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Abstract Igneous rocks in the northern margin of the

South China Sea (SCS) have been identified via high res-

olution multi-channel seismic data in addition to other

geophysical and drilling well data. This study identified

intrusive and extrusive structures including seamounts and

buried volcanoes, and their seismic characteristics. Intru-

sive features consist of piercement and implicit-piercement

type structures, indicating different energy input associated

with diapir formation. Extrusive structures are divided into

flat-topped and conical-topped seamounts. Three main

criteria (the overlying strata, the contact relationship and

sills) were used to distinguish between intrusive rocks and

buried volcanos. Three criteria are also used to estimate the

timing of igneous rock formation: the contact relationship,

the overlying sedimentary thickness and seismic reflection

characteristics. These criteria are applied to recognize and

distinguish between three periods of Cenozoic magmatism

in the northern margin of the SCS: before seafloor

spreading (Paleocene and Eocene), during seafloor

spreading (Early Oligocene–Mid Miocene) and after ces-

sation of seafloor spreading (Mid Miocene–Recent).

Among them, greater attention is given to the extensive

magmatism since 5.5 Ma, which is present throughout

nearly all of the study area, making it a significant event in

the SCS. Almost all of the Cenozoic igneous rocks were

located below the 1500 m bathymetric contour. In contrast

with the wide distribution of igneous rocks in the volcanic

rifted margin, igneous rocks in the syn-rift stage of the

northern margin of the SCS are extremely sporadic, and

they could only be found in the southern Pearl River Mouth

basin and NW sub-sea basin. The ocean–continent transi-

tion of the northern SCS exhibits high-angle listric faults,

concentrated on the seaward side of the magmatic zone,

and a sharply decreased crust, with little influence from a

mantle plume. These observations provide further evidence

to suggest that the northern margin of the SCS is a magma-

poor rifted margin.

Keywords Igneous rock � Seismic imaging � Passive
continental margin � South China Sea

Introduction

Magmatism plays an important role in plate reconstruction

and regional tectonic evolution. Recently, considerable

attention has been focused on magmatism in passive con-

tinental margins. Passive continental margins can be divi-

ded into magma-rich volcanic continental margins, such as

the margins located along the South Atlantic Ocean and the

Norwegian margin (White and McKenzie 1989; Planke

et al. 2000; Franke et al. 2014), and magma-poor (non-

volcanic) rifted margins, such as the Alpine Tethys and

Iberia-Newfoundland rifted margins (Dean et al. 2000;

Péron-Pinvidic et al. 2007; Mohn et al. 2012; Franke et al.

2014). Continued research on magmatism and magmatic

processes is important because it improves our under-

standing of continental rifting, seafloor spreading and the
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formation of deep water basins along passive margins (Yan

et al. 2006; Shi and Yan 2011).

The early rifting history of the South China Sea (SCS)

spans from the Late Cretaceous to the Early Paleogene. Late

Mesozoic to Recent igneous rocks have been found in the

northern margin of the SCS (Zhou and Li 2000; Zhou et al.

2006; Yan et al. 2006; Fig. 1). A lithological study has been

carried out on drilled and dredged rock samples (Kudrass

et al. 1986; Ru and Pigott 1986; Rao and Li 1991; Li and Rao

1994; Zhou et al. 2005; Yan et al. 2006), but shortage of

samples limited the study range in space. Geophysical

methods are crucial in order to provide a regional

perspective. As indicated by gravitational and magnetic

anomalies, igneous rocks are considered to be widely dis-

tributed in the SCS (Briais et al. 1993; Yao et al. 1994; Wan

et al. 2006; Meng et al. 2009; Li et al. 2010). Furthermore,

igneous rocks were found in more than 20 wells on the

northern margin of the SCS (Ru and Pigott 1986; Rao and Li

1991; Li and Rao 1994). However, the pre-existing seismic

analyses are insufficient and unsystematic, leading to the

ambiguity about the detailed features, distribution and for-

mation time of the igneous rocks in the SCS area.

This study focuses on identifying the seismic charac-

teristics and distribution of Cenozoic igneous rocks in the

Fig. 1 Tectonic framework of the South China Sea illustrating the

distribution of igneous rocks and major Cenozoic rifted basins

(modified after Ru and Pigott 1986; Tapponnier et al. 1986; Lüdmann

and Wong 1999; Yan et al. 2006; Sun et al. 2009; Yan et al. 2014).

SWSCS Southwest South China Sea, NWSCS Northwest South China

Sea, ESCS:East South China Sea
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northern margin of the SCS (Fig. 2). A large number of

seismic profiles and drilling data, obtained from 2002 to

2011, are re-analyzed in order to deepen our understanding

of magmatism in the northern SCS.

Geological background

The SCS is located at the intersection of the Eurasian plate,

the Pacific plate and the Indo-Australian plate, making it one

of the largest marginal sea basins of the western Pacific.

Boundary types vary in each direction (Fig. 1): a broad

passive margin to the north, a collision zone along the

Palawan trough to the south, the narrow Indo-china shelf

with large strike-slip faults to the west and the subduction

zone along the Manila trench to the east (Tapponnier et al.

1982, 1986; Yan and Shi 2007; Clift et al. 2008). Several

models have been proposed to interpret the opening of the

SCS (Taylor and Hayes 1983; Tapponnier et al. 1982, 1986;

Chung et al. 1997; Dong et al. 2014). Continental rifting

likely began in the Late Cretaceous or the early Paleocene

(Holloway 1982; Taylor and Hayes 1983; Hinz and Schlüter

1985; Lee and Watkins 1998). This has been confirmed by

the recent deep tow magnetic survey and IODP expedition

349 in the SCS (Li et al. 2014).

The northern margin of the SCS has been influenced by

Pacific plate subduction in the Mesozoic and rifting in the

Cenozoic (Taylor and Hayes 1983; Charvet et al. 1994; Shi

and Li 2012; Franke et al. 2014). Since the Late Cenozoic,

several geological events, such as the Indochina block

extrusion (Tapponnier et al. 1982, 1986), seafloor spread-

ing (Briais et al. 1993; Barckhausen and Roeser 2004), the

SCS subduction beneath the Manila trench (Holloway

1982; Lüdmann et al. 2001), and the Taiwan orogenic

event (Jahn et al. 1990; Zou 1993), have resulted in

intensive magmatism and tectonic activity (Pigott and Ru

Fig. 2 Tectonic units of the northern margin of the SCS. Black seismic profiles are used in this study. Green bold lines are portions of seismic

data shown in this paper. Red circles show the locations of ODP/IODP site 1148, and industrial borehole BY 7-1-1 (Zou et al. 1995; Qin 2007)
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1994). Igneous rocks, formed intermittently from the Late

Mesozoic to recent, have been found extensively along the

northern SCS margin. The drilled rock samples provide

evidence for different lithological compositions with age

(Fig. 1). Felsic igneous rocks comprise the majority of

those formed during the Mesozoic, however, the interme-

diate-basalt component subsequently increased through the

Paleocene and Eocene. Since the Miocene, mafic basalt is

the primary type of igneous rock observed along the

northern margin of the SCS (Yan et al. 2006).

Data and methods

An extensive multi-channel seismic reflection dataset

extending from the continental shelf to the oceanic basin of

the study areas was acquired from 2002 to 2011 (Fig. 2).

Seismic processing of this dataset included amplitude

compensation, multiple attenuation, velocity analysis,

correction, and finite-difference migration. The Common

Middle Point (CMP) spacing is 12.5 m and the frequency

bandwidth ca. 30–45 Hz, with vertical resolution ca. 25 m

(Sun et al. 2011).

Seismic data provides a powerful alternative method for

studying magmatism, because buried volcanic structures

can be visualized with a relatively higher resolution

(\40 m) in two or three dimensions. The inner seismic

facies can be mapped and help to investigate various vol-

cano-sedimentary processes (Davies et al. 2002; Hansen

2006; Jackson 2012).

Strong impedance contrast exists between igneous rocks

and sedimentary rocks. Igneous rocks, particularly mafic

rocks, generally display high amplitude at the crest and

chaotic facies inside. Given the uncertainty in seismic

interpretation, a typical profile (Fig. 3A) in the northern

East China Sea Shelf basin, calibrated against borehole

data, was used as a reference for this study (Lee et al.

2006). The well E-1 penetrated the crest of a vertical

intrusive structure in the profile, manifesting as a conical

and massive blanketing zone with a strong crest and

chaotic or transparent seismic facies inside the structure.

The intrusion had clearly disturbed the stratigraphic

structure leading to slight uplift of the surrounding sedi-

ments, and those located above the crest of the intrusion.

Steeply-dipping strata terminate against the flanks of the

intrusion, and overlying layers arch over the crest. These

manifestations are typical seismic characteristics of

igneous rocks and are used in this study as interpretation

criteria to identify such rocks.

Seismic sequences

Twelve seismic horizons have been identified in the

Cenozoic strata (Fig. 4), S65.5, S53.5, S32, S30, S23.3,

S18.5, S15.5, S13.5, S10.5, S5.5, S2.6 and the seafloor

(0 Ma), and verified against biostratigraphy from the

nearby industrial borehole BY7-1-1 and academic borehole

ODP 1148 (Wang et al. 2000). This dataset enables us to

study the characteristics of igneous rocks in detail.

The seismic sequences bounded by the horizons have

been named according to two different naming systems in

the QDNB and the PRMB, due to historical reasons. The

two regions have undergone a range of different tectonic

events. Seven important horizons are introduced as follows:

(1) S63.5 and S53.5 mark the top of the basement of the

PRMB and the QDNB, respectively, and indicate the initi-

ation of continental rifting, corresponding to the Shenhu

Event; (2) S32 marks the initiation of seafloor spreading,

corresponding to the Nanhai Event. Regional angular

unconformities with the underlying strata developed at this

time; (3) S23.3 formed as a result of the Baiyun Event,

when spreading in the SCS jumped southward and strong

subsidence occurred in the Baiyun Sag in the PRMB. This

horizon marks the transitional surface between the syn-rift

and post-rift stage (Wei et al. 2001). The underlying syn-rift

deposition was controlled by early syn-rift faulting, while

the overlying post-rift deposition underwent seafloor

spreading and was exposed to the resulting thermal subsi-

dence; (4) S15.5 marks the end of seafloor spreading in the

SCS. Chaotic seismic reflections are recorded in localized

areas near this horizon, probable indication of igneous

rocks; (5) S10.5 corresponds to the shelf-slope unconfor-

mity in the QDNB, while the sediments show conformity in

the PRMB; (6) S5.5 marks the beginning of the neo-tec-

tonics period, corresponding to the Dongsha Event and the

Taiwan Orogeny in the northeastern margin of the SCS.

These events are associated with block rotation, slight

folding, erosion, frequent magmatic activity and angular

unconformities.

Seismic characteristics of the igneous rock
structure

Combining the identification criteria outlined above and

their geometric appearance, the igneous rocks of the deep

water basins in the northern SCS can be investigated and

distinguished with regard to their extrusive or intrusive

nature.
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Extrusive structures

In seismic profiles, extrusive structures form seamounts

and buried volcanoes. Seamounts distributed in the north-

ern margin of the SCS can be further classified into two

types based on morphology: flat-topped seamounts and

conical-topped seamounts.

A typical flat-topped seamount is characterized by a flat

and broad top, but a steep slope (Fig. 5). The ratio between

the width of the flat top and the height of the slope above

the seafloor is approximately 1:1. Generally, sedimentary

layers develop on the top of this type of seamount. The

strata gradually thin from the center to the edge of the flat-

topped platform with increasing slope, and pinch out at the

junction of the platform and the slope. A higher magnetic

anomaly can be observed across Fig. 5, suggesting that the

seamount might be of basaltic nature rather than conti-

nental crust or a shallow water sandstone deposits (Fig. 5).

The conical-topped seamounts are suggested to be

formed by the strong central eruption of a volcano (Planke

et al. 2000). Clear magmatic conduits can be recognized in

this type of seamount (Fig. 6). In contrast with flat-topped

seamounts, the conical-topped seamounts have a high and

sharp head which is exposed above seafloor. The ratio

between the width of the conical top and the height of the

seamount is roughly 1:6. The size and shape of conical-

topped seamounts varies greatly according to the eruption

energy. The volcanic eruption leads to disordered internal

reflections in the seamount and uplift and steeply dipping

adjacent strata (Fig. 6). We speculate that this phenomenon

is associated with violent and rapid eruptions. Compared

with flat-topped seamounts, conical-topped seamounts are

likely to be relatively recent structures, as the conical top

implies the absence of long term erosion. There are 55

conical-topped seamounts across the entire northern mar-

gin of the SCS, making them the dominant type of extru-

sive structure in this area. They are predominantly

distributed along faults.

Intrusive volcanic structures

Intrusive structures can be further divided into piercement

and implicit-piercement types, based on the intrusive

energy. Igneous intrusions can form concentric folds in the

overlying strata (Fig. 3B), with obvious uplift of the strata

at the flanks. The seismic characteristics of these structures

are: internal chaotic, high frequency and low amplitude

seismic facies. Compared with the implicit-piercement

Fig. 3 Seismic profile of the northern East China Sea Shelf Basin

showing a vertical intrusion (A) and the typical magmatic structures

in the northern SCS (B, C). The vertical intrusion in (A) appears to

have uplifted the overburden and upturned the host rocks (modified

after Deniz et al. 2010). Location of the seismic section displayed in B

is shown in Fig. 2. White plus represents crystalline basement
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type intrusion which will be introduced below, the

piercement-type intrusion usually indicates higher energy.

The energy of magma intrusion is so strong that it can

reach the ultimate fracture strength of the overlying strata,

but is not able to pierce all the overlying strata. Therefore,

many small-scale normal faults often develop at the top of

intrusive structures.

There is a special piercement type intrusive rock in

the study area, characterized by a star-shaped head and

chaotic internal reflection (Fig. 7). These structures are

distributed widely in the Xisha area. Most of the star-

shaped heads are found in the Yinggehai Formation, and

partially in the Huangliu Formation, clearly indicating

that they developed later than these formations. We

speculate the formation of these structures involves a

rapid intrusion, in which the magma intrudes vertically

upward into the sedimentary layers in such a very short

period of time, that there is no significant uplift on both

sides of the adjacent strata. There are 22 intrusive

structures with star-shaped head in the study area, mostly

distributed in the eastern Xisha area and the western

PRMB.

In contrast to the piercement type structure, the implicit-

piercement structure has weaker magmatic energy, evi-

denced by the extensive gentle fluctuation of the overlying

strata, especially the top of the basement. Inside the

intrusion, the seismic facies are high amplitude chaotic.

The interface between the intrusion and the overlying strata

also show strong continuity.

Differences between intrusions and buried volcanoes

A buried volcano refers to a volcano that previously

erupted above the seafloor, and was subsequently covered

by sediments. Generally, the seismic characteristics of

piercement type intrusions are similar to that of buried

volcanoes. The main differences between intrusive struc-

tures and buried volcanoes in the seismic profiles are (1)

the overlying strata above intrusive rocks are arched with a

similar deflection to the intrusive crest (Fig. 8C, D)

induced by the doming effect of the intrusion; (2) as for the

contact relationship between the strata and the igneous

rock, obvious angular unconformities can be found at the

volcano-sediment interface (Fig. 8A, B), but a conformable

bFig. 4 Seismic profile crossing the Qiongdongnan basin (A) and

Stratigraphic table with sequences, unconformities and major tectonic

events affecting the South China Sea (B; after Wang et al. 2013a, b;

Sun et al. 2013). Location of the seismic section displayed in (A) is
shown in Fig. 2. Q Quaternary, PLE Pleistocene, PLI Pliocene, LD

Ledong, YGH Yinggehai, WS Wanshan, HL Huangliu, YH Yuehai,

MS Meishan, HJ Hanjiang, SY Sanya, ZJ Zhujiang, LS Lingshui, ZH

Zhuhai, YC Yacheng, EP Enping, WC Wenchang, SH Shenhu, LT

Lingtou

Fig. 5 Seismic profile (A) and its schematic illustration (B) of a flat-topped seamount in the northern SCS. Magnetic anomaly along this profile

is shown. Location of the seismic section displayed in (A) is shown in Fig. 2
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contact usually develops at the intrusion-sediment inter-

face; and finally; (3) intrusions generally form at a rela-

tively slow pace in comparision to the formation of a

volcano, and thus sills can usually be found on the top and/

or in the surrounding area of the intrusive structure

(Figs. 3B, 8C).

Fig. 6 Seismic profile (A) and its schematic illustration (B) of a conical-topped seamount. Location of the seismic section displayed in (A) is
shown in Fig. 2. Legend is the same as that in Fig. 5

Fig. 7 Seismic profile (A) and its schematic illustration (B) of a star-shaped head intrusive rock. Location of the seismic section displayed in

(A) is shown in Fig. 2. The legend is the same as that in Fig. 5
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Timing of igneous rock formation

Seismic characteristics contain chronological information

pertaining to specific events and can be used to determine

the approximate formation time of igneous bodies,

although there is still controversy surrounding this method

of determination using seismic data. The timing of igneous

rock formation can be determined by identifying and dating

the onlap of intrusion-related forced folds onto the flanks of

of the intrusion (Trude et al. 2003; Svensen et al. 2004;

Hansen et al. 2008). The contact relationship, sedimentary

thickness and seismic reflection contrast are the three cri-

teria used in this study to estimate the formation time of

igneous rocks.

Contact relationship

The most obvious feature in the contact relationship

between igneous structures and the surrounding strata is

angular unconformity. The igneous structures are covered

by overlying strata, which are uplifted as a result of the

intrusion. The strata deposited after magma intrusion

generally form distinct angular unconformities on the

flanks of the intrusion-related forced folds. The section

shown in Fig. 9 (ii0 in Fig. 2) illustrates that uplift occurs in
the strata adjacent to the igneous rock, below horizon

S15.5, indicating that this event was triggered by magma-

tism that occurred at least 15.5 Ma. Further analysis

reveals that the strata between S10.5 and S15.5 were also

uplifted by the intrusion, while the overlying strata above

S10.5 developed obvious on-lap features above the uplifted

S10.5, and were apparently unaffected by the magmatism.

Consequently, this igneous event could be estimated to

have taken place at approximately 10.5 Ma.

Sedimentary thickness

The seismic profile in Fig. 10 is located in the Xisha uplift.

The strata overlying igneous structures are relatively thin

on top of these structures and thick at their flanks (Fig. 10).

The influence of differential compaction indicates that the

igneous rocks formed before deposition of the Meishan

Formation. Therefore, the occurrence of thickness varia-

tions in intrusion-related forced folds can be applied to

evaluate the timing of magmatism.

In contrast to Fig. 10, the seismic section in Fig. 9

displays a different thickness pattern of the overlying

strata. The Meishan Formation (Fig. 9) is relatively uni-

form in thickness both on top and in the flanks of the

igneous structure. This indicates that the magmatism

occurred after the deposition of Meishan Formation, at

least 10.5 Ma ago.

Seismic reflection contrast

Under certain conditions, strata might have contrasting

characteristics on either side of an igneous structure that

can point to the timing of rock formation. This is

Fig. 8 Seismic profiles showing buried volcanoes (A, B) and intrusive structures (C, D). Location of the seismic section displayed in (A, B, C,
D) is shown in Fig. 2
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particularly the case for structures close to the continental

shelf or slope that have a sediment source mainly coming

from the continental margin. If a volcano formed at an

earlier time, it would have obstructed sediment transport,

resulting in different seismic characteristics in the strata on

both sides of the structure. In this case, it is difficult to

evaluate the timing of igneous rock formation using the

contact relationship and sedimentary thickness. Contrasting

seismic reflections on both sides of the igneous structure

may be an alternative method to determine the timing of

the igneous event. When the seismic reflections are alike, it

is suggested that the igneous event may have taken place

after the deposition of the punctured strata, and vice versa

(Figs. 6, 11).

Fig. 9 Seismic profile (A) and its schematic illustration (B). Location of the seismic section displayed in (A) is shown in Fig. 2

Fig. 10 Seismic profile (A) and its schematic illustration (B). Location of the seismic section displayed in (A) is shown in Fig. 2
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The volcanoes of the northwestern subbasin (Fig. 11)

experienced no uplift in the strata adjacent to the flanks of

the igneous structure. We therefore estimate that the vol-

canoes formed prior to sediment deposition. Most of the

sediment in this area originates from vertical deposition in

the oceanic basin, leading to no difference in the seismic

characteristics of the sediments on either flank of the

structure. The timing of volcano formation therefore cor-

responds to onset of the seafloor spreading in the North-

western basin.

These age estimations, based on seismic profiles, are

evaluated and verified by comparison against radioactively

dated extrusive seamounts. Although the seismic profiles,

studied herein, do not capture these extrusive seamounts,

they are located very close to or surrounded by our seismic

data. We can see from Fig. 15A, seamount 1 is located at

S04-12, near the Zhongsha uplift. According to our seismic

data surrounding seamount 1, this seamount is younger

than 5.5 Ma (orange areas in Fig. 15A), while radioactive

dating indicates that this seamount is younger than 5.5 Ma

(Table 1). Therefore, it is consistent with our results.

Seamounts 2, 3 are Late Miocene-Recent igneous rocks

(Yan et al. 2006) located in the NW Subbasin and the SCS

basin respectively. They are close or surrounded by

igneous rocks after 5.5 Ma (orange areas in Fig. 15A). This

is also consistent with our results from seismic age dating.

Stratal architecture in relationship to extrusive
and intrusive structures in the northern SCS

Large scale extrusive structures generally cause high angle

uplift in the adjacent sedimentary rocks. The strata

deposited after extrusion are usually horizontal or slightly

upward-sloping against the flanks of the igneous structure.

An on-lap boundary exists between the strata formed

Fig. 11 Seismic profile (A) and its schematic illustration (B). Location of the seismic section displayed in (A) is shown in Fig. 2
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Table 1 Chronological history of igneous rocks of the SCS and surrounding areas, as reviewed from the existing literature

Station Lon. (�E) Lat. (�N) Age (Ma) Area Source

V36D10 115.6 14 3.49 Nansha Taylor and Hayes (1983)

D1 111.97 13.37 0.4 Nansha Zhou et al. (2005)

D3 111.17 9.95 4.3 Nansha Zhou et al. (2005)

1143 113.28 9.36 \2 Southern margin Wang et al. (2000)

D3 111.17 9.95 4.3 Southern margin Bellon and Rangin (1991)

SO23-37 116.62 12.08 0.4 Southern margin Kudrass et al. (1986)

SO23-38 118.3 11.73 0.5 Southern margin Kudrass et al. (1986)

SO23-40 118.82 12.35 2.7 Southern margin Kudrass et al. (1986)

SO23-15 119.37 8.17 14.7 Southern margin Kudrass et al. (1986)

SO23-23 115.87 9.9 T3-J1(?) Southern margin Kudrass et al. (1986)

SO23-24 115.83 9.88 T2(?) Southern margin Kudrass et al. (1986)

YJ21-1-1 112.3 20.45 51.6 ± 8.3 PRMB Rao and Li (1991)

711 114 19.65 17.1 ± 2.5 PRMB Zou et al. (1995)

BY7-1-1 114 19.65 17.6 ± 1.8 PRMB Rao and Li (1991)

BY7-1-1 114 19.65 35.5 ± 2.8 PRMB Rao and Li (1991)

P1611 114.85 20.48 41.2 ± 2.0 PRMB Zou et al. (1995)

3321 114.3 21.1 24.3 ± 1.3 PRMB Zou et al. (1995)

L1112 115.8 20.77 27.2 ± 0.6 PRMB Zou et al. (1995)

L411 115.5 20.85 43.2 ± 0.7 PRMB Zou et al. (1995)

H2111 115.31 21.32 41.1 ± 0.7 PRMB Zou et al. (1995)

HZ27-1-1 115.4 21.26 57.1 ± 2.5 PRMB Rao and Li (1991)

L111 116.05 21.9 32 ± 1.4 PRMB Zou et al. (1995)

L111 116.05 21.9 33.6 ± 0.7 PRMB Zou et al. (1995)

L1511 116.49 21.46 45.1 ± 1.6 PRMB Zou et al. (1995)

1148 116.57 18.84 \1 PRMB Wang and Chen (1999)

LH4-1-1 115.55 19.84 43.2 ± 0.7 PRMB Rao and Li (1991)

WSH-2 109.13 21.05 5.9 ± 1.2 Weizhou island Jia et al. (2003)

SK-1 109.6 21.7 2.4 ± 0.1 Weizhou island Jia et al. (2003)

PB-2 103.69 22.99 1.1 ± 0.1 Weizhou island Jia et al. (2003)

YL-7 109.97 22.28 99.8 ± 2.4 Weizhou island Jia et al. (2003)

TW36 121.483 22.666 1.9 Taiwan segment McDermott et al. (1993)

TW40 121.483 22.666 2.9 Taiwan segment McDermott et al. (1993)

Ca2 122.1541 18.214 1.27 Philippines McDermott et al. (1993)

Ca11 122.1541 18.214 0.32 ± 0.05 Philippines McDermott et al. (1993)

Ca9 122.1541 18.214 0.64 ± 0.19 Philippines McDermott et al. (1993)

47A 120.596 16.4023 2.9 Luzon segment McDermott et al. (1993)

38A 120.596 16.4023 2.8 Luzon segment McDermott et al. (1993)

PL41 120.596 16.4023 0.8 Luzon segment McDermott et al. (1993)

B5 121.936 20.371 0.01 Philippines McDermott et al. (1993)

B82 121.936 20.371 0.45 ± 0.13 Philippines McDermott et al. (1993)

B88 121.936 20.371 0.76 ± 0.04 Philippines McDermott et al. (1993)

B93 121.936 20.371 1.07 ± 0.16 Philippines McDermott et al. (1993)

B46 121.936 20.371 2.32 Philippines McDermott et al. (1993)

B86 121.936 20.371 1.71 Philippines McDermott et al. (1993)

B80 121.936 20.371 2.96 Philippines McDermott et al. (1993)

756 108.333 11.5 17.6–7.9 Indochina peninsula Hoang et al. (1996)

804 107.944 11.25 8–3.4 Indochina peninsula Hoang et al. (1996)

63 108.038 12.666 5.8–1.67 Indochina peninsula Hoang et al. (1996)
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before and after the eruption, as shown in Fig. 12. The

shape of the extrusive body may be flat-topped or conical-

topped. Before extrusion, the strata on both sides have

almost the same thickness; however, the thickness may

vary after extrusion, depending on the sedimentation pat-

terns. When the volcano is located in an oceanic basin, the

thickness of the strata on both sides will be the same,

dominated by vertically-deposited sediments. However, if

the volcano is located in the continental shelf or slope, the

thickness of strata deposited on the continental side of the

volcano will be thicker than that strata deposited on the

ocean side of the volcano, resulting from higher sediment

supply from the continental margin.

Regarding intrusive structures, both large and small

scale structures have been found in the study area. In large-

scale intrusive structures, the pierced strata show obvious

uplift, while the overlying strata are uplifted in a similar

manner to that of the underlying intrusive rock. The strata

deposited after intrusion are gently uplifted or show a slight

angular unconformity with the underlying strata. As for

small scale intrusive structures, the magma conduit can

easily be identified. The lower sedimentary strata are

pulled up at a relatively small angle and have the same

thickness on both sides of the intrusion. The intrusive

structures have a diverse shape, such as mushroom, tower,

door, star etc. A conformable surface or a very slight

angular unconformity exists at the contact between the

strata deposited before and after the intrusion.

As an example, the large scale intrusive structure of

Fig. 13 pierced and pulled up the lower sedimentary strata.

The dip of the strata changes dramatically above and below

horizon S5.5. The overlying strata are uplifted and form a

conformable contact with the underlying strata. Therefore,

the timing of this intrusion is suggested to be at least

5.5 Ma.

Discussion

Sedimentation processes on flat-topped seamounts

Sediments are often found on top of extrusive structures,

especially flat-topped seamounts. Two processes may be

used to explain their deposition. One is that most of the

flat-topped seamounts were ancient volcanoes which sub-

sequently sunk. If the depth of the magma eruption was

higher than the pressure compensation depth (PCL),

explosive volcanism could occur and produce volcani-

clastic sediments (e.g., Yan and Shi 2009). Volcanic

eruptions could become explosive due to interaction of wet

sediments and magma, forming internally chaotic volcanic-

sedimentary complexes at the top. Subsequently, long-term

Table 1 continued

Station Lon. (�E) Lat. (�N) Age (Ma) Area Source

121 108 13.983 4.3–0.8 Indochina peninsula Hoang et al. (1996)

516 107.234 10.932 0.88–0.44 Indochina peninsula Hoang et al. (1996)

R-2 109.014 10.158 0.8–0 Indochina peninsula Hoang et al. (1996)

S04-11 116.099 16.343 7.91 ± 0.19 SCS basin Yan et al. (2008)

S04-12-10 113.159 15.572 4.78 ± 0.11 SCS basin Yan et al. (2008)

S04-12-11 113.159 15.572 5.74 ± 0.13 SCS basin Yan et al. (2008)

S04-12-18 113.159 15.572 5.18 ± 0.17 SCS basin Yan et al. (2008)

S04-12-20 113.159 15.572 4.76 ± 0.12 SCS basin Yan et al. (2008)

S04-12-21 113.159 15.572 4.94 ± 0.11 SCS basin Yan et al. (2008)

S04-14-1 115.384 14.039 6.33 ± 0.20 SCS basin Yan et al. (2008)

S08-69-1 112.534 10.321 3.8 ± 0.1 SCS basin Yan et al. (2008)

8 116.983 17.617 13.8–14.1 SCS basin Wang et al. (1984)

9 116.5 14.8 9.5–9.9 SCS basin Wang et al. (1984)

10 115.583 14 3.49 SCS basin Wang et al. (1984)

DR01 116.18 15.75 11–6 SCS basin Pautot et al. (1990)

DR02 115.96 15.3 11–6 SCS basin Pautot et al. (1990)

DR03 116.21 14.95 8–6 SCS basin Pautot et al. (1990)

NO.8 116.98 17.75 13.95 SCS basin Jin (1989)

NO.9 116.52 15 9.7 SCS basin Jin (1989)
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erosion would eventually shape the flat top of the volcano.

Another possibility is that the flat-topped seamount was a

crater colonized by corals near sea level. A large number of

dead corals would have accumulated in the centre of crater,

which led to an atoll with a flattened top. Shallow-water

carbonates may then have been deposited, evolving into

huge, flat-topped seamounts (Zhang et al. 2007).

Distribution of igneous rocks in the northern margin

of the SCS

Based on boreholes of the PRMB in the northern SCS, Zou

et al. (1995) revealed the relationship between igneous

rocks and its surrounding strata and combined his obser-

vations with isotope dating data. Zou et al. (1995) divided

Fig. 12 Seismic profile over large scale extrusive structure (A); B, C stratigraphic architecture before and after magmatism. Location of the

seismic section displayed in (A) is shown in Fig. 2
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Cenozoic magmatism into eight periods: Paleocene,

Eocene, Oligocene, Early Miocene, Middle Miocene, Late

Miocene, Pliocene and Quaternary (Fig. 14).

We divide the Cenozoic magmatism of the study area into

the three periods based on their seismic characteristics

(Fig. 15A): before seafloor spreading (Paleocene and

Eocene), during seafloor spreading (Early Oligocene–Mid

Miocene) and after seafloor spreading (Mid Miocene–Re-

cent), respectively. Almost all Cenozoic igneous rocks are

concentrated below the 1500 m bathymetric contour. The

distribution of igneous rocks is also supported by magnetic

anomalies, which suggests that the major Cenozoic igneous

rocks in the northernmargin of the SCS are highly consistent

with a high-value magnetic anomaly zone (Fig. 15B). As

shown in Fig. 15B, the highest magnetic anomaly, approx-

imately 100nT, is located near the NW Subbasin.

Paleocene and Eocene (before seafloor spreading;

Fig. 16A): During the rifting and before seafloor spreading,

igneous rocks were sporadically emplaced in the southern

part of the Dongsha uplift and the NW subbasin, and could

not be found in the Xisha areas in seismic reflection pro-

files, possibly because the rifting stage propagated from

east to west, and the subsequent stronger extension of the

eastern SCS compared to the western SCS. Igneous rocks

did not form in the northwestern margin of the SCS at this

time, which is consistent with the period of magmatic

quiescence in the Paleogene. Small-scale magmatism

occurred during this period in the eastern coastal rifted

basin (Zhou and Li 2000). The dispersed Cenozoic mag-

matism over the SCS margins differed greatly from the

large igneous provinces in volcanic margins, where mantle

plumes had played a significant role in facilitating or

driving continental rifting and breakup. However, no evi-

dence of surface igneous rocks indicates the presence of a

mantle plume since rifting initiated in the study area

(Flower et al. 1998).

Early Oligocene to Mid Miocene (during seafloor

spreading; Fig. 16B) Magmatism increased intensively

Fig. 13 Seismic profile over

large scale intrusive structure

(A); B, C stratigraphic

architecture before and after

magmatism. Location of the

seismic section displayed in

(A) is shown in Fig. 2
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during the Eocene but was still limited in extent and gen-

erally distributed on the continental slopes, such as the

southwestern part of the northeastern SCS and the Xisha

areas. Igneous rock formation was important and mainly

distributed along the fault junction surrounding the Xisha

and Zhongsha uplift (Fig. 16B). Although the level of

activity during seafloor spreading remains controversial,

we propose that magmatism was active in the northern

margin of the SCS. Using the criteria mentioned above, we

have identified the magmatism related to seafloor spreading

of the SCS (Fig. 14) from the sedimentary sequence

deposited between S30 and S15.5. These sediments have

been pulled up by intrusions, while the overlying strata did

not record any obvious influence from these intrusions. We

suggest that magmatism was quite active for the period

characterized by seafloor spreading in the SCS, as opposed

to Yan et al. (2006). Additional evidence to support

increased magmatic activity during this time includes nine

layers of lower Miocene alkaline basalt and basaltic tuff

lava that were found in the well BY7-1-1 in the PRMB.

Their K–Ar age is 17.1 ± 2.5 and 20.2 ± 3.0 Ma, for the

levels at 2429 and 2432 m, respectively (Zou et al. 1995).

Furthermore, one seamount, located in the northern margin

of the SCS, was dated to 18.61 ± 4.89 Ma using the K–Ar

dating method too (Li et al. 1991).

Lithological evidence and seismic tomography suggest

that the Hainan plume, which has a deep mantle origin is

beneath the Hainan Island (Hart et al. 1992; Hauri et al.

1994; Lebedev et al. 2000; Lebedev and Nolet 2003; Yan

and Shi 2007; Zou and Fan 2010; Campbell and O’Neill

2012; Wang et al. 2013a, b; Montelli et al. 2006). The

plume-induced magmatism started at ca. 30 Ma (Yeh et al.

2010), which implies that the head of the Hainan plume

likely impinged on the base of the lithosphere during sea-

floor spreading (Wang et al. 2013a, b; Ho et al. 2000).

Mid-Miocene to Recent (after seafloor spreading;

Fig. 16C, D) Magmatism during this last period is widely

distributed and further divided into two stages with dif-

ferent scales. The first stage dates from 15.5 to 5.5 Ma

(Fig. 17C), after the cessation of seafloor spreading and

prior to neo-tectonic activity. This stage is characterized by

a few small igneous structures, scattered in the Xisha uplift

and the NW subbasin. Conversely, the second stage of

magmatism, which began at 5.5 Ma, and the igneous

structures associated with this stage were distributed all

over the study area (Fig. 16D). Individual igneous struc-

tures associated with this stage are smaller in the western

area than in the eastern area. Igneous rocks are mainly

concentrated along deep-faults or in areas surrounded by

several faults (Fig. 16D). A great number of igneous rocks

erupted again after seafloor spreading (Fig. 6). Magma in

the former conduit or magma chamber led to new extensive

magmatism since 5.5 Ma. The igneous structures mainly

strike ENE-WSW in the PRMB, mostly in the lower slope.

We speculate that these widely distributed igneous rocks

are closely related to the Dongsha event. The magma was

underplated beneath the bottom of the lower crust and

formed a high velocity layer which altered the isostasy of

the crust. This resulted in uplift of the upper crust and

Fig. 14 Igneous rock formed during seafloor spreading (A) and its schematic illustration (B). Location of the seismic section displayed in (A) is
shown in Fig. 2

Fig. 15 A Distribution of three periods of magmatism in the northern

SCS margin. Magmatism is most active since 5.5 Ma. B Magnetic

anomalies map with the distribution of igneous rocks (black areas).

Several igneous rocks shown in previous figures (Figs. 5, 7, 10, 11,

14) are marked

c
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extensive magmatism. A great deal of magma intrusion

occurred along nearly EW-trending tensile fractures and

led to the formation of submarine seamounts in this period

(Huang et al. 2001; Yan et al. 2001; Wu et al. 2014a, b). In

addition to the study area, the main region of magmatism,

the Leiqiong area generated igneous rocks that cover a

surface up to 7000 km2 (Flower et al. 1998; Ho et al.

2000), while the Indo-China Basalt Province covered an

area of more than 8000 km2 (Hoang et al. 1996; Hoang and

Flower 1998). We collated the literature related to the

chronological history of the SCS and found that most of the

data relates to the time period between 5.5 Ma to recent

(Table 1), possibly indicating a time delay in the plume-

induced magmatism in the northern margin of the SCS.

It is worth noting that there was a strong post-rift tec-

tonic event at ca. 5.5 Ma, with extensive crustal uplift and

igneous activity. Although our results do not directly

constrain the dynamic mechanism for tectonic movement,

we speculate a relationship with lithospheric bending in

this region. Such lithospheric bending is related to the

initial collision of the North Luzon Arc with the East China

continental margin, engulfing segments of the SCS along

the northern Manila Trench (Lüdmann and Wong 1999;

Lüdmann et al. 2001; McIntosh et al. 2013; Wu et al.

2014a, b). Following the major collision of Taiwan with

the East China continental margin at the Miocene/Pliocene

boundary, the NNW-WNW compression transforms to a

WSW-SSW strike-slip motion along the northern margin of

the SCS, giving rise to a transtensional neotectonic regime

(Li 1993; Lüdmann and Wong 1999). Extension, induced

by cooling of the oceanic crust and subduction at the

Manila Trench, generated a transtensional tectonic regime

which created or reactivated crustal zones of weakness and

caused upwelling of mantle material (Lüdmann and Wong

1999; Lüdmann et al. 2001). At the same time, the Red

River Shear Zone reversed from left- to right-lateral slip in

Fig. 16 Distribution of igneous rocks in the northern SCS margin at

different periods. A [32 Ma: sporadic distribution in the southern

Shenhu uplift and the NW subbasin. B 32–15.5 Ma: more intense

magmatism than in the early Paleogene, distributed mainly on

continental slopes, such as the Xisha areas. C 15.5–5.5 Ma: a few

small igneous structures, scattered in the Xisha uplift and the NW

subbasin. D 5.5 Ma—recent: magmatism occurs throughout the study

area, smaller structures occur in the west
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response to the continuing India–Asia continental collision

(Thi and Quan 1997; Zhu et al. 2009; Wang et al. 2013a,

b). South-eastward extrusion of the South China Block

eventually exceeded that of Indo-China in the late Neo-

gene, causing strike-slip reversal of the Red River Shear

Zone. Rapid subsidence, a rise of heat flow, a southeast-

ward shift of the sedimentary depocenter and widespread

volcanism took place in the areas which include (from

south to north) central and southern Indo-China, Hainan

Island, the Leizhou Peninsula, the Yinggehai Basin and the

Qiongdongnan Basin along the seaward part of the Red

River Shear Zone (Flower et al. 1998; Ho et al. 2000; Yan

et al. 2006).The Hainan plume could have also been

affected by this tectonic event along the northern margin of

the SCS, becoming more active since 5.5 Ma. However,

the specific cause of these sudden changes requires further

discussion.

Classification of the northern rifted margin

of the SCS

The most representative magma-poor margins are the

Alpine Tethys and Iberia–Newfoundland rifted margins

(which are characterized by thinned continental crust dis-

sected by low-angle detachment faults and succeeded by

exhumed sub-continental mantle (Dean et al. 2000; Reston

and Phipps Morgan 2004; Péron-Pinvidic et al. 2007;

Mohn et al. 2012). In this scenario, magmatism in the

northern SCS was much more limited during continental

breakup (White and McKenzie 1989), and gradually

increased seaward. Another striking observation from

several magma-poor margins is the delayed post-rift sub-

sidence (Tucholke et al. 2007; Franke et al. 2014).

The northern SCS margin has been considered as a

magma-poor rifted margin (Clift and Lin 2001; Yan et al.

2006; Franke et al. 2014; Gao et al. 2015). The following

observations can be made from our research: (1) Igneous

rocks associated with rifting are only found on the lower

slope and apparently concentrate at the seaward edge of

crustal blocks (Fig. 18). This result is consistent with the

phenomenon observed in other areas, such as Dongsha, the

Reed Bank and the Northwest Palawan Block (Clift and

Lin 2001; Franke 2013). (2) High-angle listric faults

developed in the northern margin of the SCS related to the

fault-bounded rifted basin, most of which terminated at

horizon S23.3 instead of S32 (Fig. 17), which is a seismic

horizon marking the onset of seafloor spreading. This

shows that rifting continued after seafloor spreading had

begun, indicating a post-rift delay (Dong et al. 2008, 2014).

(3) The thickness of the crust decreases sharply seaward,

but no mantle exhumation is found (Figs. 17, 18). This can

be explained by the observation of stretching factors (b) in
the lower continental slope at ODP Site 1148 in between

2.5 and 3.5 (Clift and Lin 2001), implying the most highly

stretched volcanic zone in the northern margin of the SCS.

However, this continental thinning of the SCS was still not

Fig. 17 Seismic profile showing thinning seaward. High-angle listric faults are widely present, the majority of which terminate in horizon S23.3,

indicating the cessation of rifting in the basin. See Fig. 2 for location
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sufficient for mantle exhumation. (4) Similar to the other

non-volcanic margins (Boillot et al. 1980; Perez-Gussinye

et al. 2001; Whitmarsh et al. 2001), the northern margin of

the SCS was not widely influenced by a mantle plume

during rifting (Fig. 16A). Morley (2002) studied the rifted

basins of SE Asia and found that the area affected by major

magma intrusions may narrow during progressive exten-

sion of the continental crust, leading to a shift in defor-

mation from the major boundary faults to minor fault

swarms concentrated in narrow regions within the rifted

depression. However, the characteristics of rifted depres-

sions, such as the Baiyun sag in the northern margin of the

SCS, is inconsistent with the evolutionary history described

by Morley (2002) (Fig. 18). The northern margin of the

SCS was rarely affected by extensive magmatism during

the rifting phase.

The systematic assessment of the Cenozoic magmatism,

from seismic profiles in the northern SCS supports the idea

that the rifted margin of the northern SCS is a magma-poor

margin, with absence of exhumed lithospheric mantle.

Conclusion

We set up the criteria for identifying the igneous rock

structures in the northern margin of the SCS based on

seismic profiles and drilling data. By analyzing the seismic

features of these igneous rock structures and their rela-

tionship with adjacent strata we determine their mode and

period of formation. The contact relationship with adjacent

strata, sedimentary thickness on either side of the structure

and seismic reflection characteristics are used as criteria to

estimate the timing of igneous rock emplacement in seis-

mic profiles. The main conclusions of this study are:

1. There are intrusive and extrusive rock structures in the

northern margin of the SCS. Intrusive structures take

different shapes depending on the magmatic energy.

Extrusive structures are divided into flat-topped and

conical-topped seamounts. Seismic characteristics are

used to distinguish between buried volcanoes and

intrusive rock structures: the overlying strata, the

contact relationship and sills.

2. Cenozoic magmatism in the northern margin of the

SCS is divided in three periods: before seafloor

spreading (Paleocene and Eocene), during seafloor

spreading (Early Oligocene–Mid Miocene) and after

cessation of seafloor spreading (Mid Miocene–Recent).

Magmatism occurred most extensively since 5.5 Ma,

which can be regarded as a regionally remarkable

event. The magmatism associated with the syn-rift

stage in the northern SCS is extremely sporadic in

seismic profiles, only found in the southern part of the

PRMB and the NW subbasin.

Fig. 18 Seismic profile showing low-angle top-basement faults which cut into mantle in the margin of the subbasin. Volcanoes are clearly

concentrated at the seaward edge of the crustal blocks. See Fig. 2 for location
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3. The northern margin of the SCS can be defined as a

magma-poor margin with absence of exhumed mantle

as a special feature.
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