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discretized contact pressures and the two asymmetric 
contact boundaries. Stresses and displacements in the 
layer/substrate structure are also determined for com-
pleteness. Extensive parametric studies clarify the 
relative importance among three surface parameters, 
all helping to partially carry on the indentation load-
ing in addition to the conventional bulk portion of the 
layer/substrate system. The sliding frictional condi-
tion significantly affects the symmetry of the contact 
pressure distribution and contact zone. The property 
gradation of the layer is another important factor 
affecting contact properties. The results reported in 
the current work show a concrete means of tailoring 
nanocontact responses of graded layers in nanosized 
materials and devices.

Keywords  Nanocontact · Graded layer · Sliding 
friction · Surface flexural rigidity · Surface tension · 
Rigid cylinder

1  Introduction

Graded materials are a class of composites that con-
tain two or more constituent phases. The mechani-
cal properties of a graded material may vary con-
tinuously along one or more dimensions, in order 
to achieve desired functionalities. Graded materials 
have found their applications in metals, ceramics and 
organic composites, for the purpose of improving the 
thermal, wear and corrosion prevention capabilities 

Abstract  This paper analyzes the sliding fric-
tional nanocontact of an exponentially graded layer 
perfectly bonded to a homogeneous half-plane sub-
strate under the nanoindentation of a rigid cylinder. 
The punch is subjected to both normal and tangential 
loads, satisfying Coulomb’s friction law. The con-
tact interface is modeled by the full version of Steig-
mann–Ogden surface mechanical theory, in which 
surface tension, surface membrane stiffness and sur-
face flexural rigidity are all taken into account. The 
method of Fourier integral transforms was applied 
to convert the governing equations and nonclassi-
cal boundary conditions into a Fredholm integral 
equation. By separating a nonsingular term from the 
integrand of the kernel function of the integral equa-
tion, numerical integration of the kernel function can 
be significantly improved. After that, Gauss–Che-
byshev numerical quadratures are further employed 
to discretize and collocate the integral equation and 
the indentation force equilibrium condition. An itera-
tive algorithm is subsequently developed to solve 
the resultant nonlinear algebraic system regarding 
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(Schulz et  al. 2003; Zhou et  al. 2021; Argatov and 
Chai 2022). Suresh (2001) reported that, with a suita-
ble spatial variation of elastic modulus, a graded layer 
can provide effective resistance to deformations and 
damages under the condition of spherical or conical 
indentations.

Benefitting from their continuous gradation of 
mechanical properties, numerous studies have been 
conducted to study the contact properties of graded 
materials. We start the literature review from the fric-
tional contact of graded half-planes and half-spaces. 
Elloumi et al. (2010) explored the partial slip contact 
of a graded half-plane under the indentation of a rigid 
stamp. Dag et al. (2013) investigated the sliding fric-
tional contact of a laterally graded substrate indented 
by a rigid punch with an arbitrary profile. Both semi-
analytical and finite element solutions were provided 
for the contact pressure and contact boundaries. For 
a graded orthotropic half-plane, Kucuksucu et  al. 
(2015) and Guler et  al. (2017) solved the frictional 
contact problem under the indentation of a rigid flat-
ended and cylindric punch, respectively. Chen et  al. 
(2015) further analyzed the contact problem between 
a rigid roller and a graded half-plane with an arbitrary 
gradient direction. In addition to single-direction gra-
dation, Arslan (2020) examined the sliding frictional 
contact of a bidirectionally graded half-plane.

The above literature papers treat the whole half-
plane or half-space as a graded medium. Engineer-
ing practice prefers to applying graded materials as 
a layer or a transitional medium. Guler and Erdogan 
(2007) investigated the sliding frictional contact of 
a graded layer bonded to a homogeneous half-plane. 
The effects of layer property gradation, frictional 
coefficient and geometry were analyzed in detail. 
Yang and Ke (2008) studied the contact properties of 
a graded transitional layer that is sandwiched between 
a homogeneous layer and a homogeneous substrate. 
The contact pressure and contact size were solved for 
the case of a rigid cylinder. Taking the frictional heat 
into account, Choi and Paulino (2008) reanalyzed 
the same contact problem by the use of the steady-
state plane thermoelasticity theory. Jobin et al. (2017) 
developed a semianalytical solution for an inhomo-
geneously coated half-plane under the indentation of 
rigid stamps. The graded layer was discretized into 
multiple homogeneous sublayers. Such a multilay-
ered discretization strategy works particularly well 
for graded layers with an arbitrary property gradation. 

Attia and El-Shafei (2019) developed finite element 
solutions to the nonlinear contact problem of graded 
layered materials. Arslan and Dag (2018) investigated 
the sliding frictional contact of an orthotropic layer/
substrate structure. The dynamic frictional contact 
problems of a graded layer subjected to a moving 
cylinder (Balci and Dag 2019) or an angular-ended 
indenter (Balci and Dag 2020) have also been solved. 
In addition to the sliding frictional condition, the roll-
ing contact between a graded layer and a rolling cyl-
inder under the simultaneous applications of normal 
and tangential forces has also been considered (Alinia 
et al. 2014).

The frictional contact problems reviewed above 
were all studied with the classical theory of elastic-
ity. The solutions are valid for regular scale contact 
models. However, as the indenter size in those con-
tact models approaches to microscale, the contact 
zone will fall into the nanoscale. Under such a small 
length scale, surface effects enter into the mechanics 
and physics of contact problems. Numerous theo-
retical and experimental results have shown that sur-
face effects have an evident impact on the mechani-
cal properties of nanosized materials and structures 
(Cammarata 1994; Zhang et al. 2008; Rahman et al. 
2016; Wang 2019). The very high surface-to-volume 
ratio in these materials and structures is responsible 
for surface effects. Gurtin and Murdoch (1975, 1978) 
proposed the first surface mechanical theory for solid 
materials. In this theory, a solid surface is treated as 
an elastic membrane possessing zero thickness and 
perfectly bonded to its abutting bulk solid. In addi-
tion to surface tension, the resistibility of a solid sur-
face to in-plane stretching and shear deformations is 
also accommodated. For this reason, Gurtin–Mur-
doch surface mechanical theory is able to reflect the 
size-dependent feature of nanoscale materials and 
structures to a certain extent (Shenoy 2002; Mi et al. 
2008).

In contact mechanics, Gurtin–Murdoch surface 
theory and its variants were first employed to ana-
lyze the nanocontact properties of homogeneous 
layers, half-planes and half-spaces subjected to trac-
tion loads. Zhao and Rajapakse (2009) determined 
the displacements and stresses in a two-dimensional 
homogeneous elastic layer bonded to a rigid substrate 
under the application of localized normal and tangen-
tial traction forces. Zhao and Rajapakse (2013) fur-
ther considered a three-dimensional homogeneous 
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layer subjected to localized tangential traction loads. 
The asymmetric displacements and stresses were 
determined. Zhou and Gao (2013) developed analyti-
cal solutions for homogeneous half-planes and half-
spaces subjected to a distributive normal pressure. 
Mi (2017) investigated the asymmetric problem of 
a homogeneous half-space under the application of 
localized tangential tractions. Different from the con-
ventional isotropic assumption, Shen (2019) restudied 
Boussinesq problem for a transversely isotropic half-
space incorporating surface effects. Moradweysi et al. 
(2019) solved the contact problem of a homogene-
ous half-space by the coupling of strain gradient and 
surface theories. Le et  al. (2021) analyzed the elas-
tic response of a homogeneous half-plane under the 
application of normal, shear and couple tractions. The 
coupling effects of couple stress and Gurtin–Murdoch 
surface elasticity were studied.

The nanocontact properties of elastic layers, half-
planes and half-spaces under the indentation of rigid 
stamps have also been studied with the account of 
surface effects. Due to the additional complexity 
introduced by mixed boundary conditions, this line of 
research is primarily concerned with frictionless con-
tact problems. Argatov and Sabina (2012) addressed 
the spherical indentation of a transversely isotropic 
half-space reinforced by an extensible membrane. 
Pinyochotiwong et al. (2013) solved the nanocontact 
problem between an elastic half-space and a rigid 
indenter. Besides the conventional semianalytical 
approach, Gad et al. (2014) developed a finite element 
formulation to numerically analyze the nanocontact 
properties of a two-dimensional elastic strip. Tirapat 
et  al. (2020) solved the nanoscale adhesive contact 
problem of a homogeneous elastic layer possessing a 
Gurtin–Murdoch type boundary that is indented by a 
flat-ended cylinder. Assuming an inner adhesion zone 
and an outer finite friction zone, Intarit et al. (2020) 
reconsidered the nanocontact model.

The nanocontact problems reviewed above 
neglected the resistibility of a solid surface to flexural 
deformations, since the solid surface is modeled as 
an elastic membrane without any bending rigidities 
(Ban and Mi 2021). By the use of molecular dynam-
ics simulations, Chhapadia et al. (2011) clarified the 
bending deformation of the lateral surfaces of a can-
tilevered nanowire. They quantitatively evaluated its 
surface thickness. Their results explained the appre-
ciably larger elastic modulus of a nanowire under 

bending than under extension. In fact, longer than 
two decades ago, Steigmann and Ogden (1997, 1999) 
have extended the Gurtin–Murdoch surface theory, in 
order to additionally take the surface bending rigid-
ity into consideration. However, until the recent 
five years, the improved Steigmann–Ogden surface 
mechanical has received sufficient attentions (Walton 
and Zemlyanova 2016; Zemlyanova and Mogilevs-
kaya 2018; Zemlyanova 2018, 2019; Mi 2018; Li and 
Mi 2019a, b, 2021).

As to the nanocontact mechanics of graded materi-
als, much fewer works can be found in the open lit-
erature. Attia and Mahmoud (2015) proposed a finite 
element scheme for the frictionless nanoindentation 
of an elastic substrate reinforced with a power-law 
graded layer due to rigid or deformable indenters. The 
complete version of Gurtin–Murdoch surface theory 
was employed to address the surface effects. Vasu and 
Bhandakkar (2018) solved the nanocontact problem 
of an exponentially graded half-plane, reinforced with 
a Gurtin–Murdoch type boundary. Zhang et al. (2018) 
explored the frictionless nanocontact responses of a 
graded layer, by using the surface model proposed by 
Chen and Yao (2014). Zhu et al. (2019) considered a 
linearly graded half-plane subjected to uniform sur-
face tractions. Surface tension was incorporated, in 
order to account for the graded half-plane boundary 
effects. Ban and Mi (2022) analyzed the competing 
mechanism between adhesive and surface effects on 
the determination of the nanocontact behavior of a 
graded layer/substrate structure.

This work aims at exploring the sliding frictional 
nanocontact properties of an exponentially graded 
layer/substrate structure. The exponential variation of 
the graded coating’s shear modulus is not just a math-
ematical assumption. Existing technology can already 
synthesize such graded coatings for structural compo-
nents in order to guard against contact deformation and 
damage (Giannakopoulos and Suresh 1997). The major 
originality lies in two aspects. First, the full Steig-
mann–Ogden surface theory including surface tension, 
membrane stiffness and flexural rigidity is accounted 
for. Second, the effects of sliding friction are first con-
sidered in the nanocontact mechanics of graded materi-
als. The proposed two-dimensional nanocontact model 
may be viewed as a plane-strain approximation to the 
sliding nanoindentation between a rigid microsized cyl-
inder and a three-dimensional coating-substrate struc-
ture. The model may also be used as the plane-stress 
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approximation for the engagement between two micro-
sized gears. The remainder of this paper is structured as 
follows. Section 2 presents the theoretical formulation 
of the proposed nanocontact problem, leading to a gov-
erning Fredholm integral equation. In Sect. 3, the con-
vergence of the infinite integrals inherent to the Fred-
holm integral equation is analyzed in detail. Along with 
the indentation force equilibrium equation, a numerical 
solution algorithm to the governing integral equation is 
outlined in Sect. 4. Section 5 first validates our method 
and algorithm against available literature data, followed 
by extensive parametric studies about surface param-
eters, frictional coefficient and layer property gradation. 
Finally, in Sect. 6, a few major conclusions of this work 
are drawn.

2 � Formulation of dual integral equations

2.1 � Problem statement

We consider the sliding frictional contact between a 
rigid cylinder and an exponentially graded layer per-
fectly bonded to a homogeneous half-place plane, as 
shown in Fig. 1. The graded layer has the finite thick-
ness of h. The rigid cylinder has the radius R and is 
under the application of both normal (P) and tangential 
(Q) forces. They satisfy Coulomb’s law of friction, i.e., 
Q = �P . As a result, the sliding frictional condition is 
assumed in this work. Due to the presence of friction, 
the left ( x = −a ) and the right ( x = b ) contact bounda-
ries are not symmetric about the symmetry axis (z) of 
the rigid cylinder. This is in contrast with frictionless 
contact.

The shear modulus of the graded layer is assumed 
to vary as an exponential function of the thickness 
coordinate

where � is a parameter that characterizes the property 
gradation along the layer thickness and �1 represents 
the shear modulus of the graded layer at its upper sur-
face ( z = 0 ). Since the half-plane substrate is homo-
geneous, its shear modulus is taken as the constant 
�2 . For simplicity, Poisson’s ratios of the layer and 
the substrate are taken as equal, denoted by Kolosov’s 
constant � in the subsequent formulation and solution 
procedure. Under plane strain condition, � = 3 − 4� . 

(1)�(z) = �1e
�z, 0 ≤ z ≤ h,

Across the layer/substrate interface, the shear modu-
lus is treated as continuous

The gradient index of the layer can therefore be given 
by

where Γ = �2∕�1 denotes the shear moduli ratio 
between the substrate and the upper surface of the 
graded layer. Given the geometric model and loading 
conditions of the nanocontact problem, the funda-
mental unknowns are identified as the contact pres-
sure and both contact boundaries. Only after they are 
determined, the elastic fields in the graded layer and 
the half-plane may be further evaluated.

2.2 � Dual integral equations

Under nanoindentation, the contact interface is 
modeled by the Steigmann–Ogden surface theory 
(Steigmann and Ogden 1997, 1999; Zemlyanova 
and Mogilevskaya 2018). Different material proper-
ties than those of the abutting layer bulk need to be 
allocated. They are composed of the surface tension 
( �0 ), membrane (tensile) stiffness ( k0 ) and flexural 

(2)�2 = �1e
�h.

(3)�h = lnΓ,

Fig. 1   Geometry and loading configuration of the sliding fric-
tional nanoindentation between a rigid cylinder and an expo-
nentially graded layer perfectly bonded to a homogeneous half-
plane substrate
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rigidity ( d0 ). Steigmann–Ogden surface theory 
treats a solid surface or interface as a thin plate, 
possessing surface tension, membrane stiffness and 
flexural rigidity. This theory functions through the 
modified boundary condition

where � is the surface normal vector, � the Cauchy 
stress, ∇S the surface gradient operator, � the surface 
stress, M the surface bending moment, and �(�) the 
traction load.

For the contact interface ( z = 0 ) shown in Fig. 1, 
the nonclassical boundary condition (4) can be 
materialized (Li and Mi 2019b) 

 where qx = �p(x) and p(x) are the tangential and nor-
mal contact pressures, and u1(x, 0) and w1(x, 0) denote 
the tangential and normal displacements on the layer 
upper surface.

Along the graded layer/substrate interface, per-
fect bonding condition leads to continuous tractions 
and displacements 

In Fourier space, the general solution of displace-
ments and stresses in an exponentially graded layer 
has been derived by Yan and Mi (2017), in terms 
of four unknown functions ( B1–B4 ) of Fourier trans-
form variable ( � ). The elastic fields in a positive 
half-plane was also given in terms of two unknown 
function ( A5 and A6 ). The boundary conditions (5a, 
5b) and (6a–d) provide six equations for determin-
ing these six unknown functions. Application of the 
standard linear algebra algorithm results in 

(4)
� ⋅ � = ∇S ⋅ � + (∇S ⋅�)� − (∇S ⋅ �)� ⋅ (∇S ⋅�)� + �

(�),

(5a)�zx + q(x) + k0
�2u1(x, 0)

�x2
= 0,

(5b)�zz + p(x) + �0
�2w1(x, 0)

�x2
− d0

�4w1(x, 0)

�x4
= 0,

(6a)�zz2(x, h) = �zz1(x, h),

(6b)�xz2(x, h) = �xz1(x, h),

(6c)u2(x, h) = u1(x, h),

(6d)w2(x, h) = w1(x, h).

 where q̃(𝜉) and p̃(𝜉) stand for the Fourier transforms 
of the tangential and normal contact pressures exerted 
on the layer upper surface due to the nanoindenta-
tion of the rigid cylinder. In addition, Mij ( i = 1, 2 ; 
j = 1 − 6 ) denotes the elements of the cofactor matrix 
to the 6 × 6 coefficient matrix of the linear algebraic 
system with the determinant M. They are documented 
in Appendix A for brevity and easy reference.

Up to this point, the normal contact pressure p(x) 
is still an unknown. It can be solved by applying the 
displacement constraint along the contact interface 
( z = h)

The substitution of the displacement along the con-
tact interface into the above equation leads to the inte-
gral equation

where 

In the above equations, E1 and E2 are given by 

Note that, for frictionless nanocontact prob-
lems incorporating only surface tension, an explicit 
expression may be obtained for Eq.  (11b) (Long 

(7a)

Bj(𝜉) = (−1)j
(
M1j

M
q̃(𝜉) −

M2j

M
p̃(𝜉)

)
, j = 1, ..., 4,

(7b)Aj(𝜉) = (−1)j
(
M1j

M
q̃(𝜉) −

M2j

M
p̃(𝜉)

)
, j = 5, 6,

(8)
�w1

�x
= −

x

R
, −a ≤ x ≤ b.

(9)
�

b

−a

�p(t)�1(x, t)dt + �
b

−a

p(t)�2(x, t)dt =
x

R
, −a ≤ x ≤ b,

(10a)�1(x, t) =
1

� ∫
+∞

0

IE1(�, 0) cos(�(t − x))d�,

(10b)�2(x, t) =
1

� ∫
+∞

0

E2(�, 0) sin(�(t − x))d�.

(11a)E1(�, 0) = I�

4∑
j=1

(−1)jsj
M1j

M
,

(11b)E2(�, 0) = �

4∑
j=1

(−1)jsj
M2j

M
.
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et  al. 2012; Le et  al. 2021). In the presence of a 
graded layer possessing Steigmann–Ogden surface 
effects, it becomes not possible to develop such an 
analytical expression. Moreover, due to the sliding 
friction, Eq. (11a) was additionally introduced. This 
equation does not exist in any frictionless nano-
contact problems. The complexity of Eqs.  (11a, 
11b) makes it impractical to derive an analytical 
solution for the infinite integrals  (10a, 10b). In the 
literature (Pinyochotiwong et  al. 2013; Li and Mi 
2019b; Le et  al. 2022), numerical quadratures of 
Gauss-type were employed instead to numerically 
evaluate these infinite integrals. Because of the 
critical importance of truncation scheme on integra-
tion accuracy and cost, next section makes detailed 

investigations on the numerical calculations of the 
infinite integrals (10a, 10b).

The integral Eq.  (9) stands for one of the two 
governing equations that need to be numerically 
tackled for the proposed nanocontact problem. The 
other one is represented by the force equilibrium 
condition between the externally applied indenta-
tion force and the resultant of the contact pressure

Under the condition of sliding friction, it is not neces-
sary to consider the force equilibrium along the hori-
zontal direction and the moment equilibrium.

(12)∫
b

−a

p(x)dx = P.

Table 1   Asymptotic behavior of the infinite integral (10a)

aFathabadi and Alinia (2020)
b Ω = �(� + 1)

(
d
0
�2 + k

0
+ �

0

)
�
2
+ k

0
�2�

(
d
0
�2 + �

0

)
+ 4�2

2

IE
1 Asymptot.

(
IE

1

)
lim
�→∞

(IE
1
) Asymptot.(10a)

Classical ( Γ ≠ 1)
I�

4∑
j=1

sj(−1)
j M1j

M

−
(�−1)

4�
1

−
(�−1)

4�
1

−
(�−1)

4�
1

�(t − x)

Only �
0
 ( Γ = 1) −

(�−1)

�
0(�+1)�+4�2

   a −
(�−1)

�
0(�+1)�

0 N.A.

Only d
0
 ( Γ = 1) −

(�−1)

d
0(�+1)�

3+4�
2

O
(
�−3

)
0 N.A.

Nonclassical ( Γ ≠ 1)
I�

4∑
j=1

sj(−1)
j M1j

M

O
(
�−4

)
0 N.A.

Nonclassical ( Γ = 1) −
(�−1)�2

Ω
    b O

(
�−4

)
0 N.A.

Table 2   Asymptotic 
behavior of the infinite 
integral (10b)

aLong et al. (2012).
b Li and Mi (2021).
c 
Ω = �(� + 1)

(
d
0
�2 + k

0
+ �

0

)
�
2

+k
0
�2�

(
d
0
�2 + �

0

)
+ 4�2

2

E
2 Asymptot.

(
E
2

)
lim
�→∞

(E
2
) Asymptot.(10b)

Classical ( Γ ≠ 1)
�

4∑
j=1

sj(−1)
j M2j

M

−
(�+1)

4�
1

−
(�+1)

4�
1

−
(�+1)

4��
1
(t−x)

Only �
0
 ( Γ = 1) −

(�+1)

�
0(�+1)�+4�2

    a −
1

�
0
�

0 −
�sgn(t−x)

2�
0
�

Only d
0
 ( Γ = 1) −

(�+1)

d
0(�+1)�

3+4�
2

    b −
1

d
0
�3

0 N.A.

Nonclassical ( Γ ≠ 1)
�

4∑
j=1

sj(−1)
j M2j

M

−
1

d
0
�3

0 N.A.

Nonclassical ( Γ = 1) −
(�+1)�2

−k
0
��

Ω
    c −

1

d
0
�3

0 N.A.
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3 � Numerical evaluation of infinite integrals

The goal of this section is to develop an accurate 
algorithm to calculate the dual infinite integral 
Eqs.  (10a, 10b). For this purpose, the asymptotic 
behavior of their integrands (11a, 11b) were first ana-
lyzed, as shown in Tables 1 and  2, respectively. For 
the graded layer/substrate structure shown in Fig.  1, 
both the classical and nonclassical cases are ana-
lyzed. In addition, following Vasu and Bhandakkar 
(2016, 2018), the reduced results for the degenerated 
case of a completely homogeneous half-plane ( Γ = 1 ) 
can be employed to speed up the convergence of the 
dual infinite integrals. For this reason, the asymptotic 
behavior for this degenerated case and a few oth-
ers are simultaneously tabulated in the tables. They 
were evaluated in MAPLE software package and are 
consistent with those available in the literature. The 
agreements help to validate the correctness of the 
asymptotic analysis.

In Tables 1 and  2, Asymptot.(⋅) denotes the lead-
ing term in the asymptotic expansion of its argu-
ment, as Fourier transform variable ( � ) approaches to 
infinity, sgn(⋅) is the sign function and � (⋅) stands for 
the Dirac delta function. Based on literature results 
regarding the effects of surface material parameters 
on contact properties and the numerical tests of the 
present study, the surface tensile stiffness ( k0 ) alone 
shows negligible influence. As a result, the separated 
effects of k0 on the asymptotic behavior of the infinite 
integrals (10a, 10b) does not need to be considered.

3.1 � Classical case without surface effects

Let us first consider the classical case without 
any surface effects ( �0 = 0 , k0 = 0 , d0 = 0 ). From 
Tables  1 and   2, both integrands  (11a, 11b) possess 
singular terms as � approaches to infinity. Without 
separating the singular terms, the asymptotic behav-
ior is shown in Fig. 2a and b. It can be observed that 
both integrants oscillate almost regularly with the 
increase of �.

For reliable calculations of the infinite integrals, 
singular terms must be extracted from the integrands 
(Guler and Erdogan 2004, 2007). By using integral 

identities involving trigonometric functions and the 
singular terms, Eqs. (10a, 10b) can be recast into 

where d1 and d2 denote the strength of singularity 

Figure 3a and b show the asymptotic behavior of 
the integrands after extracting the singular terms. 
Both integrands decay rapidly with � . Under such a 
condition, the infinite upper bound in (13a, 13b) may 
be safely truncated by a small number. After that, an 
accurate numerical solution can be obtained with the 
aid of Gauss–Legendre quadrature. Based on exten-
sive tests, the upper bound is chosen as 500. The fur-
ther substitution of (13a, 13b) back into the governing 
integral Eq. (9) leads to

where 

It is noted that Eq.  (15) belongs to the Fredholm 
integral equation of the second kind. Moreover, it is a 
singular integral equation of the Cauchy type, as indi-
cated by the second term of its left-hand side.

(13a)

�1(x, t) = ∫
+∞

0

[
IE1 − d1

]
cos (�(t − x))d� + d1��(t − x),

(13b)

�2(x, t) = ∫
+∞

0

[
E2 − d2

]
sin (�(t − x))d� +

d2

t − x
,

(14a)d1 =
−(� − 1)

4�1

,

(14b)d2 =
−(� + 1)

4�1

.

(15)

�p(x) +
1

� ∫
b

−a

p(t)

t − x
dt +

1

� ∫
b

−a

�(x, t)p(t)dt =
x

Rd2
,

(16a)
�(x, t) = � ∫

+∞

0

[
IE1 − d1

d2

]
cos (�(t − x))d�

+ ∫
+∞

0

[
E2 − d2

d2

]
sin (�(t − x))d�,

(16b)� =
�d1

d2

.



102	 R. Cao et al.

1 3
Vol:. (1234567890)

3.2 � Nonclassical case with surface tension only

Next, we aim at investigating the asymptotic behav-
ior of the infinite integrals in the presence of surface 
effects. As can be observed from Tables 1 and  2, both 
integrands  (11a, 11b) tend to zero as � approaches 
to infinity for all four nonclassical cases. Therefore, 
there are no singular terms. However, the integrands 
of infinite integrals (10a, 10b) continuously oscillate 
from zero to a very large upper bound. The rate of 
convergence is thus very slow. Some mathematical 
manipulations may be conducted to optimize the con-
vergence properties. When only surface tension ( �0 ) 
is taken into account, the asymptotic behavior of the 
integrands in Eqs. (10a, 10b) are presented in Fig. 4a 
and b. It can be observed that, although the integrands 
behave oscillatory decaying with � , the convergence 
is very slow.

To speed up the convergence rate, the asymp-
totic values of IE1 and E2 corresponding to a 
completely homogeneous half-plane ( Γ = 1 ) 
may be extracted from the original integrands. 
For such a particular condition, the infinite inte-
gral of the product between Asymptot.(E2) 
and sine function has a closed-form solution: 
− ∫ +∞

0

(
1∕

(
�
0
�
))

sin [�(x − t)] = −�∕
(
2�

0
�
)
sgn(t − x)  . 

As a result, the asymptotic value ( −1∕(�0�) ) of E2 
may be set as the separation term. Although no cor-
responding analytical solution can be found for IE1 , 
the same algorithm may be employed. Following 
such a reasoning, the infinite integrals (10a, 10b) may 

be rewritten in the following forms that are ready for 
numerical evaluation 

where the subscript “homo” denotes the reduced solu-
tion of IE1 corresponding to a completely homogene-
ous half-plane ( Γ = 1 ). In Fig. 5a and b, we present 
the asymptotic behavior of the integrands in the first 
infinite integrals in the right-hand side of Eqs.  (17a, 
17b). As before, the infinite upper bound was set as 
500 and Gauss–Legendre quadrature was employed 
for the numerical integration. In contrast to Fig.  4a 
and b, both integrands decay rapidly after the sepa-
ration. In particular, Fig.  5b shows a more rapid 
convergence.

In addition, the second infinite integral on the 
right-hand side of Eq.  (17a) can also be analytically 
integrated

(17a)

�1(x, t) =
1

� ∫
+∞

0

[
IE1 − IE1

||homo
]
cos(�(t − x))d�

+
1

� ∫
+∞

0

IE1
||homo cos (�(t − x))d�,

(17b)

�2(x, t) =
1
� ∫

+∞

0

[

E2(�, 0) +
1
�0�

]

sin (�(t − x))d�

−
sgn(t − x)

2�0�
,

(a) (b)

Fig. 2   Asymptotic behavior of the integrands in the infinite integrals (10a, 10b), without separating the singular terms 
( �

0
= 0, k

0
= 0, d

0
= 0)
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where

and si(⋅) and ci(⋅) are sine and cosine integrals.

3.3 � Nonclassical case with surface flexural rigidity 
only

In this subsection, we analyze the asymptotic 
behavior of the integrants in Eqs. (10a, 10b) when 
only surface flexural rigidity ( d0 ) is considered. 
Fig. 6a and b show the asymptotic behavior as Fou-
rier transform variable ( � ) grows from zero to 300. 
The declining rate of the oscillatory integrands is 
quite slow. This behavior makes it nearly impos-
sible to truncate the infinite upper bound of the 
improper integrals with a reasonably large number.

To accelerate the convergence rate, the infinite 
integrals (10a, 10b) can be recast in the form of 

(18)
1 − �

��0(1 + �)
[− sin (|t − x|�)si(|t − x|�)

− cos (|t − x|�)ci(|t − x|�)],

(19)� =
4�2

�0(� + 1)
,

This is equivalent to separate the values of IE1 
and E2 corresponding to a completely homogeneous 
half-plane ( Γ = 1 ). When only the surface flexural 
rigidity is considered, the second term on the right-
hand side of Eqs.  (20a, 20b) can be analytically 
evaluated 

where MeijerG(⋅) stands for the Meijer’s G-function 
whose definition and main properties can be found in 
Gradshteyn and Ryzhik (2015).

(20a)
�1(x, t) =

1
� ∫

+∞

0

[

IE1 − IE1||homo
]

cos (�(t − x))d�

+ 1
� ∫

+∞

0
IE1||homo cos (�(t − x))d�,

(20b)

�2(x, t) =
1

� ∫
+∞

0

[
E2 − E2

||homo
]
sin (�(t − x))d�

+
1

� ∫
+∞

0

E2
||homo sin (�(t − x))d�.

(21a)
−

√
3(�−1)

4�3∕2�2(t−x)
MeijeiG

�
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2
, [],

�
1

6
,
1

2
,
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,
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, 1
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,
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�
,
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2

2916d2
0
(�+1)2

�
,

(21b)
−

√
3(�+1)

4�3∕2�20(t−x)
MeijeiG

�
1, [],

�
1

3
,
1
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,
2

3
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1

6
,
5

6

�
,
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(a) (b)

Fig. 3   Asymptotic behavior of the integrands in the infinite integrals (10a, 10b), after separating the singular terms 
( �

0
= 0, k

0
= 0, d

0
= 0)
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In Fig.  7a and b, we show the asymptotic behav-
ior of the integrands belonging to the first infinite 
integrals on the right-hand side of Eqs.  (20a, 20b). 
After the separation of the corresponding completely 
homogeneous half-plane solutions, both integrands 
decay very rapidly with the increase of � . Based on 
this observation, it has become possible to truncate 
the infinite upper bound with a reasonably large num-
ber (500). After that, Gauss–Legendre quadrature is 
employed to evaluate the finite integral.

3.4 � Nonclassical case with full Steigmann–Ogden 
surface effects

When the full Steigmann–Ogden surface theory is 
accommodated, the same separation scheme can still 
be used. As a result, Eqs. (20a, 20b) remain effective. 
Similar to previous three cases studied in the present 
section, the integrands of the infinite integrals (10a, 

(a) (b)

Fig. 4   Asymptotic behavior of the integrands in the infinite integrals (10a, 10b), without separation ( �
0
≠ 0, k

0
= 0, d

0
= 0)

(a) (b)

Fig. 5   Asymptotic behavior of the integrands in the infinite integrals (10a, 10b), after separating the solutions corresponding to a 
completely homogeneous half-plane ( �

0
≠ 0, k

0
= 0, d

0
= 0)
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10b) oscillates and decay slowly with the integration 
variable � (Fig. 8a and b).

After separating the corresponding homogeneous 
half-plane solutions of the integrands, much faster 
rate of decay can be identified (Fig. 9a and b). When 
compared with the nonclassical cases considering 
only surface tension or surface flexural rigidity, 
both integrands decay faster and nearly converge to 
zero as � → 300 . As before, Gauss–Legendre quad-
rature can be used to evaluate the infinite integrals 
after the proper separation of integrands. The upper 
bound of the infinite integrals are truncated as 500. 
It is sufficient to accurately evaluate the first infi-
nite integrals in Eqs.  (20a, 20b). However, analyti-
cal solutions cannot be found for the second infinite 
integrals anymore. Numerical integration must also 
be used. They are numerically evaluated by using 
the built-in “integral” function available in MAT-
LAB. The upper bound of the integration interval 
was directly set as positive infinity.

4 � Numerical solution algorithm

In this section, we develop an efficient solution algo-
rithm to the integral Eqs. (9), (12) and (15). To proceed, 
let us first make the following replacements of variables

(22a,b)t =
b + a

2
r +

b − a

2
, x =

b + a

2
s +

b − a

2
,

Since both x and t are defined within the contact zone 
[−a, b] , the transformed variables r and s have the 
closed interval [−1, 1] . Function �(r) is the dimen-
sionless form of the contact pressure.

4.1 � Numerical scheme for the classical case

For the classical case without any surface effects, 
Eqs. (15) and (12) can be converted into the follow-
ing expressions with the help of the dimensionless 
quantities defined in (22a–c) 

where

The singularity index of the integral Eq.  (23a) is 
−1 , since the contact pressure is zero and therefore 
bounded at both contact boundaries (Erdogan and 

(22c)�(r) =
p(r)

P∕h
.

(23a)

��(s)d1
d2

+ 1
� ∫

1

−1

�(r)
r − s

dr + 1
� ∫

1

−1
�∗(s, r)�(r)dr

=
(b + a)s + (b − a)

2Rd2P∕h
, − 1 ≤ s ≤ 1,

(23b)b + a

2h ∫
1

−1

�(r)dr = 1,

(24)�∗(s, r) =
(b + a)

2
�(s, r).

(a) (b)

Fig. 6   Asymptotic behavior of the integrands in the infinite integrals (10a, 10b), without separation ( �
0
= 0, k

0
= 0, d

0
≠ 0)
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Gupta 1972). As a result, the dimensionless contact 
pressure �(r) may be expressed as

where �(r) is the weight function given by

In the above equation, the powers � and � are given 
by 

(25)�(r) = g(r)�(r),

(26)�(r) = (1 − r)�(1 + r)� .

(27a)� =
1

2�I
ln
(
� − I

� + I

)
+ N,

where N and M can be arbitrary integers. In addition, 
the following relation should also be satisfied

Following Erdogan et al. (1973), Gauss–Jacobi quad-
ratures are now employed to discretize and collocate 
the integral Eqs. (23a, 23b) 

(27b)� = −
1

2�I
ln
(
� − I

� + I

)
+M,

(28)� = −(� + �) = −(N +M) = −1.

(29a)

N∑
m=1

WN
m
g(rm)

[
1

rm − sk
+ �(rm, sk)

]
=

(b + a)sk + (b − a)

2Rd2P∕h
,

k = 1, 2, ......,N + 1,

(a) (b)

Fig. 7   Asymptotic behavior of the integrands in the infinite integrals (10a, 10b), after separating the solutions corresponding to a 
completely homogeneous half-plane ( �

0
= 0, k

0
= 0, d

0
≠ 0)

(a) (b)

Fig. 8   Asymptotic behavior of the integrands in the infinite integrals (10a, 10b), without separation ( �
0
≠ 0, k

0
≠ 0, d

0
≠ 0)
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where rm and sk are the roots of the associated Jacobi 
polynomials and WN

m
 are the weights of quadratures 

Equations  (29a, 29b) contain N + 2 equations for 
the total number of N + 2 unknowns, including the N 
discretized contact pressures g(rm) (m = 1, 2,⋯ ,N) 
and the two contact boundaries a and b. Although 
this algebraic system is linear to the contact pres-
sures g(rm) , it is nonlinear about the contact bounda-
ries a and b. Therefore, an iterative scheme needs to 
be implemented. An effective iterative algorithm for 
determining these unknowns has been developed by 
Comez and Erdol (2013) and is also adopted in the 
present work to solve the classical contact pressures 
and contact boundaries without surface effects.

4.2 � Numerical scheme for the nonclassical case

By the use of equations (22a–c), the integral Eqs. (9) 
and (12) can be expressed as 

(29b)b + a

2h

N∑
m=1

WN
m
g(rm) =

1

�
,

(30a)P
(�,�)

N
(rm) = 0, m = 1, 2, ......,N,

(30b)P
(−�,−�)

N+1
(sk) = 0, k = 1, 2, ......,N + 1,

(30c)WN
m
= −2−�

Γ(�)Γ(1 − �)

�

P
(−�,−�)

N−�
(rm)

P
(�,�)

N

�
(rm)

.

where 

In the presence of surface effects, the contact pres-
sures at both contact boundaries are not zero any-
more. However, they are still bounded. As a result, 
the singularity index of the integral Eq. (31a) is still 
−1 (Erdogan and Gupta 1972). Following Erdogan 
and Gupta (1972), we may employ Gauss–Cheby-
shev quadrature of the second kind to discretize the 
definite integral in (31a). In the meantime, we use 
Gauss–Chebyshev quadrature of the first kind to col-
locate this integral equation 

(31a)

1

� �
1

−1

�∗(s, r)�(r)dr =
(b + a)s + (b − a)

2RP∕h
, −1 ≤ s ≤ 1,

(31b)b + a

2h ∫
1

−1

�(r)dr = 1,

(32a)�∗(s, r) =
b + a

2
�(s, r),

(32b)�(s, r) = ��1(s, r) + �2(s, r).

(33a)

N
∑

m=1

(1 − r2m)
N + 1

g(rm)�(rm, sk)

=
(b + a)sk + (b − a)

2RP∕h
, k = 1, 2,⋯ ,N + 1,

(a) (b)

Fig. 9   Asymptotic behavior of the integrands in the infinite integrals (10a, 10b), after separating the solutions corresponding to a 
completely homogeneous half-plane ( �

0
≠ 0, k

0
≠ 0, d

0
≠ 0)
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where 

Similar to Eqs.  (29a, 29b), the algebraic sys-
tem  (33a, 33b) also contains N + 2 equations for 
the determination of the N + 2 unknowns. They are 
composed of the discretized contact pressures g(rm) 
(m = 1, 2,… ,N) and both contact boundaries a and b. 
Again, the algebraic system is linear about the contact 
pressures, but nonlinear to the contact boundaries. To 
determine these unknowns, an iterative algorithm is 
needed. Note that (33a) has N + 1 equations. When 
using them to determine the N contact pressures 
g(rm) , anyone of them can be extracted and combined 
with (33b). As the first step, initial values of both con-
tact boundaries (a and b) are proposed. Second, the N 
discretized contact pressures g(rm) are evaluated from 
Eq. (33a), by excluding anyone from the N + 1 collo-
cated equations. The standard algorithm is sufficient 
for this linear algebraic system. Third, the just solved 
contact pressures g(rm) are substituted into Eq. (33b) 
and the equation that was previously excluded from 
(33a). The residual errors of both equations are then 
calculated. Provided that both errors are less than or 
equal to 10−6 , solutions deem to be found. Otherwise, 
both contact boundaries a and b need to be updated, 
by following the method of steepest descent, and the 
loop needs to be recycled again from the second step.

5 � Results and discussion

We have presented the formulation and method of 
solution for the sliding frictional nanocontact prob-
lem between a rigid cylinder and an exponentially 
graded layer/substrate structure. The governing 
integral equations were converted into an algebraic 

(33b)
b + a

2h

n∑
m=1

(1 − r2
m
)

N + 1
g(rm) =

1

�
,

(34a)g(rm) =
�
�
rm
�

√
(1 − rm

2)
,

(34b)rm = cos
(

m�

N + 1

)
, m = 1, 2,⋯ ,N,

(34c)sk = cos

(
�(2k − 1)

2(N + 1)

)
, k = 1, 2,⋯ ,N + 1.

system of equations for determining the asymmetric 
nanocontact pressures and boundaries. In this section, 
we conduct parametric studies with respect to surface 
properties, sliding frictional coefficient, and the gra-
dient index of the layer modulus.

5.1 � Validation of the solution algorithm

Since the classical case without surface effects has 
been studied in the literature (Guler and Erdogan 
2007), it is beneficial to first verify and validate the 
accuracy of the developed method of solution and 
numerical algorithm (Sect. 4.1). Figs. 10a and b show 
the contact pressure distributions for the frictionless 
( � = 0 ) and sliding frictional ( � = 0.7 ) conditions, 
respectively. Three shear moduli ratios are consid-
ered, standing for a hard ( Γ = 1∕7 ), a homogeneous 
( Γ = 1 ) and a soft ( Γ = 7 ) layer. From Eq. (2), defin-
ing Γ is equivalent to assigning the gradient index �h 
of the layer modulus. For all six cases, the agreement 
between our results and the literature data is perfect. 
This indicates the reliability of our method of solution 
(Sect. 4.1). In general, the maximum contact pressure 
corresponding to the soft layer ( Γ = 7 ) is much larger 
than that of the hard one ( Γ = 1∕7 ). As expected, 
under the frictionless condition, the maximum pres-
sure occurs at the center of the contact zone. For the 
frictional cases ( � = 0.7 ), the maximum contact pres-
sure deviates appreciably from the center.

Next, let us verify and validate the method of solu-
tion and numerical algorithm for the nonclassical case 
(Sect.  4.2). For the nanocontact between a completely 
homogeneous half-plane and a rigid cylinder, Long et al. 
(2012) studied the sole influence of surface tension ( �0 ). 
In Fig.  11, we compared our results with the contact 
pressures extracted from Long et al. (2012), by consid-
ering the surface tension only. The classical solutions 
without surface tension are also presented. Note that, in 
the dimensionless form, the classical contact pressure 
has nothing to do with the radius of the rigid cylinder. 
For all six cases, our results agree perfectly with the 
literature data, indicating the reliability of our solution 
algorithm for the nonclassical scenario (Sect. 4.2).

5.2 � Contact pressure and contact boundaries

Now, let us investigate the contact pressure distri-
bution and contact boundaries under the influence 
of surface properties, shear moduli ratio and sliding 
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frictional coefficient. In particular, the effects of three 
Steigmann–Ogden surface parameters are empha-
sized. The shear modulus of the substrate and Pois-
son’s ratio of both deformable media are fixed as 
�2 = 1 MPa and � = 0.4 (Long et al. 2012; Long and 
Wang 2013). The other parameters are taken as h = 1 
� m, R = 100 � m and P = 10nN.

Figure  12 shows the effects of separate surface 
parameters on contact pressure and contact bounda-
ries. As aforementioned, since the effects of surface 
tensile stiffness is very marginal, only surface ten-
sion and surface flexural rigidity are considered, 
when investigating the effects of individual surface 
parameters. Therefore, only �0 and d0 are considered 
separately in the current example. Three different 
magnitudes of either parameter are considered. The 
classical solutions are also presented for easy com-
parisons. The other variables are given in the captions 
of the figures.

From Fig.  12, both surface tension and surface 
flexural rigidity significantly affect the distribution 
pattern of the contact pressure. For either parameter, 
the maximum contact pressure occurs near the mid-
point of the contact zone and decays monotonically 
toward the contact boundaries. In the presence of 
surface effects, the minimum contact pressure taking 
place at both contact boundaries becomes nonzero. 
Furthermore, with the inclusion of sliding friction, the 
contact pressure is not symmetric about the symmetry 

axis (z) of the rigid cylinder anymore. The contact 
pressure at the left boundary is always larger than that 
of the right boundary. The effects of surface tension 
are more significant than those of surface flexural 
rigidity with the equal magnitude. When only consid-
ering surface flexural rigidity, the maximum contact 
pressure slightly decreases with its increased magni-
tude. In contrast, with the increased surface tension, 
the maximum contact pressure increases obviously 
and the contact interval shrinks continuously.

Having explored the individual effects of surface 
tension and surface flexural rigidity, let us now con-
sider the complete Steigmann–Ogden surface theory. 
We define a dimensionless parameter � to represent 
the equal magnitude of three independent Steigmann-
Ogden surface parameters ( �0 , k0 , d0 ). In the subse-
quent parametric analysis, three levels of � will be 
considered (Table 3).

Figure  13 shows the dimensionless contact pres-
sure for three levels of the dimensionless parameter 
� denoting the equal magnitude of �0 , k0 and d0 . The 
classical solution is also presented for comparison 
purpose. The common effects of the three surface 
parameters on contact pressure are similar to that of 
only considering surface tension (Fig. 12). This indi-
cates that surface tension plays a leading role. For all 
four cases, the maximum pressures are near the center 
of the contact zone. The loss of symmetry about the 
z−axis is apparently due to the presence of sliding 

(a) (b)

Fig. 10   Validation of the contact pressures with respect to Guler and Erdogan (2007) for the classical case without any surface 
effects. Two sliding frictional coefficients and three shear moduli ratios are considered ( R∕h = 100 , (b + a)∕R = 0.01 , Γ = �

2
∕�

1
)
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friction. Furthermore, the maximum contact pressure 
increases with the dimensionless parameter � . Gov-
erned by the conservation of the external indentation 
force, an opposite trend can be observed for the con-
tact size. Except the classical case, the contact pres-
sure at both contact boundaries becomes nonzero. 
For all nonclassical curves, the contact pressure at the 
right boundary is slightly lower than that at the left 
boundary.

Next, let us investigate the effects of sliding fric-
tional coefficient � . Figure 14 shows the contact pres-
sure for three frictional coefficients. The sliding fric-
tional coefficient significantly affects the distribution 
symmetry of the contact pressure. With the increased 
frictional coefficient, the contact pressure at the left 
contact boundary increases apparently. An oppo-
site trend can be found for the right contact bound-
ary. As a result, for a nonzero frictional coefficient, 
the minimum pressure always takes place at the right 
boundary of the contact zone. In addition, the con-
tact zone continuously deviates toward the sliding 
frictional direction with the increased � . While the 
sliding frictional coefficient greatly affects the distri-
bution pattern of the contact pressure, the maximum 

contact pressure is much less influenced (Fathabadi 
and Alinia 2020).

Figure  15 shows the effects of the shear moduli 
ratio or equivalently the gradient index on contact 
pressure and contact boundaries. Five shear mod-
uli ratios are considered. They represent two hard 
graded layers ( Γ = 1∕6, 1∕3 ), two soft graded layers 
( Γ = 3, 6 ) and one completely homogeneous layer 
( Γ = 1 ). For the sliding frictional coefficient � = 0.4 , 
the maximum contact pressures still take place near 
the center of the contact zone and the minimum 
contact pressure always occurs at the right contact 
boundary. With the increased shear moduli ratio, the 
maximum contact pressure decays monotonically and 
the contact zone expands appreciably.

5.3 � Stresses and displacements along the contact 
interface

The previous subsection examined the effects of 
Steigmann–Ogden surface parameters, shear mod-
uli ratio and sliding frictional coefficient on contact 
pressures and contact boundaries. Nevertheless, their 
effects on displacements and stresses along the con-
tact interface have not been studied. This is the objec-
tive of the current subsection. Following Eqs.  (29b) 

Fig. 11   Validation of the contact pressure between a com-
pletely homogeneous half-plane and a rigid cylindrical 
indenter under the sole influence of surface tension (Long et al. 
2012). Four indenter radii are considered ( Γ = 1 , �

1
= �

2
= 1 

MPa, � = 0.4 , � = 0 , �
0
= 0.1 nN/nm, P = 10 nN/� m, 

pm = P∕(b + a))

Fig. 12   Distribution of contact pressure between the graded 
layer and the rigid cylindrical indenter for three levels of sur-
face tension or surface flexural rigidity ( � = 0.4 , Γ = 1∕3)
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and (33b), the tangential and normal contact pres-
sures in Fourier space can be expressed by

For the classical case without surface elasticity

For the nonclassical case

(35a,b)

q̃(𝜉) = 𝜂p̃(𝜉), p̃(𝜉) =
(a + b)P

2h

N∑
m=1

TN
m
g
(
rm
)
eI𝜉rm(a+b)∕2.

(36)TN
m
= −

Γ(�)Γ(1 − �)

2�

P
(−�,−�)

N−�

(
rm
)

P
(�,�)

N

�(
rm
) .

(37)TN
m
=

1 − r2
m

N + 1
.

To proceed, we need to first substitute the con-
tact pressures in Eqs.  (35a,b) back into the expres-
sions  (7a, 7b). After that, the displacements and 
stresses in the transformed space can be evaluated. 
Finally, their inverse Fourier transforms lead to the 
displacements and stresses in the physical space. 
Once the contact pressures along the contact surface 
are obtained, the subsequent calculation process is 

Table 3   Definition of the dimensionless parameter � repre-
senting the equal magnitude of three Steigmann–Ogden sur-
face parameters ( �

0
 , k

0
 and d

0
)

� �
0
 (nN/nm) k

0
 (nN/nm) d

0
 (nN⋅nm)

0.1 0.1 0.1 0.1
0.2 0.2 0.2 0.2
0.5 0.5 0.5 0.5

Fig. 13   Distribution of contact pressure between the graded 
layer and the rigid cylindrical indenter for three levels of the 
dimensionless parameter � ( � = 0.4 , Γ = 1∕3)

Fig. 14   Distribution of contact pressure between the graded 
layer and the rigid cylindrical indenter for three frictional coef-
ficients ( � = 0.2 , Γ = 1∕3)

Fig. 15   Distribution of normalized contact pressure between 
the graded layer and the rigid cylinder for five shear moduli 
ratios ( � = 0.2 , � = 0.4)
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not different from the analysis of a nanocontact prob-
lem loaded by surface tractions.

Figure  16a–d show the distribution of normal 
stress, shear stress, tangential stress and subsidence 
displacement along the contact interface ( z = 0 ). 
Three levels of the dimensionless parameter � are 
considered. The classical solutions are also pre-
sented. For contact stresses shown in Fig.  16a–c, 
the peak values of the normalized stresses decay 
with the inclusion of surface effects. Furthermore, 
the very sharp transitions of the classical stress 
curves are significantly relaxed, due to the presence 
of surface effects. This phenomenon means that 
Steigmann–Ogden surface theory helps to reduce 
the impractical stress singularities that are inherent 
to the classical theory of elasticity.

With the increased � , the maximum normal and 
tangential stresses continuously decrease. The posi-
tion of peak shear stress deviates toward the oppo-
site direction of the sliding friction. Resulting from 
the semiinfinity of the layer/substrate structure, the 
subsidence displacement shown in Fig.  16d can 
only be presented with respect to a reference posi-
tion x0∕h = 3 (Li and Mi 2021). From Fig.  16d, 
the extreme value of the subsidence displacement 
decreases with the increased � . Also, due to the 
presence of sliding friction, the displacement at 
x∕h = −3 becomes nonzero.

Figure  17a-d show the effects of sliding fric-
tional coefficient ( � ) on the contact stresses and 
the subsidence displacement. Based on these fig-
ures, the inclusion of sliding friction results in 
asymmetric distribution of all contact fields. With 
the increased � , the contact zone deviates toward 
the direction of the applied tangential force. For 
the normal stress shown in Fig.  17a, the extreme 
value decreases with the increased � . An oppo-
site trend can be observed for the shear stress 
(Fig.  17b) and the tangential stress (Fig.  17c). In 
Fig.  17b, the shear stress appears at the contact 
interface for � = 0 , due to the presence of surface 
effects. For the subsidence displacement shown 
in Fig.  17d, the peak value near the midpoint of 
the contact zone continuously decreases with the 
increased sliding frictional coefficient.

Figure 18a–d show the contact stresses and sub-
sidence displacement along the contact interface 
for five shear moduli ratios. The maximum stresses 
appearing in Fig.  18a–c decrease with the shear 
moduli ratio. However, the increase of shear mod-
uli ratio leads to appreciably larger subsidence dis-
placement (Fig.  18d). Due to the presence of slid-
ing friction, the relative displacement at x∕h = −3 
becomes nonzero.

The classical normal and shear stress curves 
possess sharp corners at both contact boundaries 
(Fig.  16a and b). In the presence of surface effects, 
the sharp corners disappear. Smooth transitions of 
normal and shear stresses are found for all five shear 
moduli ratios. Furthermore, the softer the graded 
layer is, the more smooth the normal and shear 
stresses at the contact boundaries become (Fig.  18a 
and b).

5.4 � Stresses and displacements inside the graded 
layer

In this subsection, let us investigate the distribu-
tion of vertical stress and subsidence displacement 
inside a hard graded layer ( Γ = 1∕3 ). Figure  19a 
and b show the contour plots of the vertical stress 
for the classical ( � = 0 ) and the nonclassical 
( � = 0.5 ) cases, respectively. In the presence of 
sliding friction ( � = 0.4 ), the distribution of the 
vertical stress becomes obviously asymmetric. By 
comparing the two subfigures, it is clear that the 
maximum vertical stress near the midpoint of the 
contact zone decreases apparently with the inclu-
sion of surface effects. Moreover, an obviously 
smaller stress concentration can be found below 
the rigid cylinder. These phenomena indicate that 
surface effects help the graded layer/substrate 
structure to alleviate the stress concentrations and 
thus to elevate the loading capacity.

Figure 20a and b present the contour plots of the 
subsidence displacement inside a hard graded layer 
with the shear modulus Γ = 1∕3 . Two magnitudes of 
the dimensionless surface parameter ( � ) are consid-
ered ( � = 0 and 0.5). A simple comparison between 
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the two subfigures shows that the peak value of the 
subsidence displacement takes place under the rigid 
cylinder and decreases apparently with the inclusion 
of surface effects. For both cases, the subsidence 
displacement decays monotonically along the depth 
dimension of the graded layer.

6 � Conclusions

We have successfully analyzed the sliding fric-
tional nanocontact problem between a rigid cylin-
der and a graded layer perfectly bonded to a homo-
geneous half-plane. The sliding contact interface 
of the layer/substrate structure is modeled by 
Steigmann–Ogden surface mechanical theory. The 

asymmetric contact pressure, contact boundaries, 
stresses and displacements are semianalytically 
evaluated. For the plane-strain nanocontact prob-
lem, Fourier integral transforms were employed 
to convert the governing equations and nonclas-
sical mixed boundary conditions into a Fredholm 
integral equation. Together with the static force 
equilibrium equation, the integral equation was 
discretized and collocated with Gaussian quadra-
tures, leading to an algebraic system with respect 
to discretized contact pressures and two asymmet-
ric contact boundaries. Since the algebraic system 
is nonlinear about contact boundaries, an iterative 
algorithm was further developed. Compared with 
literature results, we additionally evaluated the full 
elastic fields along both the contact interface and 

(a) (b)

(c) (d)

Fig. 16   The effects of the dimensionless parameter � on (a) normal stress �zz , (b) shear stress �xz , (c) tangential stress �xx , and (d) 
subsidence displacement uz ( � = 0.4 , Γ = 1∕3)
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the depth dimension of the graded layer. A few 
important conclusions can be summarized from 
the extensive parametric studies about surface 
properties, sliding frictional coefficient and shear 
modulus gradation.

•	 Among the three Steigmann–Ogden surface 
parameters, the effects of surface tension are more 
significant than those of surface flexural rigidity. 
While both of them are important, the impact of 
surface membrane stiffness is marginal.

•	 When compared with classical solutions, higher con-
tact pressures and smaller contact zones are found in 
nonclassical solutions with surface effects. Moreo-

ver, the pressures at both contact boundaries become 
nonzero. The sharp transitions of stresses across con-
tact boundaries become more smooth.

•	 With increased sliding frictional coefficient, the 
contact zone deviates toward the frictional direc-
tion. The contact pressure on the sliding advanc-
ing side becomes appreciably larger than that 
of the receding side. While shear and tangential 
stresses increase with the frictional coefficients, an 
opposite trend is found for the normal stress and 
the subsidence displacement.

•	 Softer graded layers lead to higher subsidence 
displacements, lower peak contact pressures, and 
larger contact zones. The same argument remains 
valid for displacements and stresses.

(a) (b)

(c) (d)

Fig. 17   The effects of sliding frictional coefficient � on a normal stress �zz , b shear stress �xz , c tangential stress �xx , and d subsid-
ence displacement uz ( � = 0.2 , Γ = 1∕3)
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(a) (b)

(c) (d)

Fig. 18   The effects of shear moduli ratio Γ on a normal stress �zz , b shear stress �xz , c tangential stress �xx , and d subsidence dis-
placement uz ( � = 0.2 , � = 0.4)

(a)

(b)

Fig. 19   Contour plots of the vertical stress �zz for (a) the clas-
sical and (b) the nonclassical cases inside a hard graded layer 
( � = 0.4 , Γ = 1∕3)

(a)

(b)

Fig. 20   Contour plots of the subsidence displacement uz for 
(a) the classical and (b) the nonclassical cases inside a hard 
graded layer ( � = 0.4 , Γ = 1∕3)



116	 R. Cao et al.

1 3
Vol:. (1234567890)

Although the full surface effects were considered in 
the sliding nanoindentation of a graded coating-sub-
strate structure, the nanocontact behavior is character-
ized by the simple Column’s law of friction. In roll-
ing and fretting contact problems, the whole contact 
zone is typically composed of a stick and a slip zone. 
This could be a natural extension of the current work. 
In the meanwhile, more efforts are also worth being 
made toward the coupling of microstructure and sur-
face energy induced scale-dependency of small-scale 
graded materials and structures (Fathabadi and Alinia 
2020).

Acknowledgements  We gratefully acknowledge the sup-
port from the National Natural Science Foundation of China 
[grant numbers 12072072 & 11872149] and the Fundamen-
tal Research Funds for the Central Universities [grant number 
2242022k30062].

Data availability  The additional data that support the find-
ings of this study are available from the corresponding author 
upon reasonable request.

Declarations 

Conflict of interest  The authors declare that they have no 
known conflict of interest.

Appendix A

The determinant M appearing in (7a, 7b) is defined by 
the coefficient matrix of the linear system

where 

(38)
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