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Abstract Harvesting energy frommechanical vibra-

tions using piezoelectric materials presents itself as an

interesting alternative energy source, particularly for

embedded and integrated designs considering the high

electric charge density that can be stored in these

materials. To amplify the amount of energy available

at narrow predefined frequency ranges, resonant

cantilever devices are usually considered. Neverthe-

less, energy output is still small and highly sensitive to

device parameters, mounting and operating condi-

tions. Thus, these devices must be designed using

optimization techniques, to ensure maximum extrac-

tion of energy available, and accounting for uncer-

tainties in parameters, mounting and operating

conditions. This work presents two methodologies to

design cantilever piezoelectric energy harvesters

using deterministic and robust optimization and

accounting for the presence of uncertain parameters.

The proposed methodology employs an electrome-

chanical coupled finite element model to estimate

mean and variance of harvestable power for given base

excitation and parametric uncertainties. The elec-

tromechanical model is then used in two design

methodologies, a robust design based on Taguchi’s

method and a multiobjective deterministic Compro-

mise Programming method. Both methods are shown

to be capable of providing design solutions that allow

maximization of nominal or mean harvesting perfor-

mance and minimization of variability (increased

robustness). As general design guidelines, it is shown

that devices with larger mass lead to better mean

performance but also to higher variability, thus a

compromise solution is advisable. Also, a reduction of

the effective harvesting circuit resistance, from nom-

inally optimal value, may improve robustness without

substantial decrease in mean performance.

Keywords Energy harvesting � Piezoelectric
materials � Optimization � Uncertainties � Robust
design

1 Introduction

Energy consumption has been increasing considerably

in last decades, encouraging researchers to study

alternative energy sources. Also, powered devices

located in isolated places or with difficult access, such

as wireless sensor networks, sensors in road bridges,
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devices for animal tracking, devices placed inside

living bodies such as pacemakers, and global posi-

tioning systems (GPS), still rely strongly on batteries

with limited capacity, life span, durability and sus-

tainability. Furthermore, the technological break-

through that some computer components have

experienced in recent years is well above the increase

in energy density of batteries (Rafique 2018). Thus,

the design of self-powered systems and devices

presents a great technological advantage in the sense

that batteries may last longer or even be unnecessary,

leading to more useful computers, wearable and

portable electronic devices. This development

requires the search for new and alternative energy

sources that could also be standalone and/or portable.

One potentially interesting idea would be to harvest

energy from different environmental sources, such as

mechanical, thermal, chemical, electromagnetic and

wind power sources (Lesieutre et al. 2004). In this

context, the term energy harvesting is directly related

to the process of conversion of energy into electricity

from environmental sources for different uses. Partic-

ularly, in this work, the focus relies on harvesting

usable and frequently wasted electrical energy from

mechanical vibration signals.

There are some alternatives to harvest energy from

moving objects by installing a device to it that would

somehow capture and transform its motion into usable

energy. The main difference between them is the

transduction method needed to convert ambient

motion into electric energy, the most known being

the electromagnetic (dynamo), but electrostatic and

piezoelectric converters are increasingly used, partic-

ularly for small-scale generators where electromag-

netic transduction poses an operational challenge

(Mitcheson et al. 2008; Narita and Fox 2018). When-

ever ambient motion can induce structural vibrations

leading to oscillatory strains in harvesting device

elements, piezoelectric materials can be considered as

the conversion transducers. Piezoelectric materials are

composed of electric dipoles that move within the

material when an external strain or electrical field is

applied to generate electricity (direct effect) or strain

(inverse effect), respectively (Leo 2007). They present

as advantages high energy densities and absence of

moving parts such that small-scale devices can be

achieved (Erturk and Inman 2011). The most common

piezoelectric harvesting device construction exploits

resonant cantilever beams in which the piezoelectric

material is installed, aiming at transforming small base

motions into larger strains in the piezoelectric con-

verter (Sodano et al. 2004; Dutoit et al. 2005; Erturk

and Inman 2011; Godoy et al. 2014).

Figure 1 presents a schematic representation of a

typical cantilever piezoelectric harvester composed of

a tip mass, a cantilever beam (substrate), a piezoelec-

tric patch adhesively bonded to the substrate, a

harvesting circuit represented by a simple resistive

load, and a clamp that is attached to the moving object

(vibration source). The general idea is to design the

cantilever beam stiffness and tip mass inertia param-

eters such the fundamental resonance frequency of the

device matches the base excitation frequency, such

that the vibration amplitude is maximized. The

deformation of the cantilever beam induces strains in

the piezoelectric patch which, in turn, induces electric

charges in its electroded surfaces that are harvested by

the electrical circuit. Besides the frequency tuning, the

amount of harvestable energy can be maximized by

properly optimizing geometrical and material proper-

ties of the device components, such as substrate elastic

modulus, length and thickness, tip mass density and

geometry, piezoelectric patch material, length, posi-

tion, shape and thickness, circuit effective resistance

and dynamic behavior, among others (Godoy et al.

2014; Salas et al. 2018).

Various standard deterministic optimization algo-

rithms may be used to perform such harvesting devices

design. Depending on the solution space and the

convexity of the global cost function, one may

consider either mathematical programming tech-

niques, such as Sequential Quadratic Programming

(SQP), among others, or metaheuristic techniques,

such as Genetic Algorithms (GA), Particle Swarm

Optimization (PSO), among others (Rao 2009).

Deterministic optimization techniques have been

used extensively for improving the performance of

structures with piezoelectric elements, including not

only energy harvesting applications, but also for

Fig. 1 Schematic representation of a typical cantilever

piezoelectric energy harvester

123

64 P. H. Martins et al.



passive and active control and structural health

monitoring. The optimization of location, shape and

distribution of the piezoelectric elements received

much attention is the last two decades (Frecker 2003;

Trindade 2007; Rupp et al. 2009; Benasciutti et al.

2010; Ducarne et al. 2012; Godoy et al. 2014; Tikani

et al. 2018; Nabavi and Zhang 2019). Even in

deterministic problems, multiobjective optimization

techniques are often required for the design of such

piezoelectric structures (Chattopadhyay and Seeley

1994; Kim et al. 2015; Datta et al. 2016; Franco

Correia et al. 2017; Salas et al. 2018; Liseli et al.

2019; Lopes et al. 2021). Nevertheless, although

nominal harvested energy can be maximized using

deterministic optimization methods, uncertainties

generally are inherently present in the device param-

eters themselves and/or mounting between the device

and moving object and/or operating conditions of the

moving object and device. Thus, these uncertainties

must be accounted for in the design and/or optimiza-

tion process in order to achieve more robust and/or

reliable designs.

The effect of uncertainties on the performance of

piezoelectric energy harvesters has been studied in a

few previous works (Ali et al. 2010; Godoy and

Trindade 2012; Franco and Varoto 2017; Aloui et al.

2019), which mostly dedicated efforts in assessing the

effects of uncertainties arising from geometric, mate-

rial properties, and electric parameters on the overall

performance of the energy harvesting system. As

previously mentioned, the majority of base driven

energy harvesting models employ the cantilever beam

model with a rigid tip mass at the beam’s free end,

shown in Fig. 1. In practical engineering applications,

the cantilever boundary condition is nearly impossible

to be achieved. Reproduction of the theoretical zero

deflection/slope requires infinite values of the equiv-

alent linear and angular stiffness at the boundary. In

practice, a reasonable attempt to achieve this condition

comprises of sandwiching an extra portion of the

beam’s length through a clamping device. Hence,

independently of its geometry and material used to

build the clamping device, it will present some level of

compliance, being subjected to elastic deformations

under the base driven input signal. Moreover, if the

clamping device contains bolts and nuts, which is

often the case, these can be subjected to variations in

the tightening torque due to the surrounding vibration,

which in turn can affect the overall performance of the

harvesting system. Hence, it is desirable to have a

theoretical energy harvesting model that can account

for possible variations on the boundary conditions due

to the practical imperfections just mentioned.

As it will be discussed in details later, the present

work employs a dynamic model of the energy

harvesting system that can account for uncertainties

on the boundary condition parameters. The model

replaces the ideal zero deflection/slope condition by

equivalent linear and torsional spring constants. These

parameters can then be varied according to a given

uncertainty framework in order to predict variations

on the boundary conditions of the energy harvesting

system under investigation. Uncertainties in boundary

conditions has been previously studied in beam

systems (Ritto et al. 2008), but not in the context of

piezoelectric energy harvesting. Additional investiga-

tions were performed proposing methods to identify

the unknown boundary parameters (Pabst and Hage-

dorn 1995; Ahmadian et al. 2001; Ritto et al. 2016;

Joo et al. 2017; Hermansen and Thomsen 2018).

Despite being also valuable source of information, the

aforementioned contributions do not convey an appro-

priate sensitivity or uncertainty analysis of the

parameters involved. Therefore, among other specific

goals, the present study proposes to investigate the

energy harvesting performance under uncertain

boundary characteristics, which represents an incre-

mental contribution to the general area of design and

optimization of piezoelectric energy harvesting sys-

tems, since no similar study has been reported so far.

To account for uncertainties in the design and

optimization process, specialized techniques must be

considered rather than deterministic or nominal opti-

mization. Well-known robust design and optimization

approaches may be used, such as robust design

optimization (RDO), reliability-based optimization

(RBO) and fuzzy optimization (Schuëller and Jensen

2008). In the first case, the sensitivity concept is

addressed such that design solutions that are less

sensitive to variations in the environment are defined

as robust designs. Alternatively, in RBO, failure

probabilities are established in terms of input vari-

ability and the idea is to search for design solutions

that minimize these failure probabilities. In fuzzy

optimization, uncertainties are based on possibility

theory and modeled as fuzzy numbers considering the

subjectivity of the analyst (Beck et al. 2012; Lü et al.

2021). In all cases, one important step is to estimate
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the mean and variance of the objective function, such

as the harvested energy (Mann et al. 2002), that can

then be considered as target functions in weighted or

multi-objective optimization (Kim et al. 2017) and/or

to build worst-case scenarios (Hosseinloo and Turit-

syn 2016) or failure probabilities (Seong et al. 2017).

The estimation for mean and variance is an

important task in robust optimization, in which, for

instance, after a sensitivity analysis designs less

sensitive to sources of variability may be chosen

(Zang et al. 2005). Thus, a substantial effort must be

dedicated in precise and cost-effective methodologies

for this estimation (Park et al. 2006; Schuëller and

Jensen 2008; Carneiro and António 2019). Provided a

stochastic model is available for the uncertain param-

eters, which can be used to produce as many samples

or realizations required, Monte Carlo Simulation

(MCS) method may be used to calculate, with good

enough precision, the mean and variance of the

objective function. Nevertheless, the total computa-

tional cost increases rapidly with the cost of objective

function evaluation and the number of samples

required for satisfactory convergence. Alternative

methods to provide less expensive estimations of

mean and variance of the objective function, such as

First-order Taylor Approximations (FTA), Polyno-

mial Chaos Expansions (PCE), Karhunen-Loève

Expansions (KLE), Artificial Neural Networks

(ANN), among others, are the object of several recent

research efforts (Sudret et al. 2017; Beyer and Send-

hoff 2007; Park et al. 2006; Paiva et al. 2017).

Typically, variability decreases in RDO problems

whereas the mean value increases such that the analyst

must establish the criteria to achieve the best-com-

promise between mean and variance. In this case,

multi-objective optimization can be employed to

achieve design variables or parameters that mini-

mize/maximize different functions one at a time

(Lobato and Steffen 2017). Additionally, the concept

of Pareto-front is assumed for decision making since a

set of ideal points is found in multi-objective opti-

mization. In other words, the Pareto-front is an

efficient frontier in which points are found in conver-

gence criterion and each point cannot be changed

without compromising other goals (Marler and Arora

2004). Hence, the analyst can choose subjectively a

point in the frontier according to another specific

criteria. Thus, a formulation for Bi-Objective Robust

Design (BORD) is presented in this work to assure

satisfactory trade-offs between mean and variance

harvested energy to design cantilever piezoelectric

energy harvesters with uncertainties in selected

parameters. The BORD method defines weighting

factors for the mean and variance functions aiming at

finding a compromise solution based on the concept of

maximum or L1. This technique is derived from the

Compromise Programming (CP) method (Chen et al.

1999).

A simpler methodology with no need for specific

methods to estimate mean and variance put forward by

Taguchi (Tsui 1992), that is based on the concepts of

robustness and sensitivity, may be used to choose

between a set of nominally optimal design parameters

that yield lower sensitivity or higher robustness. The

method involves the construction of so-called orthog-

onal arrays that contain a number of combinations of

design and uncertain parameters to evaluate the

sensitivity, mean and variance. Due to the limited

number of columns and rows in these arrays, the

number of analyzed solutions is restricted, but it is a

quite simple and computationally inexpensive way to

obtain relevant information on the optimality and

robustness of a set of solutions and may be also used

for comparison purposes.

In this work, robust design of cantilever piezoelec-

tric energy harvesters when subjected to uncertainties

in certain device, mounting and environmental param-

eters, namely the effective circuit resistance, the

imperfect clamping stiffness and the effective damp-

ing factor, is studied. Two methodologies are consid-

ered, Taguchi’s method and CP method. For the latter,

First-order Taylor Approximations are used to esti-

mate the mean and variance. The harvestable energy

for given base excitation and parametric uncertainties

is predicted using an electromechanical coupled finite

element model. The results and conclusions obtained

with the two methods are analyzed. The main novel

contributions of the manuscript are: (i) the study of the

effect of imperfect clamping on energy harvesting

devices performance and robustness, proposing a

model able to account for uncertainties on the

clamping conditions and (ii) the application of simple

yet conclusive methodologies to identify important

parameters and design adaptations to improve robust-

ness of energy harvesting devices.
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2 Finite element model of a cantilever piezoelectric

energy harvester considering imperfect clamp

The general setup for the energy harvesting device

considered in this work, schematically represented in

Fig. 2, is composed of a cantilever beam (substrate)

with uniform rectangular cross-section, length lv and

thickness hv, a piezoelectric patch with length lp and

thickness hp adhesively bonded to the beam’s upper

surface at a distance dp from the clamp, a cubic tip

mass with length lb and height hb rigidly fixed to the

free end portion of the cantilever beam, and an electric

resistor Rc connected to the piezoelectric patch upper

and lower electrodes. The imperfect clamping of the

harvesting device is simulated using linear and

torsional springs, with constants kw and kh, respec-

tively. The width of cantilever beam, piezoelectric

patch, adhesive layer and tip mass are the same.

A finite element model, based on (Santos and

Trindade 2011), is proposed to evaluate the motion

transmissibility frequency response function (FRF) of

electric power output P for given base excitation input

w0. The model assumes three perfectly-bonded inde-

pendent layers, where the core (intermediate) layer is

allowed to present transverse shear strains and is

modeled using Timoshenko theory, whereas the face

(external) layers are not and are modeled using

Bernoulli-Euler theory. The model also fully accounts

for direct and inverse electromechanical coupling

leading to mechanical (displacements) and electrical

(charges) degrees of freedom.

After assembling for all finite elements, the linear

and torsional springs, kw and kh, and the tip mass

translational and rotational inertias, Mt and It, are

added to the proper mechanical degrees of freedom

(transverse displacements and cross-section rotations).

In fact, since the tip mass is placed on a portion of the

substrate, their composition is modeled as a single

rigid body which centroid is offset from the rightmost

finite element node (at the lower-left edge of the tip

mass in Fig. 2) and, thus, the rotational inertia It is

evaluated relative to this point and a inertia coupling

term �xMt between transverse displacement and cross-

section rotation is also added to the mass matrix. �x is

the longitudinal component of the distance between

the rightmost node and the composed tip mass

centroid.

Equations of motion are written in terms of the

relative motion between the cantilever beam and base

excitation, defined as ur ¼ u� Lw0ðtÞ, where u is the

absolute generalized displacements of the cantilever

beam and L is a boolean column vector in which only

elements relative to the nodal transverse displace-

ments are unitary. Then,

Mrr €ur þKrrur � �Kmeqc ¼ �Mrw €w0ðtÞ; ð1Þ

Rc _qc � �Kt
meur þ �Keqc ¼ 0; ð2Þ

where Mrr and Krr are the mass and mechanical

stiffness matrices. �Kme and �Ke correspond to the

piezoelectric and dielectric stiffnesses. Constant Rc is

an electrical resistance representing the equivalent

load of the energy harvesting circuit connected to the

piezoelectric patch. Variable qc stands for the electric

charges that flow between the piezoelectric patch

electrodes and harvesting circuit. VectorMrw ¼ MrrL

is formed by summation of mass matrix terms and

leads to the distribution of the acceleration input as an

equivalent transversal inertia force applied to the

relative transversal displacements.

To reduce the computational cost, a model reduc-

tion based on projection onto a truncated mass-

normalized undamped modal basis / is considered.

The mechanical degrees of freedom are then approx-

imated by ur � /ar and considering a harmonic base

excitation, such that €w0ðtÞ ¼ ~a0 e
jxt, the reduced

equations of motions are written as

ð�Ix2 þ j2xKXþX2Þ~ar �Kp ~qc ¼ /tMrw ~a0;

ð3Þ

ðjxRc þ �KeÞ~qc �Kt
p~ar ¼ 0; ð4Þ

where I ¼ /tMrr/, X2 ¼ /tKrr/, Kp ¼ /tKme.

Also, an ad-hoc diagonal modal damping matrix K is

assumed. ~ar and ~qc are the corresponding modal

displacements and electric charge amplitudes.
Fig. 2 Schematic representation of the cantilever piezoelectric

energy harvester considering imperfect clamp
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By solving (3) and (4), it is possible to evaluate the

electromechanical coupled system response, in terms

of transverse displacements along the cantilever beam

and/or electric charge induced in the electric circuit,

for a known base acceleration input. To allow

comparison with experimental results that are given

in terms of point acceleration measurements at the tip

mass, the acceleration at the rightmost FE node is

defined as at ¼ ct €u, where ct is a boolean row vector in

which only the element corresponding to the trans-

verse displacement at the rightmost FE node is unitary.

For harmonic base excitation input, the tip accelera-

tion output is also harmonic with amplitude ~at, that can
be written in terms of the modal displacements as

~at ¼ ~a0 � x2ct/~ar. Then, the FRF of tip acceleration

output per unit base acceleration input Gata0ðxÞ ¼
~at=~a0 resulting in

Gata0ðxÞ ¼ 1� x2ðjxRc þ �KeÞct/D�1/tMrw; ð5Þ

where D ¼ ðjxRc þ �KeÞð�Ix2 þ j2xKXþX2Þ �
KpK

t
p .

Besides the electric charge itself, other electric

quantities may be considered as outputs. The electric

current in the circuit can be defined as ic ¼ _qc. It is also

possible to evaluate the voltage across the resistance as

Vc ¼ Rcic, such that its amplitude for a harmonic input

can be written as ~Vc ¼ jxRc ~qc. Thus, the FRF of

output voltage per unit base acceleration input

GVca0ðxÞ ¼ ~Vc=~a0 is

GVca0ðxÞ ¼ jxRcK
t
pD

�1/tMrw: ð6Þ

Finally, the potentially harvestable power is approx-

imated by the power dissipated in the purely resistive

load, such that Pc ¼ V2
c =Rc. Then, the FRF of peak

power output per unit squared base acceleration is

written as

GPca0ðxÞ ¼ GVca0ðxÞ½ �2=Rc: ð7Þ

In the present work, (7) is used to evaluate and

compare the potentially harvestable power by using

devices depicted in Fig. 2 and also to estimate its

variability due to uncertainties in certain parameters.

3 Experimental validation

This section is devoted to describing an experimental

analysis that was performed on an unimorph piezo-

electric energy harvester in order to validate the

theoretical electromechanical model shown in Fig. 2

and described in the previous section. The goal is to

measure the electromechanical frequency response

functions of the prototype and compare them to the

corresponding results from numerical simulations. A

diagram of the experimental setup for the tests is

shown in Fig. 3 and photos of the actual experimental

apparatus used during the tests is shown in Fig. 4. The

unimorph piezoelectric energy harvester prototype is

made of aluminum (substrate) and fully covered on the

upper surface with a PZT-5A monolithic piezoelectric

ceramic patch, bonded on the beam’s surface using a

high shear strength epoxy adhesive. An aluminum

lumped mass is attached to the free end of the

cantilever harvester in order to enhance the kinetic

behavior and consequently the mechanical to electri-

cal energy conversion process.

The geometrical properties of the harvester proto-

type are: beam length lv ¼ 74:7 mm and height

hv ¼ 1 mm, adhesive layer height hc ¼ 0:08 mm,

piezoelectric patch length lp ¼ 73:6 mm, height

hp ¼ 0:13 mm and distance to clamp dp ¼ 1:1 mm.

All layers are assumed to have equal widths of

12.8 mm. Aluminum was chosen for the beam and

PZT-5A for the piezoelectric patch, whose properties

are available from manufacturers (Mide Technology

1989). Aluminum material properties are: Young’s

modulus 69 GPa and mass density 2700 kg/m3. For

the adhesive layer, they are: Young’s modulus 2 GPa

and mass density 1126 kg/m3. The piezoelectric

material is assumed to be orthotropic and subjected

only to transversal electric fields and plane stress,

which results in modified properties, according to the

literature (Trindade and Benjeddou 2008):

�cE11 ¼ 73:7 GPa, �e31 ¼ �18:4 C/m2, ��e33 ¼ 9:8 nF/m,

mass density 7950 kg/m3.

The tip mass essentially consists of a rigid

aluminum square block, of side length 12.8 mm, that

is attached to the beam’s end through small stainless

steel screws. Thus, the block mass is thus approxi-

mately 5.1 g but the total tip lumped mass to be

considered in the FE model should also account for

additional contributions from the portion of beam
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underneath the block, the screws, the accelerometer

positioned at the top of the aluminum block and a

portion of the accelerometer cable. The moment of

inertia of the lumped mass is also accounted for in the

FRF calculations and was evaluated based on an

estimation of the position of center of gravity of

composed lumped mass. A first estimation of the

lumped mass translational and rotational inertias was

Mt ¼ 7:7 g and It ¼ 0:7 kg mm2.

Signals flows and connection between the instru-

ments used can be seen in Fig. 3. Initially the beam is

rigidly mounted on the vibration exciter (Bruel and

Kjaer 4809) table through a clamping device, that is

used to experimentally approach the elastic boundary

conditions of the model, as seen from Fig. 4. Minia-

ture ICP (PCB 352A24 with sensitivity 100 mV/g and

mass 0.8 g) uni-axial piezoelectric accelerometers are

mounted on the top surface of the clamping device (not

shown in the photo) and on the lumped mass at the

beam’s free end. The sensor positioned on the

clamping device is used to measure the input base

acceleration to the harvester and it will be the

reference signal to the measured mechanical and

electromechanical transmissibility frequency response

functions. The accelerometer positioned on the beam’s

free end is used to acquire the tip mass acceleration

Fig. 3 Diagram of the

experimental setup used in

tests

Fig. 4 Photo of the actual experimental setup used in tests: a
global view and b view zoomed at the energy harvesting device
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that will further be used to get the mechanical FRF

related to the input base motion. A fixed point laser

vibrometer (Polytec CLV 700) with the associated

control unit (Polytec CLV 1000) is used in order to

measure the tip velocity, needed in obtaining the tip

mass mobility transmissibility FRF. The voltage

generated by the unimorph piezoelectric is acquired

in order to obtain the electromechanical voltage per

input acceleration electromechanical FRF.

Based on the experimental setup diagram shown in

Fig. 3, signals flow as follows: (1) A 500 mV rms

white noise broadband driving signal is generated by

the spectrum analyzer (Data Physics QUATTRO) in

the 0-100 Hz frequency range and sent to the power

amplifier (Bruel and Kjaer Type 2712); (2) The

amplifier gain is adjusted and the resulting signal is

fed into the vibration exciter; (3) The base drive signal

is measured and acquired at the reference channel of

the spectrum analyzer; (4)/(5) The piezoelectric layer

is connected in parallel to a variable magnitude load

resistance adjusted on the resistor box and then fed

into the analyzer, where this resulting voltage nor-

malized by the input base acceleration corresponds to

the electromechanical FRF from the harvester; (6) Tip

mass acceleration is measured by the sensor posi-

tioned at the beam’s free end tip mass and the

corresponding signal is used to obtain the mechanical

accelerance FRF; (7)/(8) The tip mass velocity is

measured by the laser sensor head and fed into the

analyzer through the vibrometer control unit, and the

velocity signal, normalized by the input base acceler-

ation signal is used to get the tip mass mobility FRF.

As previously mentioned, signals were gathered in

the 0-100 Hz frequency range. Each frequency

domain sampled signal contains 3200 spectral lines

thus giving a frequency resolution Df ¼ 31:25 mHz.

Since a random type signal was used to drive the

vibration exciter, Hanning windows were used in all

measured channels in order to reduce possible FRF

amplitude distortions due to digital filter leakage

(McConnell and Varoto 2008).

The modal damping factor was estimated from the

purely mechanical accelerance FRF measured at the

tip mass for an electrical load resistance of

Rc ¼ 100 X. This electrical resistance value has been
selected to simulate the short circuit (SC) condition.

Through the half power method and using the first

resonance, a resulting value of 1.1% was predicted for

the damping ratio. Later, the electrical resistance Rc ¼

1 MX was used to simulate the open-circuit (OC)

condition, enabling the determination of the effective

modal electromechanical coupling coefficient

(EMCC). The effective EMCC is needed in order to

quantify the mechanical energy converted into elec-

tricity by the piezoelectric patch and may be evaluated

according to different methods found in the literature

(Trindade and Benjeddou 2009). An alternative for

estimating the effective modal EMCC using the i-th

natural frequencies fi;oc in OC and fi;sc in SC leads to

the following equation

k2i ¼
f 2i;oc � f 2i;sc

f 2i;oc
; ð8Þ

where k2i is the EMCC for i-th frequency, emphasizing

the fact that in this work only the first vibration mode

is analyzed. Thus, the material parameters of PZT-5A,

the aluminum beam Young Modulus and the tip mass

inertia were adjusted aiming at bringing the short- and

open-circuit resonance frequencies and the EMCC

closer in the experimental and numerical cases.

The total tip lumped mass translational and rota-

tional inertias to be used in the FE model were then

adjusted to 9.2 g and 0.8 kg mm2, respectively. This

adjustment is potentially due to the contributions of

the portion of accelerometer cable and errors in the

estimation of individual masses and geometry. The

material properties of the PZT-5A and the Young’s

modulus of the aluminum beam were also adjusted to:

�cE11 ¼ 66:3 GPa, �e31 ¼ �13:3 C/m2, ��e33 ¼ 12:3 nF/m

and 68 GPa for the beam Young’s modulus. Table 1

presents the short- and open-circuit fundamental

resonance frequencies, foc and fsc, respectively,

obtained from numerical and experimental FRFs after

parameter adjustments. The EMCC and the relative

error with respect to the experimental results are also

presented. Fig. 5 shows the numerical and

Table 1 Experimental and numerical results for the funda-

mental natural frequencies in short- and open-circuit and cor-

responding effective modal EMCC

Experimental Numerical Relative error (%)

f1;sc [Hz] 38.69 39.73 2.7

f1;oc [Hz] 39.62 40.65 2.6

k21 [%] 4.63 4.52 2.4
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experimental FRFs of acceleration output measured at

the tip mass for OC and SC conditions, indicating that

the amplitudes and frequencies are satisfactorily well

fitted considering the updated parameters.

The updated model was verified by comparing

numerical and experimental results for the FRFs of

voltage output considering electrical resistances of

100 X, 1000 X, 10 kX, 100 kX, 500 kX and 1 MX.
These are presented in Fig 6. As expected, the voltage

output increases for increasing resistance up to a

saturation point when the OC condition is approached.

It can be noticed that, in all cases, the numerical results

match satisfactorily well the corresponding experi-

mental results. Thus, it is expected that the model

would also be able to well estimate the potentially

harvestable power output.

4 Robust optimization of piezoelectric energy

harvesters

The main known levers for optimizing the energy

harvested by resonant piezoelectric energy harvesting

devices are: (1) maximization of the effective piezo-

electric coupling; (2) proper tuning between base

excitation (operating) frequency and device’s funda-

mental resonance frequency; (3) proper tuning of

harvesting circuit impedance; and (4) minimization of

mechanical (damping) and dielectric losses. These are

all related and sometimes conflicting. For instance,

higher effective piezoelectric couplings also lead to a

performance that is more sensitive to the circuit’s

resistance. The latter affects the effective device’s

resonance frequency when coupled with the harvest-

ing circuit. Moreover, by reducing at most all sources

of mechanical and electrical losses, the resonance

peak becomes sharper and, thus, increasing the

performance sensitiveness to mistuning between oper-

ating and resonance frequencies.

Also, there are several sources of environmental

variabilities and parametric uncertainties that may

affect the effective performance of the devices and,

thus, lead to a harvested energy that is much smaller

than predicted. Thus, it is important to design devices

aiming at both performance and robustness. For that,

two strategies are proposed in the present work. They

were chosen because they do not require too much

function evaluations, which seems more practical and

less computationally expensive. The first is based on

the methodology of orthogonal arrays introduced by

Taguchi, and the second estimates the performance

mean and variance and searches for a compromise

between them.

Assuming that the device’s material properties are

constant and that its geometrical properties can be

defined in terms of the target resonance frequency and

either tip mass or beam length, two design variables

are defined: (1) device’s tip mass and (2) circuit’s

effective resistance. Also, four uncertain parameters

were considered: (1) clamping equivalent transversal

stiffness; (2) clamping equivalent rotational stiffness;

(3) effective system damping; and (4) circuit’s effec-

tive resistance. The first two uncertain parameters

were selected since precise estimates of these param-

eters are often difficult to obtain during the design

phase. In fact, most models consider ideal clamping

Fig. 5 FRFs of acceleration

output for Rc ¼ 100 X and

Rc ¼ 1 MX
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while realistic clampings have some flexibility and,

even when well predicted, these may loosen up during

device’s operation. The effective system damping is

also difficult to be precisely estimated during design

phase and, usually, can only be measured for each

device after assembling, and may also be subjected to

variations over time. The circuit’s effective resistance

was considered uncertain mainly due to the fact that a

resistance gives only an approximation of the dynamic

behavior of a real harvesting circuit.

Fig. 6 Numerical and

experimental FRFs of

voltage output for different

values of circuit’s resistance

Rc
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4.1 Optimization using orthogonal arrays

The first strategy to design devices maximizing the

harvested energy and minimizing its variance consid-

ers a methodology proposed by Taguchi (Tsui 1992),

in which orthogonal arrays are composed of many

experiments to evaluate mean, variance and a so-

called signal-to-noise sensitivity (S/N) that are used to

obtain effect plots (Zang et al. 2005). The orthogonal

arrays are built considering so-called inner arrays for

control factors and outer arrays for noise factors, and

their form depend on the number of levels considered

for each factor. Manufacturing imperfections, envi-

ronmental changes or tolerances can be viewed as

noise factors (uncertain parameters). Due to the

difficulty of changing process tolerances, control

factors (design variables) are chosen appropriately to

modify the response and decrease the variance.

The signal-to-noise ratio S/N may be defined

differently depending on the design objective but,

usually, larger values of S/N mean an increase in

robustness. Table 2 presents the most common types

of problems considered in terms of range and ideal

value of the objective function y, namely: smaller-the-

better (SB), larger-the-better (LB), nominal-the-best

(NB), and signed-target (ST). The larger-the-better

and smaller-the-better relations are used to determine

proper control factors that, respectively, maximize and

minimize the cost function. When the target values are

known, the nominal-the-best and signed-target rela-

tions are appropriate, where the latter is considered for

null targets (Phadke 1995). For a specific experiment i,

the S/Ni ratio may be evaluated from the objective

function realizations yij, where j is the trial number for

the observations, their mean lYi or standard deviation

rYi. In Table 2, nt represents the number of trials for

each experiment.

For NB and ST problems, it is necessary to adjust or

scale the factors to find the target values. An alterna-

tive is to deterministically optimize the problem to

obtain a target value and, then, to apply the Taguchi

method (Park et al. 2006). The analysis is divided into

two steps: first, the S/N ratio is maximized to decrease

variance and, then, by finding a control factor that does

not influence much the S/N ratio, the mean is changed

to the target. In some cases, it is not easy to find this

control factor, also named adjustment or scale factor.

Thus, by first optimizing the problem deterministi-

cally, it is possible to choose control factors near the

optimum value (Lee and Park 2001).

For the energy harvesting problem studied here, the

objective function is defined as the harvested power

FRF (7) evaluated at a target excitation frequency xe,

such that g ¼ GPca0ðxeÞ. Two design variables (con-

trol factors) are considered, the length of the cantilever

beam lv and the circuit’s effective resistance Rc, and

are stored in a design vector xd ¼ ½lv;Rc�. The tip mass

height hb is internally optimized for a given solution xd
to ensure a precise tuning between excitation and

resonance frequencies. The distance from clamp and

tip mass of the piezoelectric patch is kept at

dp ¼ 1:1mm and, thus, the length of the piezoelectric

patch follows the length of the beam such that

lp ¼ lv � 2dp. All other geometrical and material

properties are kept constant using the values presented

in the previous section. Also, four parameters are

considered as uncertain (noise factors), the clamping

effective stiffnesses, kw and kh, the system effective

Table 2 Problem types of optimization using orthogonal arrays in terms of function responses yij and mean and variance of i-th

experiment for nt trials, lYi ¼ 1
nt

Pnt
j¼1 yij, r

2
Yi ¼ 1

nt�1

Pnt
j¼1ðyij � lYiÞ2 (adapted from (Phadke 1995))

Problem Range for yij Ideal value S/N definition

SB ½0;1Þ 0
S/Ni ¼ �10 log10

1

nt

Xnt

j¼1

y2ij

 !

LB ½0;1Þ 1
S/Ni ¼ �10 log10

1

nt

Xnt

j¼1

1

y2ij

 !

NB ½0;1Þ 6¼ 0
S/Ni ¼ 10 log10

l2Yi
r2Yi

� �

ST ð�1;1Þ Finite S/Ni ¼ �10 log10 r2Yi
� �
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damping factor n, and the circuit’s effective resistance
Rc. They are stored in a vector of uncertain parameters

xu ¼ ½kw; kh; n; Rc�.
Then, a deterministic optimization is performed to

obtain a number of optimal nominal design solutions

for reasonable ranges of beam length (or tip mass),

such that

find xd;

maximizing gðxdÞ;
subject to xd 2 Xd;

ð9Þ

where Xd is defined by the lower and upper bounds of

the design variables.

Further, the signed-target (ST) problem is used to

verify the sensitivity by considering the noise factors

xu while the function responses are evaluated from the

power output at target frequency, such that

yij ¼ gðxðiÞd ; x
ðjÞ
u Þ. The robustness analysis with the

S/N ratio aims to reduce the variability of the problem

and at the same time keep the mean power as close as

possible to the maximum power value found using (9).

In the Taguchi methodology, it is necessary to choose

inner and outer arrays for control and noise factors,

respectively, to calculate the S/N ratio. Some standard

orthogonal arrays with different levels and ways of

changing rows and columns can be found in (Phadke

1995). The number of levels corresponds to the

quantity of values that each control or noise factor

may assume. Because of the finite number of matrix

levels in this methodology, the number of devices that

can be considered is limited.

Here, it was chosen to first design five nominal

devices, represented by design variables lv and Rc,

using the deterministic optimization problem (9).

Then, alternative resistance values are considered for

each optimal design. For that, an auxiliary control

factor is defined as the circuit’s effective resistance

relative to the nominal optimum, �Rc ¼ Rc=Ropt. Here,

ten levels for the relative resistance �Rc are considered

so that values smaller or greater than the nominal

optimum can be tested. This leads to 50 potential

solutions (five nominal devices with ten resistance

variations for each). Following Taguchi’s methodol-

ogy, these solutions are represented in a so-called

inner array with all combinations (also called exper-

iments), as shown in the left part of Table 3. Next, to

account for the uncertain parameters or noise factors,

two levels are defined for each noise factor,

corresponding to their lower and upper bounds,

lX � rX . The noise factors levels are combined in a

so-called outer array. Here, for four noise factors, kw,

kh, n and �Rc, with two levels each, 8 combinations

(also called trials) are defined, as shown in the upper

part of Table 3.

With the inner and outer arrays defined, it is then

possible to evaluate the function responses yij for each

combination of i-th experiment (row in Table 3) and j-

th trials (column in Table 3). Using the present choice

of inner and outer arrays, with 50 experiments and 8

trials, this leads to 400 function evaluations. For each

one of the 50 experiments (i-th row in Table 3), the

function responses corresponding to its 8 trials

(columns) are used to evaluate the mean lYi, the

variance r2Yi and the signal-to-noise ratio S/Ni ¼
�10 log10 r2Yi

� �
(see Table 2). The methodology also

returns the effect of each control factor on the mean

and variance and, thus, indicates the more robust

solutions among those predefined. To evaluate the

effect of each control factor, the averages of the means

lYi and sensitivity ratios S/Ni from each row in

Table 3 corresponding to a given control factor level

are computed. For instance, the mean lY and S/N ratio

corresponding to level 1 of control factor lv are

obtained from the arithmetic mean of the values of lYi
and S/Ni computed for the experiments with lv in level

1 (i ¼ 1; 6; 11; . . .; 46). Then, the mean lY and sensi-

tivity ratio S/N can be plotted for each control factor

level. This allows an approximate analysis of the

overall effect of each control factor on mean, variance

and sensitivity of the response. This was done for the

cases studied in this work and will be presented in

Sect. 5.1

4.2 Optimization using compromise

programming

The second strategy for designing harvesting devices

with satisfactory mean performance and robustness

follows the CPmethodology (Chen et al. 1999; Marler

and Arora 2004). The general idea is to allow the

designer to predefine levels of priority between mean

performance and robustness and obtain the design

solutions that correspond to these criteria. For that, it is

necessary to estimate the mean and variance of the

objective function for any given potential solution and

for known statistical information regarding the
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uncertain parameters. Thus, this is potentially com-

putationally expensive since the mean and variance

estimation are internal to the bi-objective optimization

procedure. Here, it is proposed to use First-order

Taylor Approximations for this estimation aiming at

reducing the total optimization computational cost.

4.2.1 Mean and variance estimation using Taylor

series expansion

Uncertainties in device’s parameters induce or prop-

agate to uncertainties or variability in the device’s

performance. Based on available statistical informa-

tion on the parametric uncertainties, it is possible to

estimate the mean and standard deviation of the

performance output using a Taylor Series expansion

(Sudret et al. 2017; Beyer and Sendhoff 2007; Park

et al. 2006).

Considering a continuous random vector X ¼
fX1;X2; . . .Xng with n variables and joint distribution

fX, the mathematical expectation for a function Y ¼
gðX1;X2; . . .XnÞ can be obtained as follows

EðYÞ ¼ E½gðX1; . . .;XnÞ�

¼
Z 1

�1
. . .

Z 1

�1
gðx1; . . .; xnÞ fX1;...;Xn

dx1. . .dxn:

ð10Þ

The function Y ¼ gðX1; . . .;XnÞ is analyzed using the

Taylor-series expansion about the mean values

lX1
; . . .; lXn

such that

Y ¼ gðlX1
; . . .; lXn

Þ þ
Xn

i¼1

ðXi � lXi
Þ og
oXi

þ 1

2

Xn

i¼1

Xn

j¼1

ðXi � lXi
ÞðXj � lXj

Þ o2g

oXioXj
þ . . .;

ð11Þ

in which the derivatives are computed in relation to the

mean values. Truncation of this expansion using only

linear terms leads to

Y ’ gðlX1
; . . .; lXn

Þ þ
Xn

i¼1

ðXi � lXi
Þ og
oXi

: ð12Þ

The mean and variance of (12) can be represented by

(Ang and Tang 1975)

lY ¼ EðYÞ ’ gðlX1
;lX2

; . . .lXn
Þ; ð13Þ

r2Y ’
Xn

i¼1

r2Xi

og

oXi

� �2

þ
Xn

i¼1

Xn

j¼1;j 6¼i

qijrXi
rXj

og

oXi

og

oXj
;

ð14Þ

where qij is the correlation coefficient between

variables Xi and Xj whereas rXi
and rXj

are their

standard deviations. For independent or uncorrelated

variables, the variance (14) is approximated as

r2Y ’
Xn

i¼1

r2Xi

og

oXi

� �2

: ð15Þ

The approximations shown in (13) and (15) are

reasonable for functions with weak nonlinearity and

negligible correlation coefficients (Benjamin and

Cornell 2014). These equations are fundamental for

multi-objective and non-deterministic problems

allowing to include both the mean and standard

deviation in the design criteria.

Table 3 Definition of experiments (inner array) as i-th com-

binations of control factor levels, trials (outer array) as j-th
combinations of noise factor levels and corresponding ij-th
combinations of experiments (rows) and trials (columns) for the

evaluation of function responses yij
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Considering the harvested power FRF (7) at target

excitation frequency as objective function, as done

previously, such that g ¼ GPca0ðxeÞ and the set of

uncertain parameters xu ¼ ½kw; kh; n; Rc�, for which
the nominal values are used as mean values and the

standard variations are assumed to be known, the

Taylor approximations for mean and variance of the

objective function can be written as

lY ’ gð �kw; �kh; �n; �RcÞ; ð16Þ

r2Y ¼ og

okw

� �2
r2kw þ

og

okh

� �2
r2kh þ

og

on

� �2
r2n þ

og

oRc

� �2
r2Rc

;

ð17Þ

where the pairs ½ �kw; rkw �, ½ �kh; rkh �, ½�n; rn� and

½ �Rc; rRc
� are the predefined nominal values and standard

deviations of the uncertain parameters, clamping

transversal stiffness, clamping rotational stiffness, effec-

tive harvesting circuit’s resistance and effective damping

factor, respectively. The first derivative of the objective

function with respect to each uncertain parameter can be

evaluated using finite differences numerical approxima-

tion applied to finite element model.

4.2.2 Definition of the optimization problem

The Compromise Programming (CP) optimization

strategy is based on the concept that multiple objective

functions are to be extremized (minimized/maxi-

mized) at the same time and, since these may be

conflicting, an optimal design solution can only attain

a compromise between the extremization of the

objective functions (Chen et al. 1999). The compro-

mise solution may be found by defining an equivalent

global mono-objective function, in which it is required

that all individual objective functions giðxdÞ tend

towards their individual extremes, also called as utopia

values �gi. Hence, the multiobjective optimization

problem can be stated as

find xd

minimizing
Pm

i¼1 wi giðxdÞ � �gij jp
� �1=p

subject to xd 2 Xd;

ð18Þ

where wi are positive weighting factors that define the

priority of each individual objective function such that
Pm

i¼1 wi ¼ 1. The optimization problem, and thus its

solution, also depends on parameter p. The L1 or

Tchebycheff norm is obtained with p ¼ 1 and is

useful to optimize convex and non-convex problems

and provide Pareto fronts for compromise solutions

according to the chosen weighting factor (Moreira

2015; Lobato and Steffen 2017). The CP method is

also known as Weighted Tchebycheff method and

may be stated as a min-max problem in the form

min
xd2Xd

max
i

wi giðxpÞ � �gi
�
�

�
�

	 

: ð19Þ

Here, the latter problem was considered using the

mean and standard deviation of the harvested power

output as individual objective functions leading to a

bi-objective robust optimization problem posed as

min
xd2Xd

max w1

lY
lHY

� 1

�
�
�
�

�
�
�
�; ð1� w1Þ

rY
rHY

� 1

�
�
�
�

�
�
�
�

� �

; ð20Þ

where lHY is the utopia (maximum) value for the mean

harvested power and rHY is the utopia (minimum) for

its standard deviation. These are obtained by maxi-

mizing lY (16) and minimizing rY (17), one at a time,

respectively. The normalization of the individual

objective functions considerably simplifies the prob-

lem of finding weighting factors to obtain the Pareto-

front. It is necessary, though, to find the extremes of

the individual objective functions through prior opti-

mization. This was performed using genetic algorithm

optimization in which, for each candidate design

solution xd, a finite element model is built and used to

estimate the nominal (mean) harvested power (16), its

numerical derivatives with respect to the uncertain

parameters and, then, its standard deviation using the

Taylor series expansion (17).

For the implementation of the optimization prob-

lem represented by (20), genetic algorithm was used

for a set of predefined equally spaced weighting factor

w1 2 f0; . . .; 1g to provide a set of potentially inter-

esting design solutions that may plotted in a Pareto-

front. Additionally, a statistical analysis using a box

plot chart can be performed to compare the design

solutions in terms of confidence intervals.

5 Results for robust optimization

The two robust design methodologies presented in the

previous section are then considered to design energy

harvesters based on the one that was built for

experimental results and model verification. For that
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and according to Fig. 2, the base material and

geometrical parameters of the harvesting device are

those already presented. To search for and analyze

potential robust design solutions that are similar to the

tested harvester, the bounds for the two design

variables, namely the cantilever beam length lv and

the effective circuit’s resistance Rc, are set to

65 mm� lv � 85 mm and 20 kX�Rc � 200 kX.
Recall that the piezoelectric patch length lp internally

follows the beam length so that a distance of

dp ¼ 1:1mm from clamp and tip mass is always

maintained. Similarly, the tip mass height hb also

follows the beam length so that the fundamental

resonance frequency of the device is approximately

equal to the target excitation frequency of 40 Hz.

For the four parameters considered as uncertain,

namely the clamping effective transversal and rota-

tional stiffnesses, kw and kh, the system effective

damping factor n, and the circuit’s effective resistance
Rc, assumptions were made to predefine their nominal

(or mean) values and standard deviations. For the

effective damping factor, the value identified from

experimental measurements of 1.1% was assumed as

its nominal and mean value and a ±10% 6r-tolerance
was used based on additional sets of experiments

available. This leads to a relative dispersion (or

coefficient of variation) of 3.33%. Nevertheless, an

analysis is also performed latter on using a higher

relative dispersion of 10%. This is justified by the fact

that effective damping comes from several different

sources, may vary due to environmental conditions

and greatly affects the harvesting performance since it

reduces the vibration amplitude. Also, the damping

model is a simplification of reality and, thus, its

uncertainties also account in some sense for epistemic

uncertainties. In the case of the circuit’s resistance,

since it is also a design variable, it was considered that

its nominal value is the design variable and a relative

dispersion of 10% was assumed. A relatively large

dispersion for the resistance is justified by the fact that

it greatly affects the harvesting performance and also

since an effective resistance gives only an approxi-

mation of the dynamic behavior of a real harvesting

circuit.

For the clamping effective transversal and rota-

tional stiffnesses, since no information is yet available,

a parametric analysis was performed to identify

critical clamping stiffness values that minimally affect

the frequency response of the device. This was done

using the parameters presented in the experimental

validation and three resistance values (10, 100 and

1000 kX). The FRF for base acceleration input and tip

acceleration output, Gata0ðxÞ, evaluated at the target

excitation frequency (40 Hz) was numerically evalu-

ated by varying the clamping transversal and rota-

tional stiffnesses, one at a time, and are shown in

Figs. 7 and 8. As expected, the response tends to

saturate for high enough clamping stiffness and, thus,

it may be concluded that higher values of clamping

stiffness, representing less imperfect clamping condi-

tions, also lead to smaller dispersion. Then, in order to

account for imperfect clamping, it is necessary to

consider clamping stiffness values that are smaller

than those leading to a saturation in the response. For

that, in all cases, the stiffness values that induce a 5%

amplitude reduction, as compared to the convergence

values, that is for very stiff or perfect clamps, were

identified. Then, rounding the average between the

extreme critical values leads to kw ¼ 50 kN/m and

kh ¼ 0:3 kNm/rad. These are considered as the nom-

inal values and a ±50% 6r-tolerance, or 16.67%

relative dispersion, is assumed for both stiffnesses. A

relatively large dispersion for the clamping stiffnesses

is justified by the fact that these parameters are

certainly the most difficult to identify, since they

greatly depend on the type or construction of the

clamping device and its interaction with the clamped

portion of the beam.

5.1 Results for robust optimization using

orthogonal arrays

To apply Taguchi’s method to the robust design of

energy harvesters similar to the one experimentally

tested and considering the orthogonal arrays presented

in Table 3, first, five potentially optimal devices were

determined in five different ranges of beam length. For

that, a deterministic optimization was performed

considering the bounds presented in Table 4 aiming

at finding the devices that maximize the harvested

power output in each range. The optimization was

performed using a genetic algorithm implementation

with 50 individuals, 90% crossover, 30%mutation and

50 iterations. Notice that Taguchi’s method does not

allow a continuous design variable, as will be done

later on using CP method, since only a few solutions
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(sets of design variables) can be used and compared in

terms of mean performance and robustness.

As shown in Table 4, the optimal lengths all tend to

the minimum of each range. The optimal resistances

decrease for increasing beam length. Table 4 also

shows the resulting tip mass height and effective mass

which also decrease for increasing beam length to

assure a proper tuning between excitation and reso-

nance frequencies. The FRFs of voltage and power

outputs near the resonance frequency by considering

the base acceleration input for the five optimum

devices are shown in Figs. 9 and 10. These indicate

that, from the five devices considered, the nominal

harvested power output is larger for devices with

shorter cantilever beams and larger tip masses. This is

true for the whole frequency range considered, but

especially near the target (resonance or peak) fre-

quency. Previous analyses suggest that this conclusion

also applies to cantilever devices with different target

frequencies and geometries.

The interest in a robust analysis, optimization and

design would be to verify whether these conclusions

still hold when there are parametric uncertainties in

the devices. The Taguchi’s method is then applied

considering known uncertainties in the clamp stiff-

nesses, damping factor and circuit’s resistance. Thus,

kw, kh, n and Rc are considered as noise factors to build

the orthogonal (outer) array. The cantilever beam

length lv and circuit’s resistance relative to the

nominal optimum for each nominal device Rc=Ropt

are considered as design variables or control factors. In

practice, when a length lv is chosen, other parameters

are internally defined such as the tip mass height,

piezoelectric patch length, nominal optimal circuit’s

resistance. Thus, each value of lv actually represents a

specific device design, and there are five of them as

shown in Table 4. The relative circuit’s resistance

Rc=Ropt then allows to vary the resistance from the

corresponding nominal optimal value. Ten values

were considered for this control factor in the range

0:5�Rc=Ropt � 1:4 with a 0.1 step, so that it is

possible to verify the sensitivity and potential more

robust solutions around the nominal optimal resistance

Rc=Ropt ¼ 1.

As mentioned in Section 4.1, the overall effect of

each control factor on mean, variance and sensitivity

of the response is analyzed here. For each combination

of lv, which represents each device in Table 4, and

Rc=Ropt, the corresponding values of mean, variance

and S/N sensitivity are evaluated. First, the effects of

each control factor were estimated for a damping

factor with 10% of tolerance as displayed in Fig. 11.

The two charts in this figure present the effect of each

control factor in the mean harvested power and S/N

sensitivity. The effect of length lv on the mean power

confirms the results observed in Fig. 10, that is mean

power decreases with increasing length (decreasing tip

mass). The effect plot also shows, however, that this

decrease is accompanied with an increase in robust-

ness as measured by the S/N ratio. Thus, one may

conclude that devices with higher beam lengths

(smaller tip masses) are less well performing nomi-

nally but are also more robust. In terms of circuit’s

resistance, both nominal performance and robustness

Fig. 7 Peak tip acceleration output per unit base acceleration

input for varying clamping effective transversal stiffness and

different circuit’s resistances

Fig. 8 Peak tip acceleration output per unit base acceleration

input for varying clamping effective rotational stiffness and

different circuit’s resistances
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are maximized by the nominal optimal value

(Rc=Ropt ¼ 1), which corresponds the level 6 of

relative resistance. Additionally, the reduction in the

mean power and robustness is more pronounced for

lower relative resistance values.

A second analysis was performed considering a

higher tolerance of 30% for the damping factor. The

tolerance for the other noise factors was kept

unchanged. Figure 12 shows the effects of the control

factors on the mean power and robustness, in which it

is noticeable that the effect of beam length is very

similar to the previous case. Nevertheless, for the

present case, smaller relative resistance values lead to

more robust performances. This results suggests that

for larger damping, the choice of devices with

resistance smaller than the nominal optimal value

may be interesting since it may lead to improved

robustness with little decrease in mean performance.

This is certainly the case of resistance levels 5 (90% of

nominal optimal resistance) and 4 (80% of nominal

optimal resistance) for which the mean performance is

nearly unchanged while the robustness is improved, as

compared to level 6 (nominal optimal resistance).

5.2 Robust analysis using Taylor series

approximations

Robust analysis using orthogonal arrays is based on

the use of discrete controls and noise factors in

correlation with the limited numbers of levels in

arrays. This methodology is used to calculate the

mean, variance and the sensitivity factor correspond-

ing to each row of inner array and to evaluate the

effects of each control factor. Thus, this estimation

depends on a limited number of levels for each control

factor and arrays chosen.

An alternative solution is to use Taylor series

approximations as put forward in (16) and (17). This

was done here for the energy harvesting problem so

that the mean and variance of the peak power output

can be estimated for each nominal optimal beam

length, and corresponding harvesting device, for

various nominal values of circuit’s resistance. The

main aim would be to obtain a better assessment of the

effect of relative resistance on power output mean and
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Fig. 9 FRF of voltage output per unit base acceleration input

for the five optimal devices
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Fig. 10 FRF of power output per unit squared base acceleration

input for the five optimal devices

Table 4 Design variables

bounds for the search of

optimal devices in each

length range and optimal

parameters found

Bounds Optimal values

Device lv (mm) Rc (kX) lv (mm) Rc (kX) hb (mm) Mt (g)

#1 ½65; 70� ½20; 200� 65 76 18.6 13.2

#2 ½70; 75� ½20; 200� 70 71 15.2 10.9

#3 ½75; 80� ½20; 200� 75 66 12.5 9.0

#4 ½80; 85� ½20; 200� 80 62 10.2 7.4

#5 ½85; 90� ½20; 200� 85 58 8.4 6.2
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dispersion and also of the cross-effect between relative

resistance and damping factor.

For this analysis, various values were considered

for the circuit’s resistance, relative to the nominal

optimal, such that Rc=Ropt � 1:5. The effect analysis

was performed for two values of tolerance for the

damping factor, td ¼ 10% and td ¼ 30%. Nominal

values and tolerances for all other uncertain

parameters were kept unchanged from those discussed

in the preceding subsection. Figure 13 presents the

mean lY , standard deviation rY and coefficient of

variation (or relative dispersion) dY ¼ rY=lY for the

device with length of 75 mm, which is closer to the

experimentally tested device and for which the

properties were presented in Table 4.

The first row in Fig. 13 shows the mean power at

different ratios of electrical resistances up to 1.5. As

per the Taylor series approximation, the mean power

output is equal to the power output evaluated for the

mean values of the random variables. Notice, how-

ever, that all other parameters are kept unchanged with

variation of the resistance. Thus, this may also lead to

a mistuning between resonance and operation/target

frequency. That is why, the resistance value yielding

maximum mean power is slightly smaller than the

nominal optimal value, at Rc ¼ 0:96Ropt. Also, the

mean power decreases more rapidly when decreasing

than when increasing the resistance from the optimal

value. This result is independent of the dispersion of

the damping factor. On the other hand, the standard

deviation of power output behaves differently depend-

ing on the damping factor dispersion. For td ¼ 10%

and 0:5�Rc=Ropt � 1:5, the standard deviation is

minimal for resistance values slightly smaller than the

nominal optimal, at Rc ¼ 0:94Ropt. This resistance

value also provides minimum relative dispersion dY .
Contrarily, for higher damping dispersion with

td ¼ 30% and 0:5�Rc=Ropt � 1:5, the standard devi-

ation increases almost linearly with the resistance,

suggesting that indeed, as also indicated in the

Taguchi’s method results, resistance values somewhat

smaller than the nominal values may be more inter-

esting for a more robust design. In fact, in this case, the

relative dispersion is minimal for a resistance value

substantially smaller than the nominal optimal, at

Rc ¼ 0:77Ropt. This analysis then indicates that in the

presence of higher dispersion in the damping factor,

resistance values that are smaller than the nominal

optimal should be considered for a better balance

between mean performance and robustness.

5.3 Results for robust optimization using CP

method

The robust optimization using CP method seeks to

directly determine devices with satisfactory
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Fig. 11 Effect of control factors on the mean performance and

robustness for damping with tolerance of 10%
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compromise between mean performance and robust-

ness without the need to divide the procedure into

preliminary optimization to define a small number of

good nominal solutions and then to evaluate their

robustness as in Taguchi’s method. The CP method

also allows the designer to define from the start the

relative priority between mean performance and

robustness.

Since the objective here is also to obtain a Pareto-

front, a number of weighting factors were considered

to obtain solutions that are intermediate from the

solutions with best nominal performance to the one

with best robustness. The CP design solutions are

constrained by the bounds for the two design variables

previously defined and recalled here,

65 mm� lv � 85 mm and 20 kX�Rc � 200 kX.
The first step is to determine the utopia values,

namely the maximum mean power lHY and minimum

standard deviation rHY . For each candidate solution,

the mean and standard deviation are estimated using

Taylor series approximations (16) and (17). The

relative dispersions considered for the uncertain

parameters are: 16.67% for the clamping stiffnesses,

10% for the circuit’s resistance and 3.33% for the

damping factor.

The device leading to the maximum mean power

output was found with lv ¼ 65 mm, hb ¼ 18:58 mm

and Rc ¼ 71 kX such that lHY ¼ 60:84 mWg�2. For

minimum variance, another device was obtained with

lv ¼ 85 mm, hb ¼ 8:26 mm and Rc ¼ 36:4 kX lead-

ing to rHY ¼ 1:20 mWg�2. These solutions were

obtained using a genetic algorithm optimization

implementation with parameters tuned for satisfactory

convergence: 90% crossover, 30% mutation, 30

individuals and 150 iterations.

Then, other compromise solutions were designed in

accordance with (20) and using the utopia values lHY
and rHY . For that, 11 weighting factors between w1 ¼ 0

and w1 ¼ 1 with uniform steps of 0.1 were considered.

Table 5 presents the optimal values of design vari-

ables, lv and Rc, resulting tip mass height hb, and mean

and standard deviation, relative to the utopia values,

lY=l
H

Y and rY=rHY , for the 11 weighting factors. The

first and last solutions, corresponding to the maximum

mean and minimum standard deviation, respectively,

are repeated in Table 5, but were already determined

in the search for the utopia values.

It is clear from Table 5 that mean performance and

robustness are competing targets, that is, an increase in

robustness can only be obtained by reducing the mean

performance. Therefore, the compromise solutions

presented in Table 5 may also be used to obtain a

discrete Pareto-front, as shown in Fig. 14, which

indicates the amount of the minimum of standard

deviation that unavoidably accompanies a given

desired mean performance. An increase in the weight-

ing factor w1 implies devices with shorter beams and

heavier tip masses that lead to higher mean power

output, but this comes with a larger output variance.

The device, through the weighting factor, must be

chosen according to the decision-maker’s preferences.

It is also worthwhile to analyze the power output

FRF near the resonance for these selected devices,

shown in Fig. 15, in which one can observe that all

devices are equally well tuned to the target frequency

and, although the peak amplitude reduces for increas-

ing length (increasing device number) the differences

Fig. 13 Mean, standard deviation and coefficient of variation of

power output of the device with 75 mm length for various

relative circuit’s resistance and two damping factor tolerances
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in amplitude are reduced for frequencies farther from

the resonance or target one.

Using the mean and standard deviation estimations

shown in Table 5, it is also possible to extrapolate a

statistical analysis for these devices, presented in the

form of error bars plot in Fig. 16 considering a �3r
confidence interval. This allows to compare the

harvestable power output of a particular device with

the other design choices in terms of probability of

being higher or lower. For instance, in nominal (or

mean) terms, device 1 performs better than device 2, as

already noted in Table 5 and noticeable by comparing

the red squares in Fig. 16. Nevertheless, one may also

affirm that, given the uncertainties considered, there is

a good chance that device 2 performs better than

device 1. This is also due to the fact that device 2 is

more robust than device 1. While the mean perfor-

mance is reduced by 4% from device 1 to device 2, the

corresponding standard deviation is reduced by 7%.

On the other hand, it is sure enough to state that the

device 1 is always better than devices 5 to 11, although

its variability is higher, since even the worst-case

performance of device 1 is higher than the best-case

performance of devices 5 to 11.

6 Conclusions

This work presented recent results for the robust

design of energy harvesting resonant devices using

two different techniques considering uncertainties in

effective clamping stiffness, damping factor and

circuit’s resistance. For that, a finite element model

was used to evaluate the frequency response function

for power output. The numerical model was verified

by comparison with experimental results. The first

technique based on Taguchi’s method allowed to

compared nominally optimal devices in terms of

robustness. This technique was shown to be quite

effective in the sense that important global design

information and conclusions can be drawn with a

small computational cost. Nevertheless, the number of

devices that can be analyzed and compared is quite

limited. The second technique based on Compromise

Programming method and combined to Taylor series

approximations to estimate mean and variance of the

power output, on the other hand, allows to obtain any

number of compromise solutions for a given set of

weighting factors for mean and variance. However,

the number of required function evaluations, and

consequently the computational cost, increase

 [mW/g2]
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 [m
W

/g
2 ]
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Fig. 14 Pareto-front considering power output mean and

standard deviation for selected energy harvesting devices

Table 5 Design variables

and power output mean and

standard deviation for

different values of w1

Device w1 lv (mm) Rc (kX) hb (mm) Mt (g) lY
lHY

rY
rHY

1 1.0 65.0 71.0 18.58 13.1 1.00 1.78

2 0.9 66.7 50.4 17.51 12.2 0.96 1.65

3 0.8 69.2 48.3 15.86 11.1 0.89 1.55

4 0.7 71.5 46.6 14.46 10.2 0.84 1.45

5 0.6 73.6 44.9 13.25 9.4 0.78 1.36

6 0.5 75.6 43.9 12.17 8.7 0.74 1.28

7 0.4 77.6 43.0 11.22 8.1 0.70 1.22

8 0.3 79.5 41.5 10.37 7.5 0.67 1.16

9 0.2 81.3 40.9 9.59 7.0 0.63 1.10

10 0.1 83.2 39.7 8.88 6.5 0.60 1.05

11 0.0 85.0 36.4 8.26 6.1 0.58 1.00
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substantially. Similar conclusions can be drawn from

the analyses with both techniques. In particular, that

devices with shorter cantilever beams, and thus larger

tip masses, lead to better mean performance but also to

higher standard deviation. Results also suggest that the

use of circuit’s resistance values a little smaller than

the nominal optimal may improve robustness without

much decrease in nominal or mean performance.
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