterations of Geocoder as 
described in the literature (Fonseca and Calder 2005), which 
includes a compensation for the built-in TVG as described 
by Hammerstad (2000) in the case of Kongsberg Maritime 
data. The “Adjust” settings were kept to default enabling of 
“Tx/Rx Power Gain Correction” (taken from runtime param-
eters datagrams) and default “Beam Pattern Correction”. The 
“Absorption” setting in the “Oceanography” panel was kept 
at its default value of 0 dB/km with absorption in the water-
column suitably compensated using absorption coefficients 
in the raw data files. The “Sonar Default” settings were set to 
“automatic”, which means the software extracted the param-
eters necessary for radiometric correction (transmit power, 
frequency, pulse length, etc.) directly from the raw data files. 
After geometric and radiometric corrections, FMGT imple-
ments a standard “sliding window” method to correct for 
angular dependence, termed “AVG”. The settings we used 
for this correction were the “trend” algorithm—which con-
siders the two sides of the swath separately—and a “window 
size” of “300” (the number of pings surrounding the data to 

be corrected). FMGT uses a reference angle for normaliza-
tion as the average level between 20 and 60 degrees (Fonseca 
et al. 2009). Finally, the data for individual lines after correc-
tions and AVG were all mosaicked together at a resolution of 
0.25 m using a “Blend Mosaicking Style” algorithm with a 
parameter of 50%, a “dB Mean Filter Type”, and requesting 
to “Fill gaps using adjacency” (Fig. 2).

MBES derivatives

Pixel based derivatives

To further characterise local variation within the MBES data 
and delineate analogous regions of morphology, a suite of 
spatial derivatives were produced from the primary bathym-
etry digital terrain model (Table 1). These derivatives were 
selected for their expected influence over distribution of 
biological assemblages in terms of exposure to wave energy 
and benthic currents (northness, eastness), susceptibility to 
sediment accumulation (slope), complexity and surface area 
of reef structure (complexity, rugosity, maximum curvature). 
Derivative layers were selected based on their ability to pro-
duce accurate benthic habitat maps in previous studies in 
adjacent coastal waters (Ierodiaconou et al. 2007, 2011; Rat-
tray et al. 2009, 2013; Young et al. 2015). For all analyses, a 

Fig. 2   MBES backscatter 
mosaic of Refuge cove (resolu-
tion 0.25 m)
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moving window with a kernel size of 3  × 3 pixels (0.75 m2) 
was used.

Object based derivatives

OB segmentation was carried out using the multi-resolution 
segmentation algorithm in software eCognition v9.0, which 
uses an optimisation procedure that locally minimises the 
average heterogeneity of image objects for a given resolu-
tion. Starting from an individual pixel (or existing image 
object), it consecutively merges pixels (or image objects) 
until a certain threshold, defined by the scale parameter 
is reached. The scale parameter is an abstract term that 
determines the maximum allowable heterogeneity for the 
resulting image objects (see Appendix 1 Supporting mate-
rial). We chose a scale parameter of 41 (mean object size 
306 m2) for defining segments for classification following 
visual inspection of coherence in shapes and orientation of 
objects observed on the seafloor. The object heterogeneity, 
to which the scale parameter refers, is defined by the ‘com-
position of homogeneity’ criterion. This criterion defines the 
relative importance of ‘colour’ (pixel value in this case, e.g. 
backscatter digital number) versus shape of objects. If high 
weight is given to colour then the object boundaries will 
be predominantly determined by variations in colour of the 
image (e.g. backscatter strength). Further on, the shape cri-
terion has contributions from smoothness and compactness, 
both of which can be weighted. A high value for smoothness 
will lead to smoother boundaries of the objects. High val-
ues of compactness will increase the overall compactness of 
image objects. We applied default values of 0.9 for colour, 
0.1 for shape, 0.5 for smoothness and 0.5 for compactness. 

Segmentations were carried out on primary acoustic prod-
ucts bathymetry and backscatter. We also included rugosity 
as a measure of complexity due to its variable importance 
in defining benthic habitats in the region in previous studies.

Ground truth data

The ground-truth dataset for this study consisted in a com-
bination of AUV video imaging, drop video camera and 
sediment samples positioned using DGPS (~ 1 m accuracy) 
(Fig. 3). High-definition video data were captured with a 
GoPro Hero 3 Black video camera mounted obliquely (45°) 
on the underside of an Ocean Server Inc Iver2-580-EP 
AUV. The AUV was preprogrammed to survey benthic 
transects at a height of 1.2 m above the seabed and a speed 
of 1.5 knots following a continuous transect divided into 
six pre-programed missions. However, two missions were 
not completed due to entanglement in macroalgae reef on 
the northern section of the cove. Transects were prioritized 
to target a range of habitats on sediment and reefs across 
depth gradients within the study site. Every second of video 
was matched to positional information and mission statistics 
recorded by the AUV micro-processor.

We assessed spatial autocorrelation (SA; see Appendix 2 
Supporting material) using Moran’s I to inform a sam-
pling design for the ground-truth dataset used for valida-
tion. Results from the SA analysis showed that there was 
significant correlation up to 50 m; therefore, we randomly 
generated sample localities spaced at least 50 m apart and 
stratified by the major acoustic facies of the site. These 
acoustic facies were defined by a cluster analysis run on 
the OB segments to group segments with similar acoustic 

Table 1   Spatial derivatives from MBES bathymetry

Derivative Description Analysis neigh-
bourhood size (in 
pixels)

Software

Northness Sinus component of the azimuthal direction of the 
steepest slope through the points in the analysis win-
dow (Wilson et al. 2007)

3 × 3 Spatial Analyst (ArcGIS 10.2.2)

Eastness Cosinus component of the azimuthal direction described 
above

3 × 3 Spatial Analyst (ArcGIS 10.2.2)

Rugosity Ratio of surface area to planar area (Lundblad et al. 
2006). A measure of topographic roughness

3 × 3 Benthic Terrain Modeler Tool for ArcGIS

Maximum curvature Steepest curve of either plan or profile convexity 
through a defined cell neighbourhood (Schmidt et al. 
2003)

3 × 3 ENVI 4.7

Slope Maximum change in elevation between each cell and 
cells in its analysis neighbourhood. Calculated in 
degrees from the horizontal (Wilson et al. 2007)

3 × 3 Spatial Analyst (ArcGIS 10.2.2)

Complexity Second derivative of slope (or rate of change of slope) 
(Wilson et al. 2007). A measure of the terrain’s local 
variability

3 × 3 ENVI 4.7
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characteristics and reduce the number of unique classifica-
tions. Some of the randomly generated sampling localities 
were adjusted to intersect with existing AUV tracks as long 
as they remained in the same cluster and maintained the 
minimum distance requirements.

A drop video camera survey was undertaken to provide: 
(1) an additional dataset for training in areas that were not 
covered by the AUV survey, and (2) an independent dataset 
for validation purposes at locations indicated by the sam-
pling survey design described above. A total of 85 drops 
ranging from 1.9 to 22.1 m in depth were performed. Video 
footage was obtained using a Delta vision HD underwater 
video camera, and software Ashtec Mobil Mapper 10 was 
used to create shapefiles and log GPS raw data. Raw GPS 
data were later improved to a DGPS solution, using base sta-
tions data from VicMap’s Continuously Operating Reference 
Stations (CORS) system.

Benthic sediment samples were collected at 18 of the 
video stations using a small Van Veen grab (surface area 
sampled 260 cm2). Samples were first disaggregated using a 
10% sodium hexametaphosphate, ultrasonically bathed, and 
sieved to remove gravel and very coarse sand (> 1.5 mm). 
The residual was then characterised using a Beckman Coul-
ter LP 13320 laser particle sizer. The relationship between 
pixel and object based backscatter data and the mean and 
standard deviation of sediment grain size as well as the pro-
portion of gravel in sample were assessed using ordinary 
least squares regression in software R version 3.2.4.

After reviewing the video we interpreted 5 broad habitats 
that characterised the site with a description of the typical 
characteristics within each habitat below:

i)	 Macroalgae Dominated Reef (ALG)—High relief, gra-
nitic bedrock and boulder reef from depths of 2–22 m 
was populated with diverse assemblages of brown, red 
and green macroalgal taxa that varied in composition 
and density with depth and exposure. Sessile inverte-
brates were evident on vertical walls and in fissures 
throughout the reef systems and in deeper areas were 
prevalent in the algal understorey.

ii)	 Filamentous Mat (FMAT)—Fine sandy to muddy sand 
sediments in the sheltered and shallow southern arm of 
the bay were covered in extensive mats of filamentous 
microalgae and diatoms. This was interspersed with 
sparse to very sparse seagrass (Zostera sp.) shoots, often 
with evidence of bioturbation.

iii)	 No Visible Biota (NVB)—Extensive areas of the bay 
consisting of fine to coarse sands and gravel with no 
visible epibiota.

iv)	 Seagrass (Amphibolis antarctica) (SGAM)—Predomi-
nantly dense beds of the seagrass A. antarctica. These 
were characterised by low, woody root masses at the 
sediment interface which form distinctive mounded 
edges surrounding the beds.

v)	 Seagrass (Zostera sp.) (SGZ)—Beds of seagrass char-
acterised by the presence of Zostera sp. growing in fine 
sands and muddy sands with patchy distribution ranging 
from sparse to dense. Where visible through the canopy, 
sediments frequently showed evidence of bioturbation, 
with mounds and burrows in sheltered areas.

Fig. 3   Ground-truth data for 
this study. The video data used 
for training were classified by 
benthic habitat type and are 
shown colour coded. The col-
oured lines represent video data 
obtained by the AUV while the 
coloured dots represent video 
data obtained with the drop 
camera. The drop video data put 
aside for validation are shown 
as triangles
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Statistical analysis

Modelling approach

In this study we implemented Random Forests models 
to predict class membership. Random Forests (RF) is an 
ensemble learning method that combines tree-type classi-
fiers with bootstrap aggregation of multiple models based 
on subsets of the same training data (Breiman 2001).The 
approach reduces the inherent tendency of single decision 
tree classifiers to overfit their training sets by including the 
results of multiple trees, produced from random bootstrap 
samples of the training set (Cutler et al. 2007). An important 
property of RF is that the random selection of variables at 
each split minimises correlation of trees in the ensemble 
and is thus less subject to potential biases associated with 
the training data. RF models have been successfully applied 
to mapping marine substrates (Diesing et al. 2014; Lucieer 
et al. 2013) and dominant biological communities (Che 
Hasan et al. 2014; Rattray et al. 2015).

RF models were implemented using randomForest pack-
age in R (Liaw and Wiener 2002; R Development Core Team 
2008) to predict habitat classes according to models trained 
with three different sets of predictor variables derived from 
MBES bathymetry and backscatter data:

1.	 A pixel based (PB) model with uncorrelated predictors 
at 25 cm resolution

2.	 An object based (OB) model trained with uncorrelated 
predictors which were derived using an OB segmenta-
tion approach

3.	 A combined model trained with uncorrelated predictors 
from both PB and OB models.

Data preparation

Prior to analysis, object and pixel based derivatives were 
screened for outliers and normalised to a range of 0–1. 
Although normalisation is not required for RF classification 
as the approach is invariant to monotonic transformations of 
the input features, in this case it was used so that measures 
of feature importance could be displayed at an easily inter-
pretable scale.

Although outputs of RF classifiers are considered robust 
to correlated predictors due to the random variable selection 
process, there is evidence to suggest that subsequent vari-
able importance measures can be biased towards correlated 
variables (Strobl et al. 2006). In this study, we examined 
correlation between predictors using the Pearson product-
moment correlation coefficient (Fig. 4). For each of our 3 
models, we tested individual predictor performance using 
a recursive ‘leave one out’ procedure. Where correlation 
coefficients were greater than 0.6 we retained the best 

performing predictors for model inclusion. Uncorrelated 
predictors included in each model are detailed in Table 2.

Model training

The RF classifier was implemented for each of the three sets 
of predictors using the same training dataset. Prior to all 
analyses, the (pseudo) random number generator in R was 
seeded with an arbituary value of 42 to ensure reproduc-
ibility of results. Tuning parameters mtry (the number of 
predictors randomly selected for each split) and ntree (the 
number of trees contained in each model) were evaluated 
using the caret package in R (Kuhn 2008). Each of the three 
models was repeatedly run across a range of values of mtry 
and ntree and model performance assessed at each iteration 
using k-fold cross-validation. Model tuning resulted in the 
use of 300 trees in each of the models, and mtry values of 3, 
5, and 6 for the PB, OB and combined models respectively. 
Per-class variable importance in each of the 3 models was 
determined using the permutation importance measure, and 
partial dependence plots for the three highest ranked vari-
ables in the best performing model were created using the 
randomForest package in R (Liaw and Wiener 2002).

Model evaluation

Model accuracy was determined by comparing predicted 
classifications for each of the models against an independent 
test set of classified observations withheld from model 

Fig. 4   Correlation matrix containing all MBES predictors used in the 
study. Size and colour of the circles indicate the degree and direction 
(red-negative, blue-positive) of the relationship respectively. Suffixes 
PP (per-pixel) and OB (object-based)
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training. As the error metrics for each model were derived 
from the same test set of observations and therefore were not 
independent, formal testing of between model accuracy was 
carried out using a pairwise bootstrapping approach in the 
multiagree package in R (Vanbelle and Albert 2008) using 
999 sampling iterations of the data. The approach, an exten-
sion of the resampling method proposed by Mckenzie et al. 
(1996), draws repeated samples (with replacement) from the 
validation data and estimates the difference in the kappa 
coefficient of agreement 

(

K̂

)

 for pairs of models at each 

iteration. The test statistic is distributed as Hotelling’s T2, 
under the null hypothesis that there is no difference between 
classifications (H0 : K̂1 = K̂2 ) (Vanbelle and Albert 2008).

Results

Mapping of sediment samples revealed that Refuge Cove 
was dominated by sand substrata, with increases in the 
proportion of mud and gravel from samples taken in the 
south and north-west, respectively (Fig. 5). The increased 
presence of mud in the samples coincides with the marine 
input of a small freshwater creek in the south of the cove. 
The Ordinary Least Squared regression revealed that 
mean and standard deviations of sediment grain size have 
a significant, moderately strong, and positive relationship 
with backscatter intensity values for both the pixel and 
object based derivatives (Fig. 3). A similar relationship 
was observed for the proportion gravel in a sample, with 
higher backscatter values associated with larger propor-
tions of gravel. In all three instances correlations (i.e. R2) 
were stronger for object based backscatter than for the 
pixel based alternative (Fig. 6). No significant relation-
ships between backscatter datasets and proportion of mud 
or sand in a sample were observed. Whilst the sediment 
analysis was informative in defining relationships between 

sediment grain size and backscatter intensity the model-
ling component focused on mapping the 5 broad habitats 
that characterised the site.

Benthic habitat maps were created for the Refuge Cove 
study site using habitat/environment relationships derived 
from three random forests models, each using either PB, 
OB or combined sets of MBES derived input features. Map 
accuracy was determined by comparing predicted classes 
against a spatially independent reference dataset that was not 
included for model training. Overall accuracies and Kappa 
statistics ( ̂K ) for each of the classifications were generally 
good at 72.5% ( ̂K = 0.62), 78.5% ( ̂K = 0.70) and 83.6% 
( ̂K = 0.78) for the PB, OB and combined classifications 
respectively (Figs. 7, 8). Bootstrap comparison of K̂ between 
models revealed that the combined model performed sig-
nificantly better than the OB model (T2 = 0.92, p = 0.013, 
α = 0.05), and the PP model (T2 = 5.31, p = 0.023, α = 0.05), 
but we found no significant difference between classifica-
tions from the OB and PB models (T2 = 1.63, p = 0.204, 
α = 0.05).

Differences in class specific classification accuracies, as 
represented in the error matrix and associated agreement 
charts (Fig. 8) show similar patterns in accuracy and mis-
classifications for the macroalgae (ALG), filamentous mat 
(FMAT) and bare sediment (NVB) classes in each of three 
models. Accuracy of the predicted seagrass classes (SGAM 
and SGZ), on the other hand, varied substantially. The best 
performing model in this respect was the combined model 
incorporating both object and pixel based predictors with 
Producer’s accuracy (model sensitivity) of 85.7% for both 
the A. antarctica (SGAM) and Zostera sp. (SGZ) dominated 
seagrass classes. In comparison, Producer’s accuracies for 
the pixel and object based models for the SGAM class were 
79.9 and 57.1%, and for the SGZ class only 0 and 33% 
respectively.

According to the benthic habitat map derived from the 
best performing combined model (Fig. 8), the Refuge Cove 
site is characterised by macroalgae dominated communities 

Table 2   Uncorrelated predictor 
variables retained for inclusion 
in each of the 3 models

Object-based predictors, derived via a segmentation approach are denoted with an asterisk*

Per-pixel model Object-based model Combined model

Bathymetry Bathymetry (mean)* Bathymetry
Backscatter intensity Bathymetry (skewness)* Backscatter intensity (mean)*
Rugosity Backscatter intensity (mean)* Bathymetry (skewness)*
Slope Rugosity (sd)* Rugosity (sd)*
Complexity Rugosity (skewness)* Rugosity (skewness)*
Maximum Curvature Slope
Northness Complexity
Eastness Maximum curvature

Northness
Eastness
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on the fringing boulder reefs to the north and south-west of 
the site. Extensive beds of the seagrass A. antarctica char-
acterise the north-western arm of the bay, while shallow, 
muddy sands coincident with the outflow of a small creek 
in the south of the bay contain beds of sparse to medium 
Zostera sp. The remainder of the bay is characterised by 
sandy to gravelly unconsolidated sediments, which in shal-
low, sheltered areas are covered by a mixed filamentous mat 
of microalgae and diatoms. Observable difference between 
the habitat characterisations are relatively minor. Confusion 
between the seagrass classes, and NVB and FMAT classes is 
evident in the ‘salt and pepper’ striping artefacts in the PB 
map, and in the OB map led to an underestimation of sea-
grass cover when compared with the field observation data.

Class-specific variable importance was ranked from 
highest to lowest (Fig. 9) based on overall mean decrease 
in accuracy measures from the random forest models (Liaw 
and Wiener 2002). The measure indicates the decrease in 
accuracy resulting from the omission or permutation of a 
given variable in each classification tree averaged over all 
trees. Higher values of the mean decrease in accuracy meas-
ure therefore represent greater importance of the variable in 
the classification process. The predictor variables exhibiting 
the greatest mean decrease in accuracy for each model were 
bathymetry, backscatter and rugosity (PB model); bathym-
etry (mean), backscatter (mean) and rugosity (sd) (OB 
model); rugosity (sd), mean backscatter and bathymetry for 

the combined model. Compared to rugosity (sd), which was 
the single most important variable in the OB and combined 
classifications, the rugosity variable in the pixel based model 
had lower importance to classification outcomes, despite the 
relatively high correlation (0.71) of the two variables. Rugo-
sity (sd) was the most important predictor in classification 
of the ALG and SGAM classes, while bathymetry (PB) was 
important to differentiation of the FMAT and SGZ classes.

The relationship between predictor variables and model 
class selection was examined using partial dependence plots. 
Partial dependence plots for the three most important predic-
tors (Fig. 10) represent the effects of each predictor variable 
on class response, while averaging out the influence of all 
other variables. Rugosity (sd) (OB) was selected for dis-
criminating both of the seagrass classes (SGAM and SGZ) at 
lower values of rugosity and the ALG class at higher values 
of rugosity. This suggests that the variable captures both 
fine-scale morphological variation in the sediments associ-
ated with the seagrass classes, and also broader-scale seabed 
roughness in areas of medium to high profile algal domi-
nated reef. Photosynthetic classes represented by SGAM, 
SGZ and FMAT were most often separated from deeper bare 
sediments (NVB) by the bathymetry (PB) variable. Likewise 
lower values of backscatter mean (OB) were influential in 
the model for the NVB and seagrass classes, whereas high 
values of backscatter tended to define reef which was almost 
universally occupied by the ALG class.

Fig. 5   Artificially illuminated 
backscatter mosaic of the 
Refuge Cove study site showing 
distribution of sediment gravel 
sand and mud proportions for 
each of the grab sampling sites. 
Samples containing muddy sand 
at the southern end of the bay 
are located near the outflow of a 
small watercourse and coincide 
with seagrass habitat composed 
of Zostera. Sp



281Marine Geophysical Research (2018) 39:271–288	

1 3

Discussion

Benthic habitats form the building blocks of coastal marine 
ecosystems. They contain a large proportion of diversity in 
our oceans and provide a range of ecosystem services from 
supporting fisheries, providing coastal protection, providing 
physical and biological resources and regulating climate. 
The basic need for an understanding of the geology, land use 
and land cover in terrestrial environmental management has 
long been recognized. As we strive to improve the potential 
for sustainably managing marine coastal resources, there 
is a pressing need to fill similar knowledge gaps. Central 
to this approach is the development of robust classification 
techniques to derive reliable maps that accurately reflect 
the location and extents of habitats which are important for 

informing marine spatial planning and management. This 
remains a challenge with MBES sensors. Whilst terrestrial 
approaches using satellite data often working with cali-
brated and compensated data this is uncommon with acous-
tic datasets, specifically in backscatter analysis (Lamarche 
and Lurton 2017). This poses a problem when developing 
time series for change analysis or transferring acoustics to 
observation relationships in other locations.

OB image analysis is gaining popularity for analyzing 
marine acoustic datasets for benthic habitat mapping (Dies-
ing et al. 2014; Hasan et al. 2012a, 2014; Lucieer et al. 
2013; Lucieer and Lamarche 2011). However, the compar-
ison between existing PB and more recently adopted OB 
approaches has been limited. In this study we examined 
the relative merits of these two image based approaches 

Fig. 6   Ordinary least-squared 
regression plots of object-
based (OB) and per-pixel (PP) 
backscatter intensity against 
mean grain size (µm), standard 
deviation of grain size (µm), 
and proportion gravel content of 
sediment samples (n = 18)
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to characterizing benthic habitats. We compared the accu-
racy and interpretability of Random Forests classifications 
derived using each approach for 5 broad, benthic habitats 
in a small embayment in Eastern Victoria, Australia. We 
found that OB achieved a higher overall accuracy that the PB 
approaches, however, differences were not discernible sta-
tistically. Notably the major difference between the models 
classes is evident in the ‘salt and pepper’ striping artefacts 
in the PB map compared to the OB map outputs which pro-
vided more clearly defined habitat boundaries. We found that 
a model incorporating elements of both approaches proved 

to be significantly more accurate that OB or PB methods 
alone. The results suggest, at least for the present case-study, 
that the approaches are not mutually exclusive, and that the 
specific advantages of each approach can be incorporated 
into a single modeling exercise. By combining ecologically 
relevant layers derived using both approaches, we maintain 
the richness of the acoustic information whilst incorporating 
the segments informed by grouping of these pixels using OB 
approaches. The improved classification accuracy achieved 
indicates that combining the benefits associated with PB and 

Fig. 7   Error matrices for Pixel based (PB), Object based (OB) image 
analysis and a combined approach showing overall, User’s and Pro-
ducer’s accuracies. Agreement charts on the left of the figure provide 
a visual representation of proportional class agreement. Total possi-
ble agreement is indicated by the larger rectangles. The black squares 
within represent the total agreement of each class with the model 

validation data and the relation of the dark squares to the diagonal 
line indicates marginal heterogeneity i.e. when the marginal totals are 
the same, the squares fall along the diagonal. Validation data used to 
construct the tables were derived from drop-video frames that were 
spatially independent of the model training data
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OB image analysis in this study may hold relevance for ben-
thic habitat mapping approaches elsewhere.

Whilst there will always be a need for expert interpre-
tation, automated approaches pose many advantages in 
terms of their ability to extract information from highly 
dimensional data that would be difficult to visually inter-
pret in a repeatable or timely fashion. In comparison to 
manual approaches, automated PB and OB classification 
approaches reduce subjectivity and allow for scalable work 
flows with limited impact on time and cost. As volumes 
of seabed mapping data available for habitat mapping 
applications increase with wider and less costly access to 
technology, there is a greater need for the development of 
repeatable and automated approaches that can take advan-
tage of the benefits that “big data” can provide in terms of 
understanding how patterns of habitat distribution can be 
linked to the processes that drive them. Well established 
PB methods have their roots in satellite land cover map-
ping and in a benthic habitat mapping context have been 

widely used to derive secondary products from gridded 
sonar returns at a range of spatial scales (Diesing et al. 
2016). PB methods have their advantages in terms of main-
taining the richness of the acoustic derived signal in the 
two dimensional plane, thus preserving the inherent spatial 
scale of the data (25 cm in this study). However, they are 
also prone to capturing artefacts. This is especially rel-
evant when we consider habitat mapping classes and how 
they are represented in high-resolution data now possible 
in shallow coastal waters where we may inherently capture 
elements of within class variability (Calvert et al. 2015; 
Micallef et al. 2012; Montereale-Gavazzi et al. 2016). The 
resolution we are now able to achieve is likely to be bet-
ter than the positional accuracy that can be achieved with 
groundtruth systems (Rattray et al. 2014). Thus we may be 
introducing modelling uncertainty by propagating errors 
associated with positional error and the sensor field of 
view when developing acoustic signatures for training or 
when validating classification results. OB approaches may 

Fig. 8   Classification maps of a pixel based (PB) classification, b object based (OB) classification, c hybrid classification

Fig. 9   Variable importance plots for each classification showing the relative contribution of variables for each benthic habitats per classifier
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Fig. 10   Partial dependence 
plots for the three variables 
(Object based mean backscatter 
intensity; Pixel based bathym-
etry; Object-based standard 
deviation of rugosity) of highest 
importance in the hybrid clas-
sification approach for each 
habitat class. Each point on 
the partial dependence plot is 
the average vote percentage in 
favour of the class across all 
observations, given a fixed level 
of the predictor variable. That 
is, plots provide an indication of 
the relative importance of each 
predictor to selection of a given 
class over the predictor’s range
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assist in better defining potential class boundaries when 
integrating with ground truth data (Mitchell et al. 2017). 
For example in this study validation locations deployed 
using a drop video system were targeted at the centre of 
selected segments for ground truth to limit the potential 
for confusion between class boundaries. Performance is 
also likely to be driven by the heterogeneity of the benthic 
habitats present. With the ability to collect sub meter reso-
lution data with MBES systems we are at a point where 
the pixel may be smaller than the benthic habitat feature 
of interest, thus potentially capturing within class varia-
tion. With increasing resolution of the imagery captured 
by remote sensors, the problem is likely to become more 
prevalent in both terrestrial and aquatic systems (Blaschke 
et al. 2014). When classifying remote sensing data at very 
high resolution, incorporating features that those pixels 
create rather than in isolation may provide advantages in 
terms of class discrimination.

OB image analysis approaches generalise the pixel-scale 
acoustic information into discrete segments that act as a 
defined minimum mapping unit (see review by Blaschke 
2010). These segments have the additional advantage that 
summary statistics can be extracted for each segment (cen-
tral tendency and variation). A distinct advantage is that 
segments are inherently linked to specific scales of features 
in the environment (Phinn et al. 2012). OB approaches 
provide new opportunities for exploring marine geomor-
phometry using seabed mapping data at multiple spatial 
scales (Lecours et al. 2016) that can in turn inform acous-
tic characteristics influencing habitat distributions or areas 
of high biodiversity significance. Object based segments 
also provide discrete regions to extract additional features 
from MBES data such as angular response which captures 
the acoustic backscattering strength with the angle of inci-
dence of the acoustic signal at the seafloor (Lurton 2010). 
Hasan et al. (2014) demonstrated how integrating angular 
response metrics for segmented features derived from the 
backscatter mosaic improved the predictive performance 
of habitat maps with best results integrating bathymetry, 
mosaic and angular response features in the classification 
process. OB features derived from the backscatter mosaic 
in the current study reduce the speckle and nadir noise 
common in backscatter mosaics, likely contributing to 
uncertainty in the automated classification process. One 
of the advantages underlying the Random Forests model 
is the ability to handle highly dimensional data allowing 
incorporation of a broad range of predictors with little or 
no impact on model robustness or performance.

The Random Forests approach provides the means to 
explore variable importance across models and the rela-
tionship of individual variables with benthic habitats. In 
the present study, variables of primary importance to clas-
sification accuracy were rugosity (SD), pixel bathymetry 

and backscatter (OB mean). However, the relative impor-
tance varied for each habitat type across the three models. 
For example, rugosity (SD) was a variable of high impor-
tance for characterizing the distribution of the seagrass 
class A. antarctica. The partial dependence plots reveal 
intermediate rugosity values having a high association 
with this class at the feature level. Feature rugosity (OB 
SD) appears to be capturing the fine-scale micro roughness 
captured in the imagery associated with the seagrass can-
opy and distinctive root complex thereby differentiating it 
from adjacent reef and sediment habitat which would be 
difficult using a pixel based approach alone. Feature rugo-
sity (OB SD) was also a variable of primary importance 
in the classification of algal dominated reefs, with high 
feature rugosity (OB SD) values likely capturing the struc-
ture of the complex granitic reef supporting macroalgae 
dominated habitats. It appears that this variable is captur-
ing these two relationships which are occurring at different 
spatial scales relevant to the benthic habitats observed.

Bathymetry was a variable of high importance in 
explaining habitat distributions, in particular for the two 
classes defined by the presence of seagrass classes and the 
filamentous algal mat. This is not surprising as bathymetry 
acts as an indirect proxy of light availability, which limits 
the depth at which the basic requirements for photosynthe-
sis can be met. In high energy environments depth is also 
a major factor in the exposure of benthic environments 
to wave action, acting as an important modifier of distri-
butions of biological communities (Rattray et al. 2015). 
Pixel based bathymetry was the only pixel variable that 
was more important than its object-based counterparts. 
As MBES systems are principally designed for capturing 
bathymetry, survey artefacts are typically less apparent 
than derivative products using analysis windows, espe-
cially where there are areas of limited relief.

Feature backscatter mean was also found to considerably 
improve class differentiation, especially for the no visible 
biota and microalgae classes where this variable contributed 
considerably more than bathymetry. The fact that the feature 
backscatter mean has the appearance of a noise removed 
version of the backscatter mosaic probably also contributed 
to the success of this feature. In effect, the speckle and nadir 
noise commonly displayed in backscatter mosaics are likely 
to be responsible for errors in the classification process, and, 
hence, reduce the relevance of the backscatter mosaic to the 
classification.

One of the main issues experienced when creating benthic 
habitat maps is accounting for spatial autocorrelation (SA) in 
the accuracy assessment points because errors in one loca-
tion can positively or negatively affect errors in nearby loca-
tions (Campbell 1981). Neighboring points along transects 
are inherently spatially autocorrelated due to the clustering 
of habitats (Kendall et al. 2005). SA is not necessarily an 
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issue for data input for training of the ensemble classifier 
in this study, it is important to ensure the validation data 
are statistically independent. Through our assessment of 
SA in the classified video footage from the AUV tracks, we 
found significant SA at distances up to ~ 250 m. By using 
bathymetry and backscatter derivatives to account for some 
of the spatial variation, we were able to decrease SA to 50 m 
in the validation dataset. Stratification of drop video sam-
ples across the cluster analysis results of the OB segments 
with a minimum distance of 50 m allowed us to capture the 
acoustic variability across the site with observation data and 
remove any effects of SA.

Conclusion

This study highlights the potential of combining the discrim-
inatory power of PB and OB image analysis approaches for 
benthic habitat mapping studies. We show that classification 
accuracy can be significantly improved using a combined 
approach rather that OB or PB methods alone. To our knowl-
edge this is the first time PB and OB approaches have been 
integrated for benthic habitat mapping. These approaches are 
generally performed in isolation and more testing is required 
to determine whether the benefits observed in this study have 
similar advantages for benthic habitat mapping studies else-
where. We also highlight that bathymetry and backscatter 
data both contribute as important variables in modelling the 
distribution of the benthic habitats observed. The ensem-
ble approach employed has flexibility in terms of variables 
that can be used in the modeling process. Whilst generally 
benthic habitat mapping studies focus on the use of seabed 
mapping products there are clear opportunities to integrate 
variables such as MBES water column and oceanographic 
variables into the classification process in future studies. 
Machine learning approaches provide a way forward, capa-
ble of handling large data volumes and a framework for 
repeatable and objective classification approaches.
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