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Abstract  This paper presents a size-dependent 
isogeometric analysis of smart functionally graded 
porous nanoscale plates made of two piezoelectric 
materials. Two porous distributions, namely even 
and uneven, are considered along the thickness direc-
tion. To take into account for size-dependent effects, 
the nonlocal elasticity theory proposed by Eringen 
is employed to investigate the behaviors of the smart 
nanoplate. An electric potential field is adopted based 
on the Maxwell’s equation. The governing equations 
for smart functionally graded piezoelectric porous 
nanoplates are obtained and utilized by a combination 

of higher-order shear deformation theory and non-
uniform rational B-splines formulations. The pre-
sent approximation is capable of meeting the neces-
sary conditions with at least third-order derivatives 
in the approximate formulations of the smart nano-
plate. The natural frequencies of the smart nanoplate 
are fully investigated by studying the influences of 
power-law index, external electric voltage, porosity 
coefficient, boundary condition, porosity distribu-
tions, and nonlocal parameter, respectively. The pre-
sent results, when compared to those from published 
documents, have been evaluated and found to be both 
reliable and effective. This paper reports several new 
computational results that can be of great interest to 
researchers due to the innovative approach and both 
the development and future application for smart 
nanostructures.

Keywords  Isogeometric approach · Smart 
functionally graded piezoelectric porous nanoplates · 
A small-scale effect · Electro-mechanical materials · 
Porosity

1  Introduction

Piezoelectric materials have been of great interest due 
to their exceptional electro-mechanical coupling char-
acteristics. Functionally graded piezoelectric materi-
als (FGPMs) have been developed to address the high 
stress concentration in the inner layer of piezoelectric 
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materials and prevent corrosion between bonding lay-
ers. In recent years, there has been a growing interest 
in studying the behavior of FGPMs in micro/nano-
structures, which are widely used in structural health 
monitoring, active vibration control, and electrome-
chanical systems.

Several studies have investigated the behavior 
of FGPM porous nanoplates using analytical and 
numerical methods. Kiani et  al. (2011) performed 
the thermo-electrical buckling of piezoelectric FG 
material Timoshenko beams, while Nguyen et  al. 
(2019) reported on the vibration analysis of func-
tionally graded piezoelectric material porous plates 
using the C0-type higher-order shear deformation 
theory  (C0-HSDT). Joubaneh et  al. (2015) analyzed 
the thermal buckling of a solid circular plate made 
of porous material with piezoelectric sensor-actuator 
patches on its boundary, and Su et al. (2018) reported 
an exact solution for the electro-mechanical vibra-
tion properties of FG piezoelectric plates with their 
overall boundary. Behjat et  al. (2009) studied the 
static bending, free vibration, and dynamic behav-
ior of FG piezoelectric panels using finite element 
analysis under various loading types, while Zhang 
et  al. (2008) reported analytical solutions for inves-
tigating the behavior of FG piezoelectric cylindrical 
actuators under a harmonic electric field using elastic 
membrane and shell theory. The dynamic control of 
smart piezoelectric composite plates was presented 
in the publications (Phung-Van et  al. 2017a, 2017b) 
while the static analysis of FGPM structures was 
investigated in the references (Brischetto and Car-
rera 2009;). Chen et  al. (2002; 2002) analyzed the 
free vibration of FGPM rectangle-shaped plates and 
hollow spheres using the laminated approximation 
approach together with state space formulations.

Owing to the rapid development of nano technique, 
small-scale effects are very attractive to researchers. 
Because the nanostructures made of FGMs/piezo-
electric materials are usually employed in structural 
health monitoring, active vibration control  and elec-
tromechanical systems, the mechanical analysis of 
FGM/piezoelectric nanostructures (Phung-Van et  al. 
2020a,b) has been rapidly developed. The thermo-
electrical buckling properties of FG piezoelectric 
Timoshenko nanobeams under in-plane thermal load-
ing and applied electric voltage were investigated by 
Ebrahimi and Salari (2015) using a Navier type solu-
tion and elasticity theory of Eringen. Zenkour and 

Aljadani (2019b) analyzed the thermo-electrical buck-
ling of the FG piezoelectric nanoscale plate based on 
the refined hyperbolic higher-order shear deformation 
theory (HSDT) and Eringen’s nonlocal theory. They 
also developed an analytical method for analysis of 
the thermal buckling of the actuated FG piezoelec-
tric porous nanoplates (Zenkour and Aljadani 2019a). 
The nonlinear formulation of the FG piezoelectric 
material nanobeams was established by employing 
the Euler–Bernoulli model and the consistent size-
dependent theory (Tadi 2016). Ebrahimi and Barati 
(2017) conducted an analytical study on the buckling 
behavior of higher-order shear deformable nanobeams 
made of FG piezoelectric materials implanted in an 
elastic foundation. Based on the novel modified cou-
ple stress theory and analytical solutions, Mehralian 
et  al. (2016) proposed the size-dependent formula-
tion of shear deformable FG piezoelectric cylindrical 
nanoshells. Li and Xiao (2021) performed the free 
vibration of a one-dimensional piezoelectric quasic-
rystal microbeam using the modified couple stress 
theory and differential quadrature technique.

The majority of previous research on FGPM struc-
tures has been based on analytical methods, with only 
a few studies focusing on micro/nanostructures. As 
we’ve known, to solving complex structures in engineer-
ing practices, numerical solutions are usually consid-
ered as the best candidate to use. This literature gap has 
prompted researchers to develop an effective numerical 
solution to analyze nanoplates integrated with piezo-
electric materials. For calculating nanoplates, it always 
requires higher-order derivatives in governing equations. 
Recently, an effective numerical method, isogeomet-
ric analysis (IGA), which has shown several advanced 
properties, was firstly proposed by Hughes et al. (2005). 
Non-uniform rational B-spline (NURBS) basis functions 
are employed by IGA to accurately depict the geometry 
of structures and estimate the solution fields. One of its 
significant advantages is its ability to achieve any degree 
of smoothness by selecting the interpolation order, while 
lower continuity can be easily achieved through knot 
insertion. IGA has been effectively employed in various 
fields such as nanoplates (Phung-Van and Thai 2021; 
Phung-Van et  al. 2021) and microplates (Thai 2020; 
Hung et al 2022), but its implementation to smart nano-
plates is still restricted. Furthermore, the area of research 
concerning the size-dependent behavior of smart func-
tionally graded piezoelectric nanoplates with porosity 
has not been thoroughly investigated. This paper aims 
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to address this research gap by proposing an effective 
numerical approach for conducting such an analysis. 
The findings of this paper are expected to be of great 
interest to researchers due to the innovative approach 
and the potential implications of the results.

2 � Functionally graded piezoelectric porous 
materials

We now consider a functionally graded piezoelec-
tric porous nanoplate (length a, width b, thickness h) 
under an electric field, as displayed in Fig. 1. In the 
FGPP, two piezoelectric materials consist of PZT-4 
and PZT-5H to be mixed. Through the thickness 
direction, two porous distributions comprising of (i) 
even: positions of porosity are randomly distributed 
in the cross section (FGPP-I) and (ii) uneven: poros-
ity is arranged around middle zone of the cross sec-
tion (FGPP-II) are considered.

Based on the modified power law function scheme, 
the type of FGPP-I is expressed as

where P are the effective properties of the material, 
which include the elastic constants, piezoelectric con-
stants, and dielectric constants; b and t represent the 

(1)P(z) = Pt +
(
Pb − Pt

)( z

h
+

1

2

)n

−
�

2

(
Pb + Pt

)

bottom and top surfaces of the plate, respectively; � is 
the porosity parameter which defines by 0 < � < 1 and 
n is the power index factor.

For the FGPP-II, the effective material property is 
defined as

3 � Mathematical formulations

3.1 � Nonlocal Eringen’s theory

A nanoplate subjected to an external body force (fi) is 
considered in this research. The governing equations 
for a homogeneous anisotropic linearly piezoelectric 
material can be expressed as follows

where �ij is the nonlocal stress üi is the acceleration 
field; � is the density mass; Di is the nonlocal electric 
potential and V is the volume.

Constitutive relations for the mechanical–electrical 
coupling of the FGPP nanoplates are given as

(2)

P(z) = Pt +
(
Pb − Pt

)( z

h
+

1

2

)n

−
�

2

(
Pb + Pt

)(
1 −

2|z|
h

)

(3)
𝜎ij,j + fi = 𝜌üi in V

Di,i = 0 in V

Fig. 1   Geometry of FGPP 
nanoplate
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where �ij and Di are the local stress and local elec-
tric displacement, respectively; �kl and Ek indicate 
the local strain and electric field components, respec-
tively; Cijkl,eijk and kik are respectively the elastic, pie-
zoelectric and dielectric constants.

According to the nonlocal law suggested by Erin-
gen, the nonlocal stress �ij and nonlocal electric dis-
placement Di can be defined as

where � is a point in the body;�′ is a neighbor point of 
x; the kernel function �

(|�� − �|, �) indicates the non-
local modulus; � indicates a material constant; |�� − �| 
is the distance.

By applied the differential operator 
(
1 − �∇2

)
 for 

Eq. (5), it can be rewritten as (Lu et al. 2007)

where � is the nonlocal parameter. Similarly, we 
can be also used the above differential operator for 
Eq. (3). It can be formulated as

Substituting Eq. (6) into Eq. (7) to attain Eq. (8):

Applying the principle of virtual displacement 
and virtual electric potential, the integration form of 
Eq. (8) is expressed by

(4)
�ij = Cijkl�kl

− eijkEk

Di = eijk�kl
+ kikEk

(5)
�ij = ∫V

�
(||�� − �||, �

)
�ijd�

�

Di = ∫V

�
(||�� − �||, �

)
Did�

�

(6)

(
1 − �∇2

)
�ij = �ij ,

(
1 − �∇2

)
�ij,j = �ij,j(

1 − �∇2
)
Di = Di ,

(
1 − �∇2

)
Di,i = Di,i

(7)

(
1 − 𝜆∇2

)
𝜎ij,j +

(
1 − 𝜆∇2

)
fi =

(
1 − 𝜆∇2

)
𝜌üi(

1 − 𝜆∇2
)
Di,i = 0

(8)
𝜎ij,j +

(
1 − 𝜆∇2

)
fi =

(
1 − 𝜆∇2

)
𝜌üi

Di,i = 0

(9)

∫
V

𝜎ij,j𝛿uidV + ∫
V

Di,i𝛿ΦidV +
(
1 − 𝜆∇2

)
fi𝛿ui

= ∫
V

(
1 − 𝜆∇2

)
𝜌üi𝛿uidV

where �ui, �Φi are the virtual displacement vector 
and the virtual electric potential vector, respectively.

Applying the integration by parts and divergence 
theorem for the left-hand side of Eq. (9), it can be rep-
resented by

where Γg is the Neumann boundary.
Substituting Eq.  (10) into Eq.  (9) and ignoring the 

integrated components on the boundary Γg , the final 
integration form of equilibrium equation is formulated 
as

By replacing �ui,j = ��ij and �Φi,i = −�Ei , Eq. (11) 
is rewritten as

For the easy representation, Eq.  (12) can be 
expressed by

where

in which δU, δK and δW represent the virtual strain 
energy, virtual kinetic energy, and virtual external 
work, respectively.

(10)

∫V

�ij,j�uidV = −∫V

�ij�ui,jdV + ∫Γg

�ijni�uidΓg

∫
V

Di,i�ΦidV = −∫
V

Di�Φi,idV + ∫
Γg

Dini�ΦidΓg

(11)

∫
V

𝜎ij𝛿ui,jdV + ∫
V

Di𝛿Φi,idV + ∫
V

(
1 − 𝜆∇2

)
𝜌üi𝛿uidV

= ∫
V

(
1 − 𝜆∇2

)
fi𝛿uidV

(12)

∫
V

𝛿
(
𝜀ij
)T

𝜎ijdV − ∫
V

𝛿
(
Ei

)T
DidV + ∫

V

(
1 − 𝜆∇2

)
𝜌𝛿

(
ui
)T

üidV

= ∫
V

(
1 − 𝜆∇2

)
𝛿
(
ui
)T

fidV

(13)�U + �K − �W = 0

(14)

𝛿U =∫V

𝛿
(
𝜀ij
)T
𝜎ijdV − ∫V

𝛿
(
Ei

)T
DidV

𝛿K =∫V

(
1 − 𝜆∇2

)
𝛿
(
ui
)T
𝜌üidV

𝛿W =∫V

(
1 − 𝜆∇2

)
𝛿
(
ui
)T
fidV
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3.2 � Displacement field

Through the generalized higher-order shear deforma-
tion theory, the displacement field is defined

where u0,v0,w,�x and �y are variables of displacement; 
f (z) = z − 4z3∕3h2 is a continuous function.

Strain components can be displayed as

where f’(z) is the derivative of the function f(z) and

(15)

u(x, y, z) = u0(x, y) − z
�w(x, y)

�x
+ f (z)�x(x, y)

v(x, y, z) = v0(x, y) − z
�w(x, y)

�y
+ f (z)�y(x, y)

w(x, y, z) = w0(x, y)

(16)
�b =

{
�xx �yy �xy

}T
= �1 + z�2 + f (z)�3

� =
{
�xz �yz

}T
=f �(z)�s

(17)

�1 =

⎡
⎢⎢⎣

u0,x
v0,y

u0,y + v0,x

⎤
⎥⎥⎦
; �2 = −

⎡
⎢⎢⎣

w0,xx

w0,yy

2w0,xy

⎤⎥⎥⎦

�3 =

⎡⎢⎢⎣

�x,x
�y,y

�x,y + �y,x

⎤
⎥⎥⎦
; �s =

�
�x
�y

�

The FGPP nanoplate is performed under an initial 
electric voltage V0 on the top and bottom surfaces. 
According to the  Maxwell’s formula, the electric 
potential is given as

where �(x, y) is the electric potential; 
g(z) = −cos

(
�z

h

)
 . The electric fields are defined as

For easy numerical computations, the local stress 
and local electric displacement in Eq.  (12) can be 
rewritten by an explicit form as

where

in which C11, C12, C33, C66, e31, e33, k31, k33 are 
material constants defined in Eq. (1) or Eq. (2) and

(18)Φ(x, y, z) = g(z)�(x, y) +
2z

h
V0

(19)

Ex = −Φ,x = −g(z)�,x

Ey = −Φ,y = −g(z)�,y

Ez = −Φ,z = −g�(z)� −
2V0

h

(20)

⎧
⎪⎨⎪⎩

𝜎xx
𝜎yy
𝜎xy

⎫
⎪⎬⎪⎭

���
�b

=

⎡⎢⎢⎣

C̃
11

C̃
12

0

C̃
12

C̃
22

0

0 0 C̃
66

⎤⎥⎥⎦
�����������������

�b

⎧
⎪⎨⎪⎩

𝜀xx
𝜀yy
𝜀xy

⎫
⎪⎬⎪⎭

���
�b

−

⎡⎢⎢⎣

0 0 ẽ
31

0 0 ẽ
32

0 0 0

⎤⎥⎥⎦
���������

�b
e

⎧
⎪⎨⎪⎩

0

0

Ez

⎫
⎪⎬⎪⎭

���
�b

= �b�b − �b
e
�b

�
𝜎xz
𝜎yz

�

�����
�s

=

�
C̃
55

0

0 C̃
44

�

���������
�s

�
𝛾xz
𝛾yz

�

���
�

−

�
ẽ
15

0

0 ẽ
24

�

�������
�s

e

�
Ex

Ey

�

���
�s

= �s� − �s
c
�s

�
Dx

Dy

�

���
�p

=

�
ẽ
15

0

0 ẽ
24

��
𝛾xz
𝛾yz

�
+

�
k̃
11

0

0 k̃
22

�

�������
�s

k

�
Ex

Ey

�
= �s

e
� + �s

k
�s

Dz =ẽ31𝜀x + ẽ
32
𝜀y + k̃

33
Ez

(21)

C̃
11

= C
11
−

C2

13

C
33

; C̃
12

= C
12
−

C2

13

C
33

; C̃
66

= C
66

C̃
55

= C
55

; C̃
44

= C
44

ẽ31 = e31 −
e13e33

C33

; ẽ15 = e15; k̃11 = k11

k̃33 = k33 +
e2
33

C33

𝜀x = 𝜀1x + z𝜀2x + f (z)𝜀3x

𝜀y = 𝜀1y + z𝜀2y + f (z)𝜀3y
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The virtual strain energy is formulated by inserting 
Eqs. (16) and (20) into Eq. (14)

where

(22)
�1x = u0,x ; �2x = −w,xx ; �3x = �x,x

�1y = v0,y ; �2y = −w,yy ; �3y = �y,y

(23)

𝛿U =∫Ω

((
𝛿𝛆̄b

)T
𝐂̄b𝛆̄b −

(
𝛿𝛆̄b

)T
𝐂̄b

e
𝐄̄b

)
dΩ

+ ∫Ω

((
𝛿𝛆s

)T
𝐂̄s𝛆s −

(
𝛿𝛆s

)T
𝐂̄s

e
𝐄̄s
)
dΩ

− ∫Ω

((
𝛿𝐄̄s

)T
𝐂̄s

e
𝛆s +

(
𝛿𝐄̄s

)T
𝐂̄s

k
𝐄̄s
)
dΩ

− ∫
Ω

(
𝛿Ēz

)T(
𝐂̄

e31
𝛆̄x + 𝐂̄

e32
𝛆̄y + C̄

k33
Ēz

)
dΩ

(24)

𝛆̄b =

⎡⎢⎢⎣

𝛆1
𝛆2
𝛆3

⎤⎥⎥⎦
; 𝛆̄x =

⎡⎢⎢⎣

𝜀1x
𝜀2x
𝜀3x

⎤⎥⎥⎦
; 𝛆̄y =

⎡⎢⎢⎣

𝜀1y
𝜀2y
𝜀3y

⎤⎥⎥⎦
;

𝐂̄b =

⎡⎢⎢⎣

𝐀b 𝐁b 𝐄b

𝐁b 𝐃b 𝐅b

𝐄b 𝐅b 𝐇b

⎤⎥⎥⎦
; 𝐄̄b = −

⎡⎢⎢⎣

0

0

𝜙

⎤⎥⎥⎦
; 𝐄̄s = −

�
𝜙,x

𝜙,y

�
;

�
𝐀b,𝐁b,𝐃b,𝐄b,𝐅b,𝐇b

�

= ∫
h∕2

−h∕2

�
1, z, z2, f (z), zf (z), f 2(z)

�
𝐂bdz

𝐂̄b
e
=
�
𝐂̄b1

e
𝐂̄b2

e
𝐂̄b3

e

�
;

�
𝐂̄b1

e
, 𝐂̄b2

e
, 𝐂̄b3

e

�
= ∫

h∕2

−h∕2

�
g�(z), zg�(z), f (z)g�(z)

�
𝐂b

e
dz;

𝐂̄s = ∫
h∕2

−h∕2

�
f �(z)

�2
𝐂sdz;

𝐂̄s
e
= ∫

h∕2

−h∕2

g(z)
�
f �(z)

�2
𝐂s

e
dz; 𝐂̄s

k
= ∫

h∕2

−h∕2

g(z)𝐂s
k
dz;

𝐂̄
e31

=
�
𝐂̄1

e31
𝐂̄2

e31
𝐂̄3

e31

�
;

�
𝐂̄1

e31
, 𝐂̄2

e31
, 𝐂̄3

e31

�
= ∫

h∕2

−h∕2

�
g�(z), zg�(z), f (z)g�(z)

�
ẽ31dz;

𝐂̄
e32

=
�
𝐂̄1

e32
𝐂̄2

e32
𝐂̄3

e32

�
;

�
𝐂̄1

e32
, 𝐂̄2

e32
, 𝐂̄3

e32

�
= ∫

h∕2

−h∕2

�
g�(z), zg�(z), f (z)g�(z)

�
ẽ32dz;

C̄
k33

= ∫
h∕2

−h∕2

�
g�(z)

�2
k̃33dz

Similarly, the virtual kinetic energy is described 
as

where

in which

The virtual external work subjected to an exter-
nal transverse load (f) can be expressed as follows

In this research, the FGPP nanoplate is additionally 
considered the pre-buckling in-plane load by the electri-
cal field, the variation of potential energy is expressed as

where N0
x
= Nmech

x
+ Nelec

x
 and N0

y
= Nmech

y
+ Nelec

y
 ; 

in which Nmech
x

 and Nmech
y

 are in-plane mechani-
cal loads, whereas electrical components are 
Nelec
x

= Nelec
y

= 2e
p

31
V0.

Finally, Eq. (13) can be rewritten by

(25)�K = ∫Ω

(
1 − �∇2

)
(�𝐮)T𝐈m𝐮̈dΩ

(26)

� =

⎧
⎪⎨⎪⎩

�1

�2

�3

⎫
⎪⎬⎪⎭
; �1 =

⎧
⎪⎨⎪⎩

u0
v0
w

⎫
⎪⎬⎪⎭
; �2 = −

⎧
⎪⎨⎪⎩

w0,x

w0,y

0

⎫
⎪⎬⎪⎭

�3 =

⎧
⎪⎨⎪⎩

�x
�y
0

⎫
⎪⎬⎪⎭

; �m =

⎡⎢⎢⎣

�1 �2 �4
�2 �3 �5
�4 �5 �6

⎤
⎥⎥⎦

(27)

�
�1, �2, �3, �4, �5, �6

�

=

h∕2

∫
−h∕2

�(z)
�
1, z, z2, f (z), zf (z), f 2(z)

�⎡⎢⎢⎣

1 0 0

0 1 0

0 0 1

⎤⎥⎥⎦
dz

(28)�W = ∫Ω

(
1 − �∇2

)
�wTfdΩ

(29)

�V = − h∫Ω

(

1 − �∇2)�

{

w0,x

w0,y

}T[
N0
x 0
0 N0

y

]{

w0,x

w0,y

}

dΩ or

�V = − h∫Ω

(

1 − �∇2)�(�g)T
[

N0
x 0
0 N0

y

]

�gdΩ

(30)�U + �K − �W − �V = 0
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3.3 � NURBS formulation for the FGPP nanoplate

The displacement field of the FGPP nanoplate is 
defined as

where m × n is the number of basis functions,RI is 
a matrix of NURBS basis function (Hughes et  al. 
2005), �I =

{
u0I v0I w0I �xI �yI

}
T are degrees of 

freedom of the control point I.
Substituting Eq.  (31) into Eq.  (17) to form of 

Eq. (32):

where

Substituting Eq.  (31) into Eq.  (26) to form of 
Eq. (34):

where

Substituting Eq.  (31) into Eq.  (29),�g can be 
expressed as

(31)�h =

m×n�
I=1

⎡
⎢⎢⎢⎢⎢⎣

RI 0 0 0 0

0 RI 0 0 0

0 0 RI 0 0

0 0 0 RI 0

0 0 0 0 RI

⎤
⎥⎥⎥⎥⎥⎦

⎧
⎪⎪⎨⎪⎪⎩

u0I
v0I
w0I

�xI
�yI

⎫
⎪⎪⎬⎪⎪⎭

=

m×n�
I=1

�I�I

(32)

�
b
=

{
�1 �2 �3

}T
=

mxn∑
I=1

{
�1

I
�2

I
�3

I

}T
�I

=

mxn∑
I=1

�b
I
�I ; �s =

mxn∑
I=1

�s
I
�I

(33)

�1

I
=

⎡
⎢⎢⎣

RI,x 0 0 0 0

0 RI,y 0 0 0

RI,y RI,x 0 0 0

⎤
⎥⎥⎦
;�2

I
= −

⎡
⎢⎢⎣

0 0 RI,xx 0 0

0 0 RI,yy 0 0

0 0 2RI,xy 0 0

⎤⎥⎥⎦

�3

I
=

⎡⎢⎢⎣

0 0 0 RI,x 0

0 0 0 0 RI,y

0 0 0 RI,y RI,x

⎤
⎥⎥⎦
;�s

I
=

�
0 0 0 RI 0

0 0 0 0 RI

�

(34)

� =
{
�1 �2 �3

}T
=

mxn∑
I=1

{
�1

I
�2

I
�3

I

}T
�I =

mxn∑
I=1

�
I
�I

(35)

�1

I
=

⎡⎢⎢⎢⎢⎣

RI 0 0 0 0

0 RI 0 0 0

0 0 RI 0 0

⎤⎥⎥⎥⎥⎦
;�2

I
= −

⎡⎢⎢⎢⎢⎣

0 0 RI,x 0 0

0 0 RI,y 0 0

0 0 0 0 0

⎤⎥⎥⎥⎥⎦
;�3

I
=

⎡⎢⎢⎢⎢⎣

0 0 0 RI 0

0 0 0 0 RI

0 0 0 0 0

⎤⎥⎥⎥⎥⎦

The electric potential can also be approximated 
using a NURBS basis function as follows

where �I is the degree of freedom of the electric 
potential at the control point I.

Substituting Eqs. (31), (37) into Eqs. (22), (24), 
we have

where

The weak form of the FGPP nanoplates can be 
taken by substituting Eqs. (32)-(36), (38)-(39) into 
Eq. (30)

(36)�g =

[
0 0 RI,x 0 0

0 0 RI,y 0 0

]

(37)� =

m×n∑
I=1

RI�I

(38)

𝐄̄b =

m×n∑
I=1

𝐁b
𝜙I
𝜙I ; 𝐄̄s =

m×n∑
I=1

𝐁s
𝜙I
𝜙I ; Ēz =

m×n∑
I=1

𝐁zI𝜙I

𝛆̄x =

m×n∑
I=1

𝐁
xI
𝐝I ; 𝜀1x =

m×n∑
I=1

𝐁1

xI
𝐝I ; 𝜀3x =

m×n∑
I=1

𝐁3

xI
𝐝I

𝜀2x =

m×n∑
I=1

𝐁2

xI
𝐝I ; 𝛆̄y =

m×n∑
I=1

𝐁
yI
𝐝I ; 𝜀1y =

m×n∑
I=1

𝐁1

yI
𝐝I

𝜀2y =

m×n∑
I=1

𝐁2

yI
𝐝I ;𝜀3y =

m×n∑
I=1

𝐁3

yI
𝐝I

(39)

�b
�I

= −

m×n�
I=1

⎡⎢⎢⎣

0

0

RI

⎤⎥⎥⎦
; �s

�I
= −

m×n�
I=1

�
RI,x

RI,y

�

�zI = −

m×n�
I=1

RI ; �
xI
=

⎡⎢⎢⎣

�1

xI

�2

xI

�3

xI

⎤
⎥⎥⎦
; �

yI
=

⎡⎢⎢⎢⎣

�1

yI

�2

yI

�3

yI

⎤⎥⎥⎥⎦

�1

xI
=

m×n�
I=1

�
RI,x 0 0 0 0

�

�2

xI
= −

m×n�
I=1

�
0 0 RI,xx 0 0

�
;�3

xI
=

m×n�
I=1

�
0 0 0 RI,x 0

�

�1

yI
=

m×n�
I=1

�
0 RI,y 0 0 0

�

�2

yI
= −

m×n�
I=1

�
0 0 RI,yy 0 0

�
; �3

yI
=

m×n�
I=1

�
0 0 0 0 RI,y

�
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where

in which

Substituting the second line of Eq.  (40) into the 
first line, we have a shortened form as follows

The principal equation of the free vibration prob-
lem is provided as follows

(40)
[
𝐌 0

𝟎 0

][
𝐝

𝜙̈

]
+

[
𝐊uu 𝐊u𝜙

𝐊𝜙u 𝐊𝜙𝜙

][
𝐝

𝜙

]
=

[
𝐟

𝟎

]

(41)

�uu = �1+�3 −�w ; �u� = −
(
�5 +�71 +�72

)

��u = −
(
�2 +�4

)
;��� = −

(
�6 +�73

)

� = ∫Ω

(
1 − �∇2

)
�

T
�m�dΩ ; � = ∫Ω

(
�w − �∇2�w

)
fdΩ

(42)

�1 = ∫Ω

(
�b

)T
�

b
�bdΩ ; �2 = ∫Ω

(
�b
�

)T

�
b

e
�bdΩ ; �3 = ∫Ω

(�s)T�
s
�sdΩ

�4 = ∫Ω

(
�s
�

)T

�
s

e
�sdΩ ; �5 = ∫Ω

(�s)T�
s

e
�s
�
dΩ ; �6 = ∫Ω

(
�s
�

)T

�
s

k
�s
�
dΩ

�71 = ∫Ω

(
�x

)T
�

e31
�zdΩ ; �72 = ∫Ω

(
�y

)T
�

e32
�zdΩ ; �73 = ∫Ω

(
�z

)T
C
k33

�zdΩ

�w = ∫Ω

(
1 − �∇2

)
(�g)T

[
N0
x

0

0 N0
y

]
�gdΩ;�w =

[
0 0 RI 0 0

]T

(43)𝐌𝐝 +
(
𝐊uu −𝐊u�𝐊

−1

��
𝐊�u

)
𝐝 = 𝐟

(44)
(
� − �2�

)
� = �

In which the global stiffness matrix � is taken as

4 � Numerical examples

This section verifies the current findings and intro-
duces new results. Table 1 outlines the material prop-
erties of piezoelectric. A mesh composed of 11 × 11 
cubic Non-Uniform Rational B-Splines elements is 
utilized. The boundary conditions for each edge can 
either be clamped (C), free (F), or simply supported 
(S).

4.1 � Square nanoplates

We now consider a square nanoplate with a length of 
a and thickness of h. The non-dimensional natural 
frequency 𝜔̃ = 𝜔a2∕h

√(
𝜌∕c11

)
PZT−4

 is being used 
for analysis purposes. Table  2 shows the first non-
dimensional frequency of the entirely simply sup-
ported (SSSS) FGPP nanoplate for different values of 
input voltage and power law index. The results 

(45)� = �uu −�u��
−1

��
��u

Table 1   Material properties of piezoelectric

Properties PZT-4 PZT-5H

c11 = c22 (GPa) 139 126
c12 77.8 79.1
c13 74 83.9
c33 115 117
c55 25.6 23
c66 30.6 23.5
e31 (Cm−2) − 5.2 − 6.5
e33 15.1 23.3
e15 12.7 17
k11 (C2m−2N−1) 6.46 × 10–9 15.05 × 10–9

k33 5.62 × 10–9 13.02 × 10–9

�(kg/m3) 7500 7500

Table 2   The lowest non-dimensional natural frequency of the 
SSSS FGPP-II nanoplate with � = 0.2 , � = 0 , a/h = 100

V0 [V] Methods n = 0.2 n = 1 n = 5

0 Ref. (Barati et al. 2017) 6.2072 5.9746 5.8028
Present 6.2076 5.9749 5.8032

500 Ref. (Barati et al. 2017) 6.0324 5.7886 5.6076
Present 6.0329 5.7890 5.6079
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obtained in this research are consistent with those 
presented in Ref. (Barati et  al. 2017) which used an 
analytical solution and a refined four-variable plate 
theory. However, the values obtained in our study are 
slightly larger than the reference values due to the use 
of different theories.

The following section investigates the effect 
of the nonlocal parameter on the first frequency 
of a fully clamped (CCCC) FGPP nanoplate, as 
shown in Table 3. The results indicate that the natu-
ral frequency of the plate decreases as the nonlocal 
parameter increases. Additionally, an increase in 
the power law exponent leads to a decrease in the 

Table 3   The effect of the 
nonlocal parameter on the 
first natural frequency of 
a CCCC FGPP nanoplate 
with V

0
 = 0, a/h = 100

� � FGPP-I FGPP-II

n = 0.1 n = 1 n = 2 n = 6 n = 0.1 n = 1 n = 2 n = 6

0 0 9.5274 9.1032 8.9956 8.8594 9.5274 9.1032 8.9956 8.8594
1 1.8794 1.7957 1.7745 1.7476 1.8794 1.7957 1.7745 1.7476
2 1.3416 1.2818 1.2667 1.2475 1.3416 1.2818 1.2667 1.2475
3 1.0989 1.0500 1.0376 1.0218 1.0989 1.0500 1.0376 1.0218
4 0.9532 0.9108 0.9000 0.8864 0.9532 0.9108 0.9000 0.8864

0.1 0 9.5783 9.1012 8.9815 8.8312 9.6641 9.2206 9.1085 8.9670
1 1.8894 1.7953 1.7717 1.7420 1.9064 1.8189 1.7967 1.7688
2 1.3488 1.2816 1.2647 1.2435 1.3608 1.2984 1.2826 1.2627
3 1.1048 1.0497 1.0359 1.0186 1.1147 1.0635 1.0506 1.0343
4 0.9583 0.9106 0.8986 0.8835 0.9669 0.9225 0.9113 0.8971

0.2 0 9.6443 9.0984 8.9634 8.7957 9.8140 9.3492 9.2321 9.0851
1 1.9024 1.7947 1.7681 1.7350 1.9359 1.8442 1.8212 1.7921
2 1.3580 1.2812 1.2622 1.2385 1.3820 1.3165 1.3000 1.2793
3 1.1124 1.0494 1.0338 1.0145 1.1320 1.0784 1.0649 1.0479
4 0.9649 0.9103 0.8968 0.8800 0.9819 0.9354 0.9237 0.9090

0.3 0 9.7336 9.0943 8.9396 8.7498 9.9790 9.4907 9.3682 9.2150
1 1.9201 1.7939 1.7634 1.7260 1.9685 1.8722 1.8480 1.8178
2 1.3706 1.2806 1.2588 1.2321 1.4052 1.3364 1.3192 1.2976
3 1.1227 1.0489 1.0311 1.0092 1.1510 1.0947 1.0806 1.0629
4 0.9738 0.9099 0.8944 0.8754 0.9984 0.9496 0.9373 0.9220

Table 4   The effect of 
external electric voltage on 
the first natural frequency of 
a SSSS FGPP-II nanoplate 
with a/h = 20, n = 5

� � V
0

[ [V]

− 500 − 300 − 100 0 100 300 500

0.1 1 1.0862 1.0816 1.0770 1.0747 1.0724 1.0677 1.0630
2 0.7853 0.7789 0.7725 0.7692 0.7660 0.7594 0.7528
3 0.6502 0.6425 0.6346 0.6307 0.6267 0.6187 0.6105
4 0.5697 0.5609 0.5519 0.5473 0.5427 0.5334 0.5240

0.2 1 1.1000 1.0954 1.0908 1.0885 1.0862 1.0815 1.0768
2 0.7951 0.7888 0.7824 0.7791 0.7759 0.7694 0.7628
3 0.6582 0.6505 0.6427 0.6388 0.6348 0.6268 0.6187
4 0.5767 0.5678 0.5589 0.5544 0.5498 0.5405 0.5311

0.3 1 1.1151 1.1105 1.1059 1.1036 1.1013 1.0967 1.0920
2 0.8059 0.7996 0.7932 0.7900 0.7867 0.7802 0.7737
3 0.6671 0.6594 0.6516 0.6477 0.6437 0.6358 0.6277
4 0.5843 0.5755 0.5666 0.5621 0.5575 0.5483 0.5389
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natural frequency. It is worth noting that the natural 
frequency of the FGPP-I nanoplate is smaller than 
that of the FGPP-II nanoplate. Table  4 presents the 
impact of the external electric voltage on the first 
natural frequency of a SSSS FGPP-II nanoplate. The 
results show that an increase in the external electric 

voltage results in a decrease in the frequency of the 
nanoplate.

In addition, Table  5 lists the first six natural fre-
quencies of a SSSS FGPP-I nanoplate. The results 
show that the natural frequencies decrease as the 
power law exponent increases and increase as the 

Table 5   The first six 
natural frequencies of a 
SSSS FGPP-I nanoplate 
with a/h = 100, λ = 2, V0 = 0

� n Modes

1 2 3 4 5 6

0.1 0 0.8398 1.3371 1.3371 1.6935 1.8944 1.8944
2 0.7750 1.2339 1.2339 1.5629 1.7482 1.7482
4 0.7668 1.2208 1.2208 1.5464 1.7297 1.7297
6 0.7620 1.2132 1.2132 1.5368 1.7189 1.7189
8 0.7587 1.2078 1.2078 1.5300 1.7113 1.7113
10 0.7561 1.2038 1.2038 1.5249 1.7056 1.7056

0.2 0 0.8480 1.3501 1.3501 1.7100 1.9129 1.9129
2 0.7734 1.2314 1.2314 1.5597 1.7447 1.7447
4 0.7643 1.2168 1.2168 1.5413 1.7240 1.7240
6 0.7590 1.2083 1.2083 1.5306 1.7120 1.7120
8 0.7552 1.2024 1.2024 1.5230 1.7036 1.7036
10 0.7524 1.1979 1.1979 1.5174 1.6972 1.6972

0.3 0 0.8596 1.3686 1.3686 1.7334 1.9391 1.9391
2 0.7714 1.2281 1.2281 1.5556 1.7400 1.7400
4 0.7610 1.2116 1.2116 1.5347 1.7166 1.7166
6 0.7550 1.2020 1.2020 1.5226 1.7031 1.7031
8 0.7508 1.1953 1.1953 1.5141 1.6935 1.6935
10 0.7476 1.1902 1.1902 1.5077 1.6864 1.6864

Table 6   The first natural 
frequency of a FGPP 
nanoplate with � = 0.3 , 
n = 3, a/h = 50

BCs V0 [V] FGPP-I FGPP-II

� �

1 2 3 4 1 2 3 4

CCCC​ − 300 1.9105 1.4713 1.2872 1.1834 1.9852 1.5181 1.3210 1.2094
0 1.7438 1.2448 1.0196 0.8844 1.8299 1.3062 1.0700 0.9281
300 1.5593 0.9666 0.6500 0.4051 1.6601 1.0526 0.7379 0.5100

SSSS − 300 1.1725 0.9048 0.7919 0.7281 1.2187 0.9339 0.8130 0.7444
0 1.0679 0.7644 0.6267 0.5439 1.1212 0.8025 0.658 0.5710
300 0.9518 0.5914 0.3978 0.2474 1.0143 0.6448 0.4524 0.3127

CFCF − 300 1.7490 1.3607 1.1953 1.1016 1.8168 1.4033 1.2261 1.1251
0 1.5942 1.1479 0.9430 0.8191 1.6727 1.2044 0.9894 0.8595
300 1.4228 0.8869 0.5960 0.3712 1.515 0.9665 0.6776 0.4679

SCFS − 300 1.2996 1.0085 0.8836 0.8124 1.3509 1.0412 0.9074 0.8308
0 1.1877 0.8563 0.7037 0.6115 1.2466 0.8988 0.7387 0.6418
300 1.0633 0.6676 0.4519 0.2831 1.1322 0.7269 0.5129 0.3564
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porous volume fraction increases. The effect of dif-
ferent boundary conditions on the natural frequency 
of the nanoplate is presented in Table 6. As demon-
strated in the table, the highest and lowest frequencies 

are obtained for the CCCC and SSSS nanoplates, 
respectively. Figure  2 illustrates the first six mode 
shapes of the SCFS FGPP-I square nanoplate.  

Mode 1 Mode 2 Mode 3

Mode 4 Mode 5 Mode 6

Fig. 2   The first six mode shapes of the SCFS FGPP-I nanoplate with � = 0.3 , � = 3 , a/h = 50, n = 3, V0 = 300

Table 7   The first natural 
frequency of a simply 
supported circular FGPP 
nanoplate with � = 0.3 , 
R/h = 20

n � FGPP-I FGPP-II

V
0
 = − 500 V

0
 = 0 V

0
 = 500 V

0
 = − 500 V

0
 = 0 V

0
 = 500

0 1 2.2258 2.2119 2.1979 2.2623 2.2476 2.2327
2 1.6437 1.6250 1.6061 1.6710 1.6512 1.6311
3 1.3671 1.3447 1.3218 1.3902 1.3664 1.3421
4 1.1981 1.1726 1.1463 1.2186 1.1915 1.1635

2 1 2.0117 1.9868 1.9616 2.1038 2.0804 2.0567
2 1.4929 1.4596 1.4254 1.5597 1.5284 1.4962
3 1.2477 1.2079 1.1664 1.3022 1.2648 1.2258
4 1.0984 1.0533 1.0055 1.1454 1.1029 1.0579

10 1 1.9574 1.9282 1.8984 2.0597 2.0329 2.0057
2 1.4556 1.4166 1.3761 1.5293 1.4935 1.4565
3 1.2188 1.1722 1.1233 1.2787 1.2359 1.1911
4 1.0751 1.0222 0.9658 1.1262 1.0777 1.0261

20 1 1.9381 1.9080 1.8772 2.0442 2.0167 1.9887
2 1.4420 1.4017 1.3599 1.5183 1.4816 1.4436
3 1.2081 1.1600 1.1093 1.2699 1.2261 1.1800
4 1.0660 1.0115 0.9532 1.1189 1.0691 1.0161
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4.2 � Circular nanoplates

A FGPP circular nanoplate with radius R and thick-
ness h is considered in this section. The non-dimen-
sional natural frequency 𝜔̃ = 4𝜔R2∕h

√(
𝜌∕c11

)
PZT−4

 
is used. The effect of the nonlocal parameter and 
external electric voltage on the first natural frequency 
of the simply supported circular FGPP nanoplate is 
shown in Table  7. The finding is that the frequency 
decreases with increasing of the nonlocal parameter 
and external electric voltage, respectively.

Next, the influence of different boundary condi-
tions on the first natural frequency of a circular FGPP 
nanoplate is shown in Table  8. Again, we can see 
that the natural frequency of the FGPP-I nanoplate is 
smaller than that of the FGPP-II nanoplate. And, the 
natural frequency of the nanoplates decreases with a 

rise of the nonlocal parameter and external electric 
voltage. Finally, the lowest six mode shapes of a fully 
clamped circular FGPP nanoplate are also plotted in 
Fig. 3.

5 � Conclusions

This paper presented the size-dependent analysis of 
the  functionally graded piezoelectric porous nano-
plates using higher-order shear deformation theory, 
the nonlocal elasticity and isogeometric analysis. 
Material properties of the nanoplate made of two pie-
zoelectric materials including PZT-4 and PZT-5H are 
performed by using the modified power-law function. 
Two porous distributions through the thickness direc-
tion are employed. The Eringen’s nonlocal elasticity 

Table 8   The effect 
of different boundary 
conditions on the first 
natural frequency of a 
circular FGPP nanoplate 
with � = 0.1 , R/h = 20, 
n = 0.5

BCs V
0

FGPP-I FGPP-II

� �

1 2 3 4 1 2 3 4

Fully clamped − 500 3.7079 2.7248 2.2654 1.9869 3.7500 2.7554 2.2905 2.0087
0 3.6782 2.6830 2.2144 1.9282 3.7206 2.7139 2.2399 1.9504
500 3.6483 2.6406 2.1622 1.8678 3.6908 2.6718 2.1881 1.8904

Simply supported − 500 2.0734 1.5352 1.2802 1.1247 2.0974 1.5528 1.2947 1.1373
0 2.0537 1.5088 1.2486 1.0887 2.0778 1.5265 1.2632 1.2632
500 2.0337 1.4817 1.2158 1.0511 2.0579 1.4996 1.2307 1.0640

Mode 1 Mode 2 Mode 3

Mode 4 Mode 5 Mode 6

Fig. 3   The first six mode shapes of the fully clamped circular FGPP-I nanoplate with � = 0.1 , � = 4 , R/h = 20, n = 0.5, V
0
 = 500



829A size‑dependent effect of smart functionally graded piezoelectric porous nanoscale plates﻿	

1 3
Vol.: (0123456789)

is used to simulate the size-dependent effects. Based 
on the study results and the established formulations, 
some remarkable conclusions can be listed as follows:

•	 Isogeometric analysis of porous-dependent FG 
piezoelectric porous nanoplates is extended and 
developed in this study.

•	 The combination of the Eringen’s nonlocal elas-
ticity theory and IGA is a simply, suitable, effec-
tive and robust method to calculate and simulate 
behaviors of the FG piezoelectric porous nano-
plates.

•	 The frequency of the nanoplates decreases with 
increasing of the nonlocal parameter and exter-
nal electric voltage.

•	 The frequency of the FGPP-I nanoplate is 
smaller than that of the FGPP-II nanoplate.

•	 The frequency decreases and increases with 
increasing of the law exponent index and porous 
volume fraction factor, respectively.

Finally, these findings shed light on the behavior 
of smart functionally graded piezoelectric porous 
nanoplates and contribute to a more comprehen-
sive understanding of the implications for future 
research in this field.
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