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Abstract This paper focuses on the numerical

analysis of the properties of porous piezoelectric

composites with metal-doped pore surfaces and

assesses their effectiveness as piezoelectric sensors

and actuators. Two types of porous piezoelectric

composite systems are considered: the ordinary porous

system and the system with metalized pore surfaces

(SMPS). The pore surfaces of the SMPS were

anticipated to be entirely coated by a very thin metal

layer. To determine the effective moduli, homoge-

nization problems were solved numerically using the

finite element analysis of the representative cells using

the ANSYS APDL package. The homogenization

problems were solved considering piezoceramics

substrates with different anisotropy of piezomoduli

and representative cells with cubic and spherical

pores. Several figures of merit, including novel

figures of merit intended towards actuator applica-

tions, have been researched to evaluate the perfor-

mance of the SMPS. The results of computational

experiments demonstrated that pore shape has less

impact on the effective elastic and dielectric

characteristics but has a greater effect on the values

of the piezomoduli. For various piezoceramic mate-

rials in the composite matrix, effective piezomoduli

are also subject to the greatest influence, particularly

transverse and shear piezomoduli. Abnormal behavior

of the transverse piezomodulus and an increase in

dielectric permittivities were observed as the porosity

fraction was enhanced. The transverse actuation effect

of the SMPS rises dramatically with increasing

porosity. In this regard, it was concluded that piezo-

electric transducers built from the SMPS may be

efficiently employed in various actuators based on the

transverse piezoelectric effect and transverse vibration

modes.

Keywords Porous piezoceramics � Piezoelectric-
metal composites � Homogenization problems �
Material characterization � Finite element analysis �
Figures of merit � Piezoelectric actuators

1 Introduction

For many decades, piezoelectric materials have been

used in helpful technologies such as medical ultra-

sound scanners, pressure sensors, aerospace indus-

tries, smart material systems, microelectromechanical

systems (MEMS), and structural health monitoring

(SHM). To improve the efficiency of transducers for
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various applications, non-classical media with elec-

tromechanical coupling can be used. For example, in

recent years, researchers have actively studied new

types of electromechanical devices based on elec-

trostrictive, flexoelectric, photostrictive, and magne-

tostrictive actuators (Huang et al. 2016; Dai et al.

2021; Singh et al. 2021). In contrast to conventional

piezoceramics, the mechanical strain gradient and the

electric polarization, or the mechanical response and

the electric field gradient, are linearly coupled in

flexoelectric materials. For topological optimization

of piezoelectric/flexoelectric materials, a computa-

tional design approach including isogeometric analy-

sis (IGA), the multiphase vector level set (LS), and

pointwise density-mapping techniques was developed

in Ghasemi et al. (2018, 2020a). Ghasemi et al.

proposed a MATLAB realization of a three-dimen-

sional isogeometric flexoelectricity formulation with a

truncated pyramid configuration (Ghasemi et al.

2020b). The flexoelectric materials’ unique electrome-

chanical coupling mechanism enables electrically

sensing strain gradient information in mechanical

structures, which is considered as a sensitive indicator

of the structural health condition.

Another approach is to use piezoelectric multilayer

structures (Jha and Ray 2019; Ray 2021) and hetero-

geneous piezoceramic materials. Among diverse

piezoelectric composites, porous piezoceramic mate-

rials find numerous effective practical applications

(Kuscer et al. 2020; Levassort et al. 2007; Mercadelli

et al. 2010; Ringgaard et al. 2015; Rybyanets et al.

2019), especially in hydroacoustic transducers and

medical ultrasound devices, since they have low

acoustic impedance, high hydrostatic strain and volt-

age coefficients, wide bandwidth, and low Q factor.

Due to its high piezoelectric sensitivity, porous

piezoceramics has recently become a promising

material for energy storage devices (Bowen et al.

2016; Nasedkin et al. 2021b; Roscow et al.

2017, 2015; Safaei et al. 2019; Sezer and Koç 2021;

Zhang et al. 2017). However, the relative effective

elastic stiffness moduli and relative permittivities of

porous piezoceramics rapidly decrease with increasing

porosity. Absolute values of the effective piezomoduli

eeffia decrease, while other relative piezomoduli asso-

ciated with hydrostatic coefficients may increase,

almost do not depend or slightly drop with the porosity

growth (Iyer and Venkatesh 2010, 2011, 2014;

Martı́nez-Ayuso et al. 2017; Nasedkin and Nassar

2021a; Nguyen et al. 2016). Degradation of stiffness

moduli is, apparently, the most critical factor for the

durability and reliability of devices with active

elements made of porous piezoelectric ceramics.

Functional and electromechanical characteristics of

piezoceramics with metallic inclusions differ dramat-

ically from those of porous piezoelectric ceramics.

The addition of metallic inclusions to the piezoce-

ramic matrix can enhance the composite’s strength

characteristics. Unfortunately, due to the greater

electric field created inside the piezoelectric matrix,

the incorporation of metallic inclusions into the

piezocomposites increases the dielectric permittivity

characteristics, electrical capacitance, and dielectric

losses. Therefore, such piezocomposites are used as

active materials in dielectric capacitors and energy

storage devices (Du et al. 2016; Nan et al. 2010). The

relative stiffness moduli and dielectric constants of

piezoceramics with metal inclusions increase with

increasing the metal volume fraction. These changes

have different effects on equivalent piezomoduli.

Thus, the absolute value of the relative piezomodulus

eeff31 decreases with increasing porosity, but the

piezomoduli eeff33 and eeff15 increase with increasing

porosity. Meanwhile, all other relative effective

piezomoduli (deffia , h
eff
ia , and g

eff
ia ) decrease with increas-

ing porosity, and more significantly in comparison

with conventional porous piezoceramics, see Bottero

and Idiart (2016), Nasedkin et al. (2021a), Nasedkin

and Nassar (2021a).

In Rybyanets and Naumenko (2013), Rybyanets

et al. (2018), Rybyanets et al. developed a novel

approach for fabricating the porous piezoelectric

composites by transporting nanoparticles of a metal

or a metal oxide in the ceramic matrices. As a result of

this technology, it is possible to obtain porous

piezoceramics, in which metal particles are deposited

at the pore boundary. This piezocomposite is a hybrid

of traditional porous piezoceramics and piezoceramics

with metallic inclusions. The properties of porous

piezoelectric ceramics with pore surface metallization

were studied in Nasedkin and Nassar (2021a), Nased-

kin and Nassar (2021b), Nasedkin and Nassar (2021c),

Nasedkin and Nassar (2021d), Nasedkin et al. (2020)

and Nasedkin and Nassar (2020).

Thus, in Nasedkin and Nassar (2021a) and Nased-

kin et al. (2020), a comparative analysis of four types
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of piezocomposites with extreme properties of inclu-

sions was carried out. Namely, the cases of ordinary

porous piezoceramics, porous piezoceramics with

conductive pore boundaries, porous piezoceramics

with absolutely rigid pore boundaries, and porous

piezoceramics with conductive and rigid pore bound-

aries were considered. Homogenization problems

were solved in a cube-shaped cell with a spherical

pore in Nasedkin and Nassar (2021a), and in a cubic

lattice with a random arrangement of cubic pores in

Nasedkin and Nassar (2021a) and Nasedkin et al.

(2020).

In Nasedkin and Nassar (2021d) for a unit cell in the

form of a cube with a spherical pore, metallization was

taken into account by adding an elastic layer with

conducting properties to the pore boundary. The

influence of the metal layer thickness was analyzed

up to the complete filling of the pore with the metal. In

Nasedkin and Nassar (2020) for a similar unit cell with

only conducting properties of the pore surface, the

influence of the polarization field inhomogeneity of

the piezoceramic matrix is analyzed, and the model

considered in Nasedkin and Nassar (2021b) is a

combination of models from Nasedkin and Nassar

(2021d) and Nasedkin and Nassar (2020). Finally, in

Nasedkin and Nassar (2021c), an elementary cell of a

porous piezoelectric composite in the form of a cube

with a cubic pore at partially conducting pore faces

was considered.

Furthermore, hard and soft piezoceramic substrates

(PZT-4 or PZT-5H) were employed as a piezoceramic

matrix in these studies; however, the impacts of pore

shape on the effective properties of a porous piezo-

electric composite with conductive pore boundaries

were not studied. We also analyzed the quality factors

that characterize the exceptional properties of indi-

vidual piezomoduli that occur in the considered

piezocomposites.

Here, we explored two distinct porous piezocom-

posites. The first composite under study is the

Ordinary Porous System (OPS), which doesn’t contain

the metal layer on the pore surface. The second

system, the porous piezocomposite with metalized

pore boundaries, is of vital significance to us. For

simplicity, we called this metalized porous piezocom-

posite the System with a Metalized Pore Surface

(SMPS).

We investigated the effect of pore geometry and

piezoceramic matrix type on the equivalent moduli of

the OPS and SMPS. To evaluate the performance of

piezocomposites in a variety of engineering applica-

tions, we reviewed several known figures of merit

(FOMs) and developed new FOMs to assess the

performance of both composite systems.

2 The boundary-value piezoelectric problem

for heterogeneous medium

To simulate a piezoelectric composite in the volume

X, we used the linear theory of piezoelectricity with

standard constitutive equations relating mechanical

stresses T and electric induction D with strains S and

with electric field E (Berlincourt et al. 1964; Yang

2005)

T ¼ cE � S� e� � E; D ¼ e � Sþ eS � E: ð1Þ

The elastic strains S and the electric field intensity

vector E can be obtained from the mechanical

displacement u ¼ uðxÞ and the electric potential

u ¼ uðxÞ, respectively, using the following

relationships

S ¼ LðrÞ � u; E ¼ �ru; ð2Þ

L�ðrÞ ¼
o1 0 0 0 o3 o2

0 o2 0 o3 0 o1

0 0 o3 o2 o1 0

2
64

3
75;

r ¼
o1

o2

o3

8><
>:

9>=
>;
:

ð3Þ

The static piezoelectric homogenization problem

includes the equilibrium equations neglecting the

body forces and the quasi-electrostatic equation with-

out the free electric charges

L�ðrÞ � T ¼ 0; r � D ¼ 0: ð4Þ

The external boundary conditions applied here on the

boundary C ¼ oX have the following standard form

for the effective moduli method (Berger et al. 2006;

Nasedkin and Nassar 2021a; Nasedkin and Shevtsova

2011; Nasedkin et al. 2020; Singh et al. 2021)

u ¼ L�ðxÞ � S0; u ¼ �x � E0; x 2 C: ð5Þ
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In (1)–(5), T ¼ fT1, T2, T3, T4, T5, T6}= {r11, r22, r33,
r23, r13, r12} is the array of mechanical stress

components rij; S ¼ fS1, S2, S3, S4, S5, S6}= {S11,

S22, S33, 2S23, 2S13, 2S12} is the array of the strain

components Sij; D is the vector of electric induction or

the electric charge displacement vector; cE is the 6� 6

matrix of short-circuit elastic stiffness moduli cEab; e is

the 3� 6 matrix of the piezoelectric moduli (stress

coefficients) eib; e
S is the 3� 3 matrix of the dielectric

permittivity moduli eSij at fixed mechanical strain;

LðrÞ and r are differential matrix and vector

operators, respectively; LðxÞ is the matrix of the same

structure as (3), when the argumentr is replaced by x;

x ¼ fx; y; zg ¼ fx1; x2; x3g is the vector of spatial

coordinates; S0 and E0 are the six-dimensional and

three-dimensional arrays with some constant values;

ð. . .Þ� denotes the matrix transpose operation; and

ð. . .Þ � ð. . .Þ is the scalar product operation of matrices

or vectors; a; b ¼ 1; 2; . . .; 6; i; j ¼ 1; 2; 3.

The representative volume X of the piezocompos-

ites understudy can be generally defined as follows:

X ¼ Xm [ Xc, where Xm is the volume filled with the

basic piezoelectric material, and Xc is the volume of

the compound pore. The compound pore Xc for the

SMPS consists of a vacuum pore Xp with a very thin

metal layer Xe on its surface, i.e., Xc ¼ Xe [ Xp. The

OPS doesn’t contain the metal layer on the pore

surface, i.e., Xc ¼ Xp, and X ¼ Xm [ Xp.

We modeled the pore as a piezoelectric material

with negligible material moduli. In the metal layer, we

defined another piezoelectric material with negligible

elastic stiffnesses, negligible piezomoduli, and very

high dielectric constants. This approach of modeling

pores and conductive inclusions was previously jus-

tified in Nasedkin and Nassar (2021a), Nasedkin and

Nassar (2021d) and Nasedkin et al. (2020). As a result,

it is convenient for solving homogenization problems

for both the OPS and the SMPS. On the interfaces

between any two neighboring phases, e.g., I and II, we

considered the standard full contact conditions

uI ¼ uII ; L�ðnÞ � TI ¼ L�ðnÞ � TII ; x 2 Ci; ð6Þ

uI ¼ uII ; n � DI ¼ n � DII ; x 2 Ci; ð7Þ

where I and II may be the piezoceramic matrix (Xm)

and the conductive layer (Xe), or the conductive layer

(Xe) and the vacuum pore (Xp), respectively; Ci ¼ Ce

or Cp, Ce and Cp are the boundaries of the volumes Xe

and Xp, respectively; n is the unit normal vector to the

corresponding surface.

It is worth noting that for the OPS the problem (1)–

(7) inX is equivalent to the problem (1)–(5) inXm with

the following conditions on the interface boundary

L�ðnÞ � T ¼ 0; n � D ¼ 0; x 2 Cp;

because such equations are essentially satisfied when a

fictitious piezoelectric material with marginal small

moduli fills the pore.

For the SMPS, if the very thin metal layer

completely covers the pore boundary, the problem

(1)–(7) inX is equivalent to the problem (1)–(5) inXm

with the conditions on the interface boundary of the

form

L�ðnÞ � T ¼ 0; u ¼ Uc;

Z

Cc

n � DdC ¼ 0; x 2 Cc;

where Uc is an unknown constant electric voltage on

Cc.

Further, from the solutions of the problems (1)–(7),

we obtained the effective moduli associated with the

constitutive equations (1). These effective piezomod-

uli were used later to calculate the other effective

moduli associated with the following constitutive

equations

S ¼ sE � Tþ d� � E; D ¼ d � Tþ eT � E; ð8Þ

T ¼ cD � S� h� � D; E ¼ �h � Sþ bS � D; ð9Þ

S ¼ sD � Tþ g� � D; E ¼ �g � Tþ bT � D; ð10Þ

where

sE ¼ ðcEÞ�1; d ¼ e � sE; eT ¼ eS þ d � e�; :
ð11Þ

cD ¼ cE þ e� � h; h ¼ bS � e; bS ¼ ðeSÞ�1;

ð12Þ

sD ¼ sE � d� � g ¼ ðcDÞ�1; g ¼ h � sD ¼ bT � d;
bT ¼ ðeTÞ�1:

ð13Þ

Here, sE and sD are the 6� 6 matrices of elastic

compliance moduli under constant electric field (short

circuit) and constant electric charge density (open
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circuit), respectively; cD is the 6� 6 matrix of elastic

stiffness moduli under constant electric charge den-

sity; d, h, g are the 3� 6 matrices of the piezoelectric

moduli (charge coefficients, strain coefficients, volt-

age coefficients, respectively); eT is the 3� 3 matrix

of the dielectric permittivity moduli under constant

mechanical stress; bS and bT are the 3� 3 matrices of

dielectric impermeability moduli under constant

mechanical strain and mechanical stress, respectively.

Regarding the piezomoduli, we utilized the most

common designations corresponding to the second

equations (1), (8)–(10) according to the direct piezo-

electric effect under a mechanical influence. For

example, the piezoelectric charge coefficient djb is

so named because when the mechanical stress Tb is

applied, according to the second equation (8), it

determines the produced electrical induction Dj, i.e.,

electric charge. If we focus on the first equations (1),

(8)–(10) for the inverse piezoelectric effect under the

electrical influence, then the piezoelectric constants

can be called differently. Thus, the piezoelectric

coefficient djb can be considered the piezoelectric

strain coefficient, since with an applied electric field Ej

it determines developed mechanical strain Sb.

Although the constitutive relations (1), (8)–(10) are

analogous, in some cases, distinct constitutive equa-

tions and material moduli (11)–(13) may be more

convenient. Some of the effective material coefficients

(11)–(13) are utilized in the next section to calculate

the figure of merits (FOMs).

3 Figures of merit (FOMs)

Various performance metrics or FOMs have been

developed to determine the effectiveness of piezo-

electric materials and piezoelectric devices. These

indicators can be considered material characteristics

oriented to specific intended applications. For station-

ary or low-frequency operation modes of piezoelectric

devices, the quality indicators usually contain only

material moduli. For transient dynamics and high-

frequency applications, these indicators may also

include damping parameters (Priya 2010; Song et al.

2020) and resonance characteristics. In this section,

we consider FOMs defined only through material

moduli. These indicators can help us determine the

performance of new porous piezoceramic composites

with metalized pore boundaries in different quasistatic

practical applications.

We assume that the piezoelectric material belongs

to the 6mm anisotropy class, i.e., to the same class as

piezoelectric ceramics.

3.1 Electromechanical coupling coefficients

Electromechanical coupling coefficients are some of

the earliest and well known FOMs (Berlincourt et al.

1964; Bowen et al. 2016; Kenji and Giniewicz 2003;

Yang 2005). They have several definitions, which

often yield the same value. We only investigated the

electromechanical coupling coefficients for canonical

piezoelectric transducers, where some of the mechan-

ical and electric field components on the right-hand

sides of the corresponding constitutive equations are

nonzero.

For example, consider the most used constitutive

equations (8). Using these equations, the energy per

unit volume or the energy density U ¼ ðT � Sþ D �
EÞ=2 can be represented in the form

U ¼ Ue þ 2Um þ Ud , where Ue ¼ ðT� � sE � TÞ=2 is

the mechanical energy density,Ud ¼ ðE� � eT � EÞ=2 is
the electrical energy density, Um ¼ ðE� � d � TÞ=2 is

the mixed energy density. Then, the following formula

can be used for the electromechanical coupling

coefficients

k2 ¼ U2
m

UeUd
: ð14Þ

If in piezoelectric transducer such a state is realized

when among the mechanical stresses only one com-

ponent Tb is nonzero, and among the components of

the electric field vector, only one component Ej is also

nonzero, then from (14) we obtain

k2jb ¼
d2jb
eTjj s

E
bb

: ð15Þ

Similarly, from (9), (14), when Ue ¼ ðS� � cD � SÞ=2,
Ud ¼ ðD� � bS � DÞ=2, Um ¼ �ðD� � h � SÞ=2, for the

electromechanical state with nonzero components Sb
and Dj, we obtain other electromechanical coupling

coefficients

~k
2

jb ¼
h2jb

bSjjc
D
bb

: ð16Þ
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In Eq. (16), ~k15 ¼ k15, and the coefficients ~k33 and ~k15
for piezoceramics are often denoted as follows Ber-

lincourt et al. (1964): ~k33 ¼ kt, ~k31 ¼ k00031.

It should be noted that in the constitutive relations

(8) and (9), extensive quantitiesT andE are located on

one side of the equal sign, and intensive quantities S

and D are located on the other. Meanwhile, in the

constitutive equations (1) and (10), extensive and

intensive quantities are located both on the left and on

the right, and in such cases, the electromechanical

coupling coefficients must be determined by the

formula

k2

1� k2
¼ U2

m

UeUd
; ð17Þ

where U ¼ ðUe � UmÞ þ ðUm þ UdÞ.
Here, for Eq. (10), Ue ¼ ðT� � sD � TÞ=2,

Ud ¼ ðD� � bT � DÞ=2, Um ¼ ðD� � g � TÞ=2, and for

nonzero fields Tb and Dj with Eqs. (13) and (17) we

obtain the same coefficients as in (15)

k2jb ¼
g2jb

bTjj s
D
bb þ g2jb

� � ¼
g2jb

bTjj s
E
bb

¼
d2jb
eTjj s

E
bb

:

Similarly, for Eq. (1), Ue ¼ ðS� � cE � SÞ=2,
Ud ¼ ðE� � eS � EÞ=2, Um ¼ �ðE� � e � SÞ=2, and for

nonzero fields Sb and Ej, with Eqs. (12) and (17) we

have the electromechanical coupling coefficients

coinciding with (16)

~k
2

jb ¼
e2jb

eSjjc
E
bb þ e2jb

� � ¼
e2jb

eSjjc
D
bb

¼
h2jb

bSjjc
D
bb

:

The downsides of the definitions (14), (17) are that

they are dependent on energies, which in turn rely on

constitutive relations. For these reasons, more general

energetic definitions of electromechanical coupling

coefficients are preferable.

So, from the sensing applications point of view, the

electromechanical coupling coefficient k2 describes

the conversion efficiency from the mechanical energy

entering in the piezoelectric material ðUmech
input Þ to the

electrical energy stored inside the material ðUelec
storedÞ.

From the viewpoint of actuator applications, the

electromechanical coupling coefficient measures the

conversion efficiency from the electrical energy

entering in the piezoelectric material ðUelec
inputÞ to the

stored mechanical energy ðUmech
storedÞ. As shown in many

works, e.g. Deutz et al. (2018), Roscow et al. (2015)

and Roscow et al. (2019), for canonical cases, these

values turn out to be equal and coincide with (15), (16)

k2 ¼ Uelec
stored

Umech
input

¼ Umech
stored

Uelec
input

: ð18Þ

To calculate the energies in (18), an idealized cycle of

changes in the elastic or electrical state can be

considered by analyzing a part of mechanical energy

that can be converted into electrical energy or,

conversely, a portion of electrical energy that can be

converted into mechanical energy. Namely, by calcu-

lating the energy in the piezoelectric transducer under

mechanical stress with short-circuited electrodes UE

and the energy with open electrodes UD, or by

calculating the energy with an active electric field of

the free transducer UT and the energy of the clamped

transducer US, one can determine the coupling coef-

ficient by the formulas

k2 ¼ UE � UD

UE
; k2 ¼ UT � US

UT
:

These formulas change depending on active external

influences. So, under strain effects or with applied

electric charges (currents), we have

k2 ¼ UD � UE

UD
; k2 ¼ US � UT

US
;

here, the electromechanical coupling factor is also

identical in both cases.

Therefore, upon applying mechanical stress Tb on

the piezoelectric material, the stored electrical energy

equals the product of the entering mechanical energy

ðUmech
input Þ and the coupling coefficient k2 ¼ d2=ðeTsEÞ;

so, the compliance effect is canceled out. As a

consequence, the coupling coefficient is an insignif-

icant FOM for determining the material efficiency in

energy harvesting and sensing applications, as stated

in Deutz et al. (2018) and Priya (2007). Although

many works (Iyer and Venkatesh 2010, 2011) demon-

strated that introducing porosity to the piezoelectric

materials enhances their performance in the sensing

applications, we found that the coupling coefficient of

the OPS decreases with the porosity growth. This

confirms that the coupling factor doesn’t assess the

material’s functioning accurately.
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3.2 Transduction coefficients (TC = dg)

According to Islam and Priya (2006), the fundamental

factor for evaluating the piezoelectric material as an

energy harvester is the transduction coefficient, which

equals the product of the piezoelectric charge and

voltage moduli d g or d2=eT . However, the transduc-

tion coefficient deduced in Deutz et al. (2018), Islam

and Priya (2006) and Roscow et al. (2019) assesses the

material efficiency in sensing and energy harvesting

applications. For sensor applications, the stored elec-

trical energy per unit volume can be related to the

sensor transduction coefficient when applying

mechanical stress Tb for open circuit voltage as

follows

Uelec
stored ¼

1

2
CV2=ð2AtÞ ¼ 1

2
eTjjE

2
j ¼

1

2
d2jb=e

T
jj

� �
T2
b :

Here, the piezoelectric material is treated as a

capacitor plate, C ¼ eTjj � A=t is the capacitance, V ¼
�Ejt is the piezoelectric voltage developed between

the electrodes, Ej ¼ �TbdjbeTjj , A is the cross-sectional

area, and t is the thickness of the plate.

This ensures that the stored electric energy due to

applied stress is independent of the material compli-

ance; consequently, the transduction coefficient eval-

uates the sensing effect of the material better than the

coupling coefficient k2. The transduction coefficient

for sensor applications can be expressed by the

formula

ðTCjbÞS ¼
d2jb
eTjj

ð19Þ

In the same way, we derived the transduction coeffi-

cient ðTCjbÞA, which assesses the material’s actuating

effect. When an electric field Ej is applied on the free

piezoelectric transducer, the stored mechanical energy

be Eq. (18) equals the product of the entering electric

energy Uelec
input ¼ eTjjE

2
j =2

� �
and the coupling coeffi-

cient k2jb ¼ d2jb=ðeTjj sEbbÞ; so, the dielectric permittivity

effect is canceled out. So, considering the method

presented in Islam and Priya (2006), the stored

mechanical energy under upon applying an electric

field can be related to the actuator transduction

coefficient ðTCjbÞA as follows

Umech
stored ¼ k2jbU

elec
input ¼

1

2
d2jb=s

E
bb

� �
E2
j :

So, the transduction coefficient for actuating effect can

be expressed by the formula

ðTCjbÞA ¼
d2jb
sEbb

: ð20Þ

Thus, the sensor (energy harvesting) transduction

coefficient ðTCjbÞS assesses the material’s ability to

convert the entering mechanical energy to a stored

electric energy; whereas, the actuator transduction

coefficient ðTCjbÞA evaluates the material’s ability to

transform the entering electrical energy to a stored

mechanical energy.

3.3 Energy transmission coefficients kmax

When using the piezoelectric transducer as an actua-

tor, the actual work performed depends on the

mechanical load. The energy production constitutes

a fraction of the energy retained from the piezoelectric

effect. If the piezoelectric actuator is free from

mechanical stresses or clamped, the total output power

appears to be zero. In Kenji and Giniewicz (2003), the

maximum energy transmission coefficient was deter-

mined as follows:

– for actuator applications

k1max ¼ ½Umech
output=U

elec
input�max,

– for sensing (energy harvesting) applications

k1max ¼ ½Uelec
output=U

mech
input �max.

In both cases k1max can be obtained using the

following relationship

k1max ¼
1

k
�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1

k2
� 1

r" #2

¼ 1

k
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1

k2
� 1

r" #�2

:

ð21Þ

However, Deutz et al. (2018) reported that the max-

imum transmission coefficient, obtained in Kenji and

Giniewicz (2003), is satisfied when the strain resulting

from the external mechanical stress is equal to the

strain generated due to the applied electric field. In this

situation, the actual output power tends to zero. As a

consequence, they concluded that the maximum

transmission coefficient can’t estimate the material

efficiency. Instead of the maximum transmission
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coefficient, they introduced the transmission coeffi-

cient for maximum output energy, as indicated in the

following relationship

k2max ¼
k2

4� 2k2
: ð22Þ

To derive this relationship, they applied an electric

field E on the piezoelectric transducer, which is

primarily subjected to a compressive mechanical load,

and estimated the resultant output mechanical energy

due to interaction between the externally applied

mechanical stress and the converse piezoelectric

effect. After that, they obtained the maximum output

mechanical energy as follows

jUmech
outputmaxj ¼

d2

8s
jEj2;

where d is the piezoelectric charge coefficient, s is the

corresponding elastic compliance modulus.

This concept implies that the maximum output

mechanical energy occurs when the strain produced by

the external mechanical load is half the strain induced

due to the applied electric field. Also, this relationship

of the maximum output mechanical energy confirms

the actuator transduction coefficient ðTCjbÞA presented
in (20). However, the second concept appears to be

more effective physically, both concepts k1max and

k2max are approximately identical when k2\0:5

(Deutz et al. 2018), as seen in Fig. 1. In this work

k2\0:5 for all studied cases, so

k1max ffi k2max ¼ kmax.

As stated in Deutz et al. (2018) and Roscow et al.

(2019), the transmission coefficient is used to estimate

the portion of the stored energy, which is eventually

transformed into productive work. This fraction

defines the coupling between the stored energy and

the maximum output energy according to the formulas

Uoutputmax ¼
kmax

k2
Ustored ¼

1

4� 2k2
Ustored:

3.4 Energy harvesting FOMs

Knowing that the stored energy mainly depends on the

transduction coefficients ðTCjbÞS and ðTCjbÞA for

sensor and actuator applications, respectively; we

derived the energy harvesting figures of merit

ðFOMjbÞS and ðFOMjbÞA for evaluating the efficiency

of piezoelectric transducers in sensor and actuator

applications, respectively, as follows

ðFOMjbÞS ¼
kjbmax

k2jb
ðTCjbÞS; ð23Þ

ðFOMjbÞA ¼ kjbmax

k2jb
ðTCjbÞA; ð24Þ

where the coefficient kjbmax is determined by (21) or

(22) for k ¼ kjb.

3.5 Hydrostatic figure of merit HFOM ¼ dhgh

The hydrostatic FOM (HFOM) measures the piezo-

electric transducer’s efficiency for use in hydrophone

devices. Higher values of the HFOM mean a better

device’s ability to distinguish the acoustic signal from

the ambient noise. The HFOM can be calculated using

the following equation (Iyer and Venkatesh 2014;

Yang et al. 2010; Zhang et al. 2018)

HFOM ¼ dh gh; ð25Þ

where dh ¼ d33 þ 2d31, and gh ¼ dh=eT33.

4 Finite element models and simulation

methodology

For conducting analysis, we have developed a set of

special programs in the APDL language thatFig. 1 The maximum transmission coefficient k1max and the

transmission coefficient for maximum output energy k2max

versus the coupling coefficient k2
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implement algorithms for solving homogenization

problems in the ANSYS finite element package.

4.1 Representative volumes and material

properties

The first objective of this work is to compare the

effective material properties of a unit cell with a cubic

pore and a unit cell with a spherical pore for the OPS

and the SMPS. The second objective was to study the

effect of the material of the piezoceramic matrix on

effective moduli. In this regard, calculations for two

types of unit cells were carried out for three different

piezoceramic materials, namely, modified PbTiO3 (I)

(Bowen et al. 2016; Ikegami et al. 1971), TBKS

(Bowen et al. 2016), and PZT-5H (Kunkel et al.

1990). These materials were chosen for their varying

longitudinal to transverse piezomoduli ratios. For the

materials PbTiO3, TBKS, and PZT-5H, the ratio

e33=e31 ¼ 16:73; �11:34, and �3:58, respectively.

The material properties of the piezoelectric materials

under consideration were listed in Table 1. Here, e0 ¼
8:85 � 10�12 (F/m) is the vacuum dielectric permittiv-

ity. For the vacuum pore Xp, we defined the values

ðcEabÞp ¼ jcEab, ðeiaÞp ¼ jeia, ðeSiiÞp ¼ e0; for elastic

moduli, piezomoduli, and dielectric permittivities,

respectively, where j ¼ 10�10. For the metalized pore

surface Xe, we defined the material properties as

follows: ðcEabÞe ¼ jcEab, ðeiaÞe ¼ jeia, ðeSiiÞp ¼ ve0,

where v ¼ 1012.

We solved the homogenization problems (1)–(7)

for two geometric configurations of the representative

unit cell element X. In both cases, the volume X is a

cube with edge length L and contains a pore at its

center. A simple porosity model is employed in this

work to investigate the influence of pore shape on the

effective moduli of the considered composites. The

findings obtained using this simple periodic represen-

tative volume were verified using a random

representative volume in Nasedkin and Nassar

(2021a), and there was good agreement, particularly

when porosity was less than 40%.

In the first geometric model, the compound pore Xc

was modeled by a sphere with radius R ¼ L
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 tp=4p3

p
,

where tp ¼ jXcj=jXj denotes the porosity volume

fraction. The pore outer radius R satisfies the inequal-

ity R\L=2 the percentage of porosity p ¼ 100tp in

this model is limited, p\52%. For SMPS, inside the

volume of a composite pore Xc we modeled the

metalized pore surface Xe by a spherical layer with

radii R� h and R.

For the second case of the unit cell, we constituted a

cubic pore with edge length B, where B ¼ L
ffiffiffiffiffi
tp3

p
.

Here, the metalized pore surface was modeled by a

cubic layer with the edges B� h and B. It’s worth

noting that the centers of both representative volumes

are the global origin.

The layer thickness in both cases was assumed to be

h ¼ R=10. This value was chosen for the convenience

of constructing a high-quality finite element mesh,

since the layer thickness does not affect the results

when modeling a conductive coating of a pore with a

piezoelectric medium with very high dielectric per-

mittivities and with negligible stiffness moduli and

piezomoduli, as detailed in Nasedkin and Nassar

(2021a), Nasedkin and Nassar (2021d) and Nasedkin

et al. (2020).

The 10-node tetrahedral elements SOLID227 with

the option of piezoelectric analysis were applied to

create the finite element mesh. In these elements, each

node has three translational degrees of freedom

(DOFs) (ux, uy, and uz) and one DOF for the electric

voltage (u); so, the total number of DOFs is four times

the total number of nodes utilized in the finite element

model. We used a free mesh with the ability to control

the maximum edge length of the elements (lel).

Table 2 presents a convergence test of certain relative

effective properties with respect to lel. (The technique

Table 1 The material properties of the considered piezoelectric materials (cEab in GPa, eib in C/m2)

Material cE11 cE12 cE13 cE33 cE44 e31 e33 e15 eS11=e0 eS33=e0

PbTiO3 143 3.2 2.4 13.1 5.6 0.4 6.7 3.0 210 140

TBKS 146 5.18 5.06 14.2 4.9 - 0.68 7.71 4.56 410 336

PZT-5H 126 7.95 8.41 11.7 2.3 - 6.5 23.3 17.0 1700 1470
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for determining these effective moduli and the nota-

tion for the relative moduli will be presented below.)

The effective moduli presented in Table 2 show

monotonic convergence as max allowable element

edge length lel decreases. For such simple grids, the

findings for both investigated composites were

obtained with acceptable relative accuracy utilizing

various piezoceramic matrices by restricting the

element’s maximum edge to L/8 when the porosity is

less than 40% and L/10 for greater porosity volume

fractions. The maximum error is 1.1% is related to the

relative piezomodulus rðe33Þ.
Examples of the employed finite element meshes

for the SMPS are shown in Fig. 2. Here, piezoelectric

elements SOLID227 with different material properties

are depicted in various colors. The light blue elements

represent the volume occupied with the main piezo-

electric material (Xm), the red elements represent the

metalized pore surface (Xe), and the light gray

elements represent the volume occupied with the

vacuum (Xp).

4.2 Computation of the effective moduli

We solved the boundary-value homogenization prob-

lems (1)–(7) using the finite element method to obtain

the effective moduli of the OPS and the SMPS. These

problems were solved under certain non-zero influ-

ences S0 and E0 in the external boundary conditions

(5) according to the method of effective moduli (Hori

and Nemat-Nasser 1998; Martı́nez-Ayuso et al. 2017;

Nasedkin and Shevtsova 2011; Nasedkin et al. 2020).

Because the SMPS is a piezocomposite with insuffi-

ciently explored material properties, we defined a

complete set of its effective moduli , i.e., 81 material

constants. We considered an asymmetric elastic

stiffness matrix (36 elastic moduli cE eff
ab ), different

values for the direct and the converse piezoelectric

effects (36 piezomoduli ed effib and ec effib ), and nine

permittivity constants eS effij .

Using the concept of the effective moduli method,

we solved the homogenization problems (1)–(7) nine

times. Each time, the problem was solved under one

Table 2 Convergence test of the effective properties in terms of the maximum allowable edge length (lel) of the finite elements

Max lel Number of FEs Number of DOFs rðcE33Þ rðe33Þ rðeS33Þ

L/4 5707 32,144 0.267 0.106 9.568

L/6 7196 41,088 0.266 0.105 9.267

L/8 8510 49,460 0.265 0.101 9.600

L/10 9935 58,744 0.265 0.101 9.487

L/12 12,461 74,976 0.265 0.100 9.486

The results in the table were obtained for the SMPS with a spherical pore at porosity tp ¼ 0:5

Fig. 2 Finite element mesh for the back half of unit cell at porosity p ¼ 20% for the SMPS with a spherical pore and a cubic pore in

(a) and (b), respectively, and a unit cell with a spherical pore with named boundaries in (c)
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non-zero component of the boundary-conditions array

of S0 and E0, defined in (5). These boundary condi-

tions were discussed in more detail in Nasedkin and

Nassar (2021a), Nasedkin and Shevtsova (2011) and

Nasedkin et al. (2020). Then, we used the following

formula to calculate the average value of the stress and

electric induction components obtained from the

boundary-value problem’s solutions

h� � �i ¼ 1

jXj

Z

X
ð� � �Þ dX: ð26Þ

Using the average values of the solutions’ compo-

nents, we obtained the effective moduli of the

piezocomposites under study. First, we solved the

problem (1)–(7) six times (b ¼ 1; 2; . . .; 6) for the

following values in the boundary conditions (5)

S0f ¼ S0dfb; E0 ¼ 0; ð27Þ

where f ¼ 1; 2; . . .; 6; S0 is a non-zero constant value.

The prescribed non-zero displacements ui for the

homogenization boundary value problems (1)–(7),

(27) with b ¼ 1; 2; . . .; 6 on the boundaries

B1;B2; . . .;B6, according to Fig. 2c, are presented in

Table 3. Here, the electric potential u and the unstated

uj values for each boundary are equal to zero.

Finding the averaged components of stresses and

electric induction using (26), according to Nasedkin

and Nassar (2021a), Nasedkin and Shevtsova (2011),

Nasedkin et al. (2020), and Nasedkin and Nassar

(2020), we obtained for each problem (1)–(7), (27)

with fixed b 2 f1; 2; . . .; 6g the column of matrices of

effective stiffnesses and piezomoduli for direct piezo-

electric effect

cE eff
ab ¼ hTai=c0; ed effib ¼ hDki=c0; ð28Þ

where a ¼ 1; 2; . . .; 6; i ¼ 1; 2; 3; c0 ¼ S0 for

b ¼ 1; 2; 3; c0 ¼ 2S0 for b ¼ 4; 5; 6.

After that, we solved the problems (1)–(7) three

times (k ¼ 1; 2; 3) considering the non-zero external

electric field influences

S0 ¼ 0; E0j ¼ E0djk; ð29Þ

where j ¼ 1; 2; 3, E0 is the constant non-zero value.

Table 4 shows the applied values of the electric

potential (u) for the homogenization boundary value

problems (1)–(7), (29) with k ¼ 1; 2; 3. The displace-

ments (ui) are set to zero on all outer surfaces in this

case.

By recalculating the averaged components of

stresses and electric induction, we determined for

each problem (1)–(7), (29) with fixed k 2 f1; 2; 3g the
piezomoduli from converse piezoelectric effect and

the column of the matrix of the dielectric permittivity

moduli

ec effka ¼ �hTai=E0; eS effik ¼ hDii=E0; ð30Þ

where a ¼ 1; 2; . . .; 6; i ¼ 1; 2; 3.

Thus, to determine the complete set of effective

moduli, three homogenization boundary value prob-

lems involving extending the representative volume

along with one of the coordinate axes, three shear

problems, and three problems involving a given

electric potential varying along one of the coordinate

axes need to be solved. Given non-zero functions of

displacements or potential in all problems change

linearly and provide constant deformations and elec-

tric fields for a homogeneous medium. These bound-

ary conditions at the vertices of a cubic representative

volume coincide with the conditions accepted for

asymptotic homogenization problems or

Table 3 The prescribed non-zero displacements ( ~ui ¼ ui=S0) at the nodes located on the boundaries (B1 to B6) for the problems with

b ¼ 1; 2; . . .; 6 in Eq. (27)

b B1 B2 B3 B4 B5 B6

1 ~u1 ¼ L=2 ~u1 ¼ �L=2 ~u1 ¼ x ~u1 ¼ x ~u1 ¼ x ~u1 ¼ x

2 ~u2 ¼ y ~u2 ¼ y ~u2 ¼ L=2 ~u2 ¼ �L=2 ~u2 ¼ y ~u2 ¼ y

3 ~u3 ¼ z ~u3 ¼ z ~u3 ¼ z ~u3 ¼ z ~u3 ¼ L=2 ~u3 ¼ �L=2

4 ~u2 ¼ z; ~u3 ¼ y ~u2 ¼ z; ~u3 ¼ y ~u2 ¼ z; ~u3 ¼ L=2 ~u2 ¼ z; ~u3 ¼ �L=2 ~u2 ¼ L=2; ~u3 ¼ y ~u2 ¼ �L=2; ~u3 ¼ y

5 ~u1 ¼ z; ~u3 ¼ L=2 ~u1 ¼ z; ~u3 ¼ �L=2 ~u1 ¼ z; ~u3 ¼ x ~u1 ¼ z; ~u3 ¼ x ~u1 ¼ L=2; ~u3 ¼ x ~u1 ¼ �L=2; ~u3 ¼ x

6 ~u1 ¼ y; ~u2 ¼ L=2 ~u1 ¼ y; ~u2 ¼ �L=2 ~u1 ¼ L=2; ~u2 ¼ x ~u1 ¼ �L=2; ~u2 ¼ x ~u1 ¼ y; ~u2 ¼ x ~u1 ¼ y; ~u2 ¼ x
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homogenization problems in cells with periodic

boundary conditions (Berger et al. 2006; Martı́nez-

Ayuso et al. 2017).

Note that, as was proved in Nasedkin et al. (2020),

the matrices of effective elastic stiffnesses and

permittivities should be symmetric, and the effective

piezoelectric moduli for the direct piezoelectric effect

and for the converse piezoelectric effect should be

equal

cE eff
ab ¼ cE eff

ba ; eS effik ¼ eS effki ; ed effka ¼ ec effka ¼ eeffka :

ð31Þ

Equalities (31) for the moduli (28), (30) were also

obtained up to an error in computations from our

numerical calculations. In addition, for piezocompos-

ites with a piezoceramic matrix, the effective medium

remained mainly a material of the 6mm class of

anisotropy. Therefore, only ten effective moduli

(cE eff
11 , cE eff

12 , cE eff
13 , cE eff

33 , cE eff
44 , eeff31 , e

eff
33 , eeff33 , eS eff11 ,

eS eff33 ) are of interest for analysis.

5 Results and discussions

5.1 Effects of the pore shape on fundamental

material properties

In the first part of this discussion, we analyzed the

effects of the pore shape on the relative effective

moduli for the three considered piezoceramics. The

relative effective moduli are the effective moduli of

the piezocomposites understudy related to analogous

moduli of the considered dense piezoelectric material,

i.e., rðe33Þ ¼ eeff33 =e33, etc. We supposed that axes x1,

x2, and x3 refer to axes x, y, and z, respectively, and that

the axis x3 is the direction of initial polarization. In

Figs. 3 and 4, we used the letter ‘S’ and the circle line

marker to express the spherical pore shape; also, we

used the letter ‘C’ and the square line marker to

express the cubic pore shape. The blue lines are related

to the spherical-shaped pore, whereas the red lines are

related to the cubic-shaped pore. The solid lines depict

the OPS, while the dashed lines depict the SMPS.

Figure 3 describes the variations of the relative

piezomoduli rðe31Þ, rðe33Þ, and rðe15Þ versus porosity
for three different piezoceramic materials: PbTiO3,

TBKS, and PZT-5H. The relative piezoelectric coef-

ficients rðe33Þ and rðe15Þ of both systems decrease with

the rise in porosity. For the SMPS, Fig. 3 shows that

the transverse effective relative piezomodulus eeff31 and

the shearing effective relative piezomodulus eeff15

depend on the pore geometry more significantly than

the longitudinal effective piezomodulus eeff33 . Also,

effective coefficients for the SMPS depend on the

pore’s geometric shape more than the corresponding

effective properties for the OPS.

On contrary to the piezomoduli rðe33Þ and rðe15Þ,
the relative transverse piezoelectric modulus rðe31Þ of
the SMPS produced from TBKS or PZT-5H increases

with the porosity growth, as seen in Fig. 3d, g.

Through rising porosity, the relative transverse piezo-

electric coefficient rðe31Þ of the SMPS made from the

modified piezoceramic material PbTiO3 reduces to the

extent that it becomes negative, as shown in Fig. 3a.

The relative effective piezomodulus rðe31Þ of the

SMPS with the matrix from the piezoceramics PbTiO3

behaves differently from the similar modulus if

piezoceramics TBKS and PZT-5H were considered.

One can explain the reason behind this action as

follows. The effective piezomodulus eeff31 of the

PbTiO3 for the SMPS decreases, as do effective

TBKS and PZT-5H SMPS’ transverse piezomoduli,

with the porosity rise. The dense piezoceramics TBKS

and PZT-5H have negative transverse piezomoduli

e31; while the dense piezoceramics PbTiO3 has a

positive value of the transverse piezomodulus. The

relative transverse piezomodulus rðe31Þ is calculated
using the relationship rðe31Þ ¼ eeff31 =e31. As a result, for

the SMPS considering TBKS or PZT-5H, the trans-

verse piezomodulus rðe31Þ grows with values greater

than one when the porosity increases, as seen in

Fig. 3d, g. However, due to the positive coefficient e31
of dense piezoceramics PbTiO3, the relative

piezomodulus rðe31Þ of the SMPS using PbTiO3

significantly decreases with the porosity boost. For

the SMPS made from PbTiO3, the effective

Table 4 The prescribed electric potential ( ~u ¼ u=E0) at the

nodes located on the boundaries (B1 to B6) for the problems

with k ¼ 1; 2; 3 according to Eq. (29)

k B1 B2 B3 B4 B5 B6

1 L/2 �L=2 x x x x

2 y y L/2 �L=2 y y

3 z z z z L/2 �L=2
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piezoelectric coefficient eeff31 decreases until reaching

zero (at porosity volume fraction tp ¼ 0:27 for

spherical porous system, tp ¼ 0:18 for cubic porous

system) and then takes negative values with the

increase of porosity. When applying an external E-

field E03 on the SMPS with spherical pore made from

PbTiO3, the system expands in the transverse direction

if porosity volume fraction tp\0:27; however, the

system shrinks in the transverse direction if tp [ 0:27,

as seen in Fig. 3a. This is a major change in this

material’s crystal symmetry.

Note also that the transverse modulus e31 of dense

piezoceramics PbTiO3 not only has a positive sign but

also its value is much less than the absolute values in

comparison with similar piezoelectric moduli of

piezoceramics TBKS and PZT-5H. Therefore, the

relative piezomodulus rðe31Þ behavior versus porosity
for PbTiO3 differs significantly from those of TBKS

and PZT-5H.

Fig. 3 The relative piezomoduli rðe31Þ, rðe33Þ, and rðe15Þ versus porosity volume fraction tp, for the OPS and the SMPS considering

the following piezoelectric materials: PbTiO3 in (a–c); TBKS in (d–f); and PZT-5H in (g–i)
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Figure 4 presents the variations of the relative

elastic stiffness moduli rðc33Þ, rðc13Þ, and the relative

dielectric permittivity modulus rðeS33Þ depending on

the porosity volume fraction tp. It is obvious that the
growth of porosity reduces all elastic stiffness moduli.

We observed that the effective elastic moduli ceff13 , c
eff
12 ,

and ceff44 depend on the pore geometry more than the

effective elastic moduli ceff11 and ceff33 .

The relative dielectric modulus rðeS11Þ varies with

porosity increase similarly to the dielectric modulus

rðeS33Þ. Unlike the OPS, the SMPS’ effective dielectric

permittivities monotonically boost with the increase in

porosity.

Fig. 4 The relative elastic moduli rðc33Þ, rðc13Þ, and the relative dielectric permittivity modulus rðeS33Þ versus porosity tp, for the OPS
and the SMPS considering the following piezoelectric materials: PbTiO3 in (a–c); TBKS in (d–f); and PZT-5H in (g–i)
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5.2 Clarification of unusual behavior of dielectric

permittivity moduli and transverse

piezomodulus for the SMPS

In the next part of the discussion, we are more

interested in material PZT-5H because it is common in

practical application; and we also considered the

spherical porous system since it is closer to reality.

Figure 5 shows the system states that are used to

determine the effective dielectric permittivity modu-

lus eS eff33 and the effective piezomodulus eeff31 based on

the solution of the homogenization problem (1)–(7),

(29), (30) for k ¼ 3, i.e. under nonzero boundary

conditions for the electric potential with E03 ¼ E0,

here E0 ¼ 1. Figure 5a, b show the E-field vector plot

for the OPS and the SMPS, respectively; Fig. 5c, d

present the electric flux density D-vector plot for the

OPS and the SMPS, respectively; while Fig. 5e, f

introduce the nodal solution of the stress x-component

(r11) for the OPS and the SMPS, respectively.

The exceptional dependence of the relative dielec-

tric modulus rðeS eff33 Þ of the SMPS on the porosity can

be explained as follows. According to the equations

(30), the effective dielectric permittivity

eS eff33 ¼ hD3i=hE3i ¼ ðhD3im þ hD3ie þ hD3ipÞ=E0,

where hD3im ¼ ð1=jXjÞ
R
X Dm

3 dX, etc. Even if there is
an electric field influence on the pore volume, the

resulting electric induction in this volume (hD3ip) is
negligible due to the negligible dielectric permittivity

of the vacuum. So, the effective dielectric permittivity

of the SMPS becomes eS eff33 ¼ ðhD3im þ hD3ieÞ=E0.

Knowing that E0 is a nonzero constant value, the

dielectric permittivity modulus eS eff33 directly depends

on the sum ðhD3im þ hD3ieÞ. The metalized pore

surface (layer Xe) in the SMPS can be considered as a

conductor placed in a uniform electric field. The

electric charges in the conductor move freely and

generate an electric field inside the conductor oppos-

ing the original electric field. So, the influence of the

applied electric field is restricted in the volume filled

with the piezoelectric material Xm, as seen in Fig. 5b.

So, the resulting integral value of the electric induction

hD3im in the SMPS is higher than the analogous value

in the OPS, as shown in Fig. 5c, d. Figure 5d shows a

strong electric induction produced in the metal layer

hD3ie due to the increased local E-field at the interface
between the piezoelectric material and the conductor.

The phenomenon of enhanced permittivity owing to

the presence of a conductor within a dielectric material

was explored in Roscow et al. (2017) and Du et al.

(2016). As a result, the effective permittivity modulus

eS eff33 of the SMPS increase with porosity growth.

In contrast to the SMPS, Fig. 5a indicates that a

portion of the electric field’s influence is lost inside the

pore for the OPS, i.e., hE3im \E0. The integral value

of the electric flux density generated in the pore is

negligible because of the minimal dielectric permit-

tivity of the vacuum. So, the effective permittivity

modulus eS eff33 for the OPS decreases with the porosity

rise.

The piezomodulus eeff31 can be calculated from (30)

as follows: eeff31 ¼ �hr11i =hE3i ¼ �hr11im =E0. Not-

ing that the resulted stresses in the volume Xe [ Xp,

upon applying an E-field E03 ¼ E0 on the external

boundary of X, are negligible due to the negligible

piezomoduli of the related materials. From Fig. 5b, f,

we can observe that the maximum absolute value of

the stress component r11 and the E-field vectors occur
in the same regions. From the comparison between

Fig. 5e, f, we can see that the pore for the SMPS tends

to be elongated in the z-direction; however, Fig. 5

shows only the non-deformable unit cell configura-

tion. So, we can conclude that the E-field vectors in the

SMPS are irregular in direction, and their influence is

restricted in the volume Xm as in Fig. 5b, due to the

presence of the metalized pore surface. This increased

the integral values of the stress components r11 and

r22, as seen in Fig. 5, (f) for r11; but decreased the

integral value of the stress component r33. As a result,
the effective value of the SMPS’ transverse piezomod-

ulus eeff31 boosts with the porosity growth, unlike the

analogous modulus of the OPS, as in Fig. 3g.

5.3 Evaluating the performance of the systems

under study in various applications

In this subsection, we used the FOMs (15), (19), (20),

(23)–(25) derived from section 3 to evaluate the

efficiency of the OPS and the SMPS in various

engineering applications. In Fig. 6, we plotted all

FOMs of the OPS and the SMPS, relatively to the

corresponding values of the pure PZT-5H material, to

illustrate the advantages and disadvantages that both

systems achieve.
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Fig. 5 E-field vector plot (a), electric flux densityD-vector plot
(c), and stress x-component contour plot (e) for the OPS; and E-
field vector plot (b), electric flux density D-vector plot (d), and
stress x-component contour plot (f) for the SMPS, at porosity

tp ¼ 0:35 in the back half of the unit cell without the vacuum

pore volume Xp
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Figure 6 displays the different relative FOMs under

consideration as functions of porosity volume fraction

vp. The FOMs of the OPS and the SMPS are shown

using continuous lines and dashed lines, respectively.

The transverse, longitudinal, and shearing operating

modes were plotted for each FOM using blue, red, and

green curves, respectively.

Figure 6a demonstrates that the relative longitudi-

nal and shearing coupling coefficients of the SMPS

decrease faster than the same coefficients of the OPS

when the porosity increases. When the porosity is less

than 47%, the transverse coupling coefficient of the

SMPS is higher than that of the OPS.

The sensing transduction coefficient ðTCjbÞS is

plotted in Fig. 6b for different cases under study.

Figure 6b indicates that the OPS exhibits greater

longitudinal and shearing sensing transduction coef-

ficients than the SMPS. However, the SMPS exhibits

greater transverse transduction when porosity p is less

than 47%.

The actuator transduction coefficient ðTCjbÞA is

shown in Fig. 6c. For all operating modes, the SMPS

exhibits higher actuation transduction coefficient

values than the OPS. The SMPS transverse actuator

transduction coefficient increases monotonically with

the porosity growth due to the great values of the

transverse piezomodulus d eff
31 .

The sensor and actuator’s energy harvesting FOM

are presented in Fig. 6d, e, respectively. They are like

the sensing and actuation transduction coefficients

shown in Fig. 6b, c, respectively. The OPS exhibits

better performance than the SMPS in longitudinal and

shearing sensor applications due to the great values of

ðFOM33ÞS and ðFOM15ÞS; however, the SMPS exhi-

bits greater efficiency than the OPS in the transverse

sensor, at porosity p\0:47, and all operating modes of

actuator applications.

Figure 6f presents the hydrostatic FOM (HFOM)

for both composites. From this figure, we can infer that

the OPS produces better performance in hydrophone

applications when porosity is less than 38% while the

SMPS exhibits greater HFOM for higher porosity

fraction.

Fig. 6 The coupling coefficients k2 (a), the sensor transduction coefficients (b), the actuator transduction coefficient (c), energy
harvesting/sensing FOMs (d), actuation FOMs (e), and hydrostatic FOM (f) versus porosity tp, for the OPS and the SMPS
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Due to the improved performance of the SMPS,

particularly the transverse actuator operating mode, as

shown in Fig. 6c, e, we investigated certain FOMs of

the SMPS created based on the piezoelectric substrates

PbTiO3 and TBKS. Figure 7 presents the sensor

transduction coefficient ðTC31ÞS, actuator transduction
coefficient ðTC31ÞA, and the hydrostatic FOM

(HFOM) as functions of porosity for the SMPS

produced with the piezoelectric matrices PbTiO3 and

TBKS, respectively in (a) and (b). Unlike the HFOM

of the SMPS created with PZT-5H, the HFOM of the

SMPS developed with the piezoelectric substrates

PbTiO3 and TBKS is less than the analogous coeffi-

cient of the analogous pure piezoelectric material. The

transverse sensor transduction coefficient of the SMPS

created with PbTiO3 and TBKS is almost independent

of porosity when porosity volume fraction is lower

than 45% and decreases for higher porosity fractions.

The most notable finding is that the transverse actuator

transduction coefficient ðTC31ÞA rises with increasing

porosity for all investigated systems.

6 Conclusions

This paper studied two different porous piezoelectric

composites. The first composite is an ordinary porous

system (OPS), which is a two-phase piezocomposite

with 3-0 connectivity consisting of a piezoelectric

material and a pore inside it. The second composite is a

system with a metalized pore surface (SMPS), which

is a three-phase piezocomposite with 3-0-0 connec-

tivity. The SMPS’s construction is similar to the OPS

but contains a metal layer on the pore surface. This

layer of metal was designed in Rybyanets and

Naumenko (2013) and Rybyanets et al. (2018) to

enhance the electromechanical and functional proper-

ties of the OPS.

To find the effective moduli, we solved the

boundary value piezoelectric problems with specific

essential boundary conditions. In these problems, the

pores were filled with a hypothetical piezoelectric

material with negligible moduli. We also used piezo-

electric material with very high dielectric permittivity

and negligible piezoelectric and stiffness moduli to

model the metal layer. This approach used was

substantiated earlier (Nasedkin and Nassar 2021a;

Nasedkin et al. 2020; Nasedkin and Nassar 2020)

based on Hill’s principle, which states that the

potential energies of the composite and the equivalent

homogeneous medium under the same external influ-

ences are equal.

We explored the influence of the pore shape on the

effective properties of both systems. We used a cubic

pore and a spherical pore in this study. We constructed

these piezocomposites using three distinct piezoce-

ramics, i.e., PbTiO3, TBKS, and PZT-5H. Because

both systems exhibit different effective moduli, we

reviewed typical piezoelectric transducers’ figures of

merit (FOMs) to assess the performance of these

systems in various engineering applications. Most of

the previously studied FOMs assess the efficiency of

piezoelectric transducers in sensing/energy harvesting

applications. Here, we introduced new figures of merit

(ðTCjbÞA and ðFOMjbÞA), which measure the piezo-

electric transducer’s efficiency in actuator

applications.

Fig. 7 The sensor

tansduction coefficient

ðTC31ÞS, actuator
tansduction coefficient

ðTC31ÞA, and the hydrostatic

FOM (HFOM) versus

porosity for the SMPS

designed based on the

piezoelectric substrates

PbTiO3 and TBKS in (a, b),
respectively
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The primary findings of this study can be summa-

rized as follows.

1. The transverse and shearing elastic stiffnesses and

piezoelectric moduli of both systems are more

dependent on the pore shape than the longitudinal

elastic moduli, piezomoduli, and dielectric per-

mittivities; however, the dependence of the effec-

tive moduli on the pore shape is not significant. So,

even though the spherical pore is closer to reality,

we can study more complicated representative

volumes with a random distribution of pores using

the cubic pores.

2. Introducing porosity to the piezoelectric material

enhances its performance in longitudinal and

shearing sensor applications. Also, the transverse

sensing effect of the OPS is improved in the case

of large porosity. However, the actuation effect of

the OPS decreases with the porosity increase for

all modes of operation.

3. The metal layer in the SMPS restricts the influence

of the externally applied E-field in the volume

filled with the piezoelectric material and produces

a very strong electric induction inside it, which

increases the transverse piezomodulus and the

dielectric permittivity moduli of the SMPS with

the porosity rise.

4. The SMPS transverse actuating effect increases

significantly with increasing porosity. Also, the

transverse sensing effect of the SMPS is higher

than the analogous effect of the OPS for a wide

range of porosity values.

5. In hydrophone applications, the OPS outperforms

the corresponding pure piezoelectric materials in

all examined piezoelectric matrices; however, the

SMPS outperforms the analogous pure piezoelec-

tric materials for significant percentages of poros-

ity only when made using the piezoceramic matrix

PZT-5H.

6. The piezoelectric transducers made from the

SMPS can be used efficiently in contracting

actuators, tube actuators, and bending actuators,

which can be utilized effectively in active vibra-

tion control systems.

Further studies of this research may consider more

complicated representative volumes, partially metal-

ized pore surfaces, and experimental validations.
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