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Abstract We consider a simple frictionally con-

strained lap joint. Two identical beams were joined by

a constant normal load. A periodic bending moment

was applied on each beam to investigate the contact

tractions at the joint interface. Predicting the dynamic

behaviors of a frictionally constrained lap joint under

periodic loading is challenging owing to the inherent

nonlinearity of the behaviors. A dynamic response

analysis of nonlinear systems is generally conducted

via numerical integration in the time domain. How-

ever, owing to the nonlinear nature, time-domain

analyses are computationally expensive. To address

this issue, efficient reduced-order modeling (ROMs)

was proposed in this paper. The proposed technique is

based on the interpretation of the nonlinear character-

istics of the friction force as relevant damping and

stiffness terms. To increase the computation speed, the

proposed method allows for the precalculation of the

equivalent terms and employs response-dependent

equivalent parameters in iterative solution methods.

For validation, steady-state responses due to periodic

bending were examined. The results obtained from the

ROMs agree well with those of the time-domain

analysis conducted using the full finite-element model.

This study demonstrates that the equivalent expression

of the nonlinear friction force can be defined by

equating the energy loss or store per cycle in a

hysteretic system to the energy loss or store per cycle

in the corresponding amplitude. The proposed tech-

nique permits accurate predictions of the steady-state

response of resonant vibrations in a primarily nonlin-

ear hysteretic system.

Keywords Friction damping � Reduced order

modeling � Structural vibration

1 Introduction

In several engineering applications, the dynamic

behavior of assembled structures is influenced by the

flexibility of joints. Microslips, which result in fric-

tional energy dissipation, are observed in frictionally

constrained joints subjected to dynamic loading. In

general, damping resulting from the internal hysteresis

of a material is low, and 90% of the damping in most

structures occurs in structural joints (Beards 1983).

Thus, the identification of damping associated with

mechanical joints is crucial. The damping associated

with mechanical joints is more dominant than that

associated with other damping sources, such as

material damping (Gaul and Nitsche 2001). This is

particularly true for lightly damped flexible structures.

Thus, the relevant physics of the joint should be
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investigated for validating the dynamic response of the

structure.

The dynamic behavior of structures is affected by

external forces and friction at the interfaces of bolted,

riveted, and compression joints. To increase and

utilize inherent structural damping, the frictional

damping between the structural joints should be

well-understood and controlled. The mechanism of

the friction arising from the mechanical joint interface

is complicated because it is considerably influenced by

the relative motion and interface load. For joints with a

high normal interface pressure, mutual embedding of

the surface may occur. In contrast, slip mechanisms

tend to emerge with a low normal interface pressure.

Thus, in all cases, the force and moment transfer

mechanisms of the joints must be understood to design

an efficient structure.

Empirical parametric studies on the design factors

that influence the stiffness of mechanically fastened

joints are expensive and time-consuming. Hence, a

numerical study, which is economical, is preferred.

Thus far, numerous studies have been conducted on

frictionally constrained clamped joints. Den Hartog

proposed an analytical approach for a dry friction

damper system using a single-degree-of-freedom

(SDOF) model (Den Hartog 1930). To access the

exact solutions of the responses at the steady state, he

used the piecewise linear characteristic of the

Coulomb friction law. Similarly, multiple-DOF sys-

tems for clamped joints that exhibit local hysteretic

behavior have been considered (Lotstedt 1982; Miller

1977; Pfeiffer 1991, 1992). Gaul and Nitsche (2001)

examined various joint models, including their corre-

lations to material plasticity. In addition, they pre-

sented a semi-active damping joint for vibration

control applications. Mead and Eaton (1960) and

Eaton and Mead (1963) theoretically and experimen-

tally investigated the energy dissipation of a vis-

coelastic interfacial-layered lap joint. Earles (1966)

proposed a theoretical method for estimating the

energy dissipation by the friction force in a simple lap

joint. A survey and research on dry friction were

presented by Ferri (1995) and Beards (1983).

Recently, Anothai Thaitirarot (2013) investigated the

contact mechanisms of a frictional lap joint, focusing

on the detailed nature of the contact traction between

the laps of the joints. Kim and Jang (2014, 2017)

numerically investigated frictional contact problems

by subjecting two asymmetric objects to cyclic

loading. The transitions of the contact status during

the transient and steady states under cyclic loading

were precisely studied. Similarly, Sabelkin and Mall

(2006) investigated the interactions between deform-

able segments subjected to periodic loading and

unloading. Several studies have employed the har-

monic balance method (HBM) or similar methods to

predict the response of frictionally constrained joints

(Ren et al. 2008; Ahmadian and Jalali 2007; Lacayo

and Pesaresi 2019). The analysis time of frequency-

domain techniques using the HBM is considerably

lower than that of the time-domain analysis tech-

niques. However, the computational cost is propor-

tional to the number of governing equations involved

in nonlinearity. Therefore, model reduction methods

have been proposed to reduce the computational costs

of structural problems (Nickell 1976; Noor 1981;

Bathe and Gracewski 1981). Slaats et al. (1995)

developed optimal reduction techniques using a set of

basis vectors. They selected vectors at a specific time

instant to construct the basis vectors. Wu and Tiso

(2016) proposed an efficient ROMmethod that refines

the classical linear reduction based on modal deriva-

tives. Witteveen and Fischer (2014) and Pischler et al.

(2017, 2017) presented effective and advanced model

reduction methods. The flexibility within the joint area

was captured by extending the reduction base, which

consisted of special joint trial vectors. Their

approaches allowed for the investigation of nonlinear

contact and friction forces at joint interfaces. They

exhibited outstanding performance for estimating the

responses of joint systems in the time domain,

providing accurate investigations of the nonlinearities

in the joint in terms of contact and friction forces.

Recently, Areias et al. (2020) proposed an efficient

two-stage contact algorithm by introducing three

additional DOFs corresponding to the contact forces.

This technique was proven to be effective for predict-

ing stick-slip behavior. However, this approach is

applicable solely for quasi-static cases.

Determining the influence of force and excitation

frequency on the motion of a system is crucial for

engineering applications. Moreover, the variations in

material properties that induce the nonlinear behavior

of systems are crucial from the perspective of struc-

tural design. The analysis of the dynamic response of

nonlinear structures in the relevant frequency range is

often time-consuming, particularly for obtaining the

responses at the steady state. To address this problem,
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ROM was proposed in this paper. An efficient

technique for predicting the steady-state response of

a simple lap joint subjected to a nonlinear force was

presented. The ROM technique is constructed accord-

ing to a transformation matrix, which comprises

normal modes from two different contact interface

conditions to describe the relative displacement of

contact pairs. The underlying idea of this reduction

method is to express the nonlinear friction forces at the

contact interface as piecewise linear response-depen-

dent functions. The contact friction force was precal-

culated quasi-statically using finite element modeling

(FEM). The resulting energy dissipation is replaced by

the expressions for the equivalent damping and

stiffness. Then, the governing equation, which forms

a set of algebraic equations, is solved using an iterative

method. The ROM technique is not time-consuming;

that is, the technique considerably reduces the com-

putational time required. The proposed ROM tech-

nique was validated by comparing its predictions of

forced responses with those obtained via the time-

domain analysis (TDA) conducted using a full FE

model.

2 Methodology

In this section, a simple lap-joint FE model and the

boundary conditions are discussed. We considered a

simple two-dimensional (2D) frictional lap joint, in

which two overlapping flat plates were constrained by

frictional contact, and the boundary of each plate was

subjected to a bending moment. Appropriate boundary

conditions with spring elements allow for the model-

ing of the contact surface with an arbitrary load

transfer. The overall contact interface was assumed to

obey the Coulomb friction, and the commercial FE

package ANSYS was employed for the FE modeling

and for obtaining the numerical solution.

2.1 Lap joint modeling

The single-lap joint modelled in this study is shown in

Fig. 1. The joint comprises two identical beams of

length L, which overlap by a distance of 2Lo and are

bound together by a normal load P distributed over the

range of 2Lp. In this lap-joint model, the following

conditions were considered.

• The geometry is strictly 2D; thus, the longitudinal

cross section of the beam cutting across the center

of the width is considered.

• The effect of bolting is accounted for by the

constant clamping force P uniformly distributed

over LP.

• The time-varying bending moment M(t) is intro-

duced at the joint ends.

• The bending moment that bends the beam concave

upward is considered to be positive.

• Only the vertical transverse displacement at the

two unjointed ends is constrained to be zero.

• Both of the joints have symmetry conditions along

the joint edges.

Numerous engineering joint applications were sub-

jected to periodic or repetitive loading, resulting in

energy dissipation at the contact interfaces, which

added damping to the system. This study primarily

explored the effect of dry friction damping when a

joint undergoes periodic loading. The load transfer in

the joint was characterized by the normal load P and

the bending moment M(t). The time-varying bending

moment is described as follows:

MðtÞ ¼ MosinðxtÞ ð1Þ

where Mo is the magnitude of the bending moment; x
is the excitation frequency; and t is the time.

An FE model was obtained using the commercial

FE analysis program, ANSYS. PLNAE182 was used

to construct a beam element. This element exhibits the

potential for modeling 2D solid structures with two

DOFs, x� y directions, at each node; further, this

element exhibits plasticity and stress stiffening as well

as geometric nonlinearity, including large deflection

and strain. For the contact interface, the surface-to-

surface elements CONTA172 and TARGE169 were

selected. These elements are applicable to 2D struc-

tures and allow for a deformable surface at the contact

interfaces. Contact was detected when one surface

penetrates the other surface. In addition, the element

PLNAE182 allows for separation, bonding, and inter-

face delamination.

The FE mesh modeling is shown in Fig. 2. To

improve the computational efficiency, the mesh sizes

were controlled for three different regions: contact

interfaces, overlapping portions, and the rest of the

elements. To achieve an accurate numerical analysis, a

high density mesh was employed at the contact
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interface. The size of the mesh n was controlled by

varying the number of contact pairs J distributed over

the length of the contact interface Lo.

In Fig. 3, the convergence of energy dissipation

with respect to the mesh size is shown. The material

density was 2g=cm3, and the Young’s modulus was 70

GPa. To make the damping effect from the friction

force dominant, a low material damping was adopted.

Damping was controlled by applying Rayleigh damp-

ing. a and b were the constants of the proportionality

of Rayleigh damping, and the values were selected as

a ¼ 0 and b ¼ 7:3� 10�7, which correspond to a

damping ratio f ¼ 3:9� 10�4 at xn ¼ 170Hz. The

friction coefficient was set to l ¼ 0:25, which resulted

in a maximum friction force of 0.25 when it was

normalized by the pressure P. The friction force

calculated from the finite element model may vary

depending on the normal load and relative motion

between the contact interfaces. The relative motions

were significantly affected by the mesh size owing to

geometric nonlinearity and element penetration. At

the given geometry, boundary conditions, and model

parameters, a proper mesh size control can guarantee

the convergence of the resulting relative motion at the

joints. In this study, the geometry, boundary condi-

tions, and model parameters were fixed to ensure a

consistent model accuracy. Solely the external exci-

tation frequency and friction coefficients are the

parameters of engineering design. The dissipated

energy DEact per cycle by the friction force Ff was

computed in the steady state as

DEact ¼
PJ

j¼1

R
D Ff ;jdxj, where j is the index of the

Fig. 1 Schematic of the lap-

joint model

Fig. 2 Lap-joint FE model

Fig. 3 Energy dissipations

for different mesh sizes at

Mo=L ¼ 0:0167,
x ¼ 170Hz
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contact pair. The dissipated energy at the steady state

decreased sharply until n ¼ 80 and started to converge

at n ¼ 150 with a relative error of less than 1%. The

relative error between n ¼ 150 and n ¼ 200 was

approximately 0.106%. In this study, the mesh size

was selected as n ¼ 200.

2.2 Contact modeling

The FE model is flexible, and the contact interface

comprises a discrete contact point. According to the

penalty-based method and the tangential Coulomb

friction force, the contact element can provide com-

pression in the direction normal to the contact

surfaces. Contact kinematics are crucial for evaluating

the effective damping and stiffness of the friction

interface because the contact behavior induced by the

friction force is exclusively identified by the relative

motions of the contact interface. The two components

comprising the contact kinematics are illustrated in

Fig. 4). The tangential component kt helped determine

the stick/slip of the contact, and the normal component

kn caused normal load variations.

According to the contact normal force p and shear

force f at a contact node pair, the contact is classified

into one of the following four states:

Stick p� 0; jf j � lp; _x ¼ 0

Forward slip p� 0; f ¼ �lp; _x[ 0

Backward slip p� 0; f ¼ lp; _x\0

Separation p ¼ 0; y[ 0

2.3 Definition of equivalent damping and stiffness

Consider the EOMs for a lap joint system comprising r

DOFs, including nonlinear friction interfaces:

M€xðtÞ þ bK _xðtÞ þKxðtÞ þ Ff ðxðtÞ; _xðtÞÞ ¼ FðtÞ;
ð2Þ

where the ðr � 1Þ vector xðtÞ contains the DOF of the

system. The (r � r) matrices M and K represent the

mass and stiffness. TheKmatrix is the stiffness matrix

defined by the sliding state, in which all the tangential

constraints in the interfaces are removed. F is the ðr �
1Þ vector of external harmonic force with an excitation

frequency of x, and Ff is the ðr � 1Þ vector of the

contact friction forces. The Rayleigh damping ratio

was set to a ¼ 0 and b ¼ 4:44� 10�6 s.

Local relative motions between the contact inter-

faces were allowed because FE modeling is flexible.

Therefore, the relative displacements at the friction

contact were inevitably nonconstant. Interaction

forces as well as stiffness properties due to abrupt

changes in the contact condition also developed

discontinuously. However, for a system exposed to

harmonic excitations, the contact friction may reach a

characteristic cycle at a steady state. The principal

assumption of a steady-state analysis was that the

motion of the system is symmetrical for each half-

cycle. This assumption allows for the consideration of

the displacement from the positive maximum to the

negative maximum only (Beucke and Kelly 1985).

Based on the assumption that the response of the

structure is harmonic, the steady-state response of the

system can be described as follows:

xðtÞ � XsinðxtÞ ð3Þ

where X is the ðr � 1Þ vector of the amplitude of the

motion in the steady state. Moreover, in several cases,

the steady-state amplitude of harmonic motion is

expressed by employing only the principal harmonic

(Allara 2009; Baek and Epureanu 2017).

X ¼ Uq ¼ Usl Ust½ �q ð4Þ

where the ðr � 1Þ vectorUsl is the normal mode shape

of the lap joint under the full sliding condition at the

contact interface, ðr � 1Þ vector Ust is the normal

mode shape where the relative motion is limited to the

contact pairs, and q is the modal amplitude.

The underlying principle of the proposed method

was to postulate the equality of the friction force by the

equivalent damping force and elastic force during the

excitation cycle. If the exact friction force can be

obtained, no additional assumption is required toFig. 4 Contact modeling, where kt;r and kn;r represent stiffness
in the tangential and normal direction, respectively
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calculate the dissipated energy per cycle. Therefore, a

quasi-static analysis was conducted to compute the

friction force at the contact surface. The resulting

friction force Ff can be obtained by introducing the

motion given in Eq. (3) . Thus, the total amount of

energy dissipation can be computed as follows:

DEact ¼
Z

D

Ff dx

¼
Z

T

_xTFf dt

¼
Z

T

xqUTFf cosðxtÞdt

¼ q

Z 2p

0

UTFf coshdh

¼ qWc:

ð5Þ

Equivalently, the energy dissipation per cycle at a

steady state was computed by assuming harmonic

motion. Without calculations of the exact solution, the

motion was assumed to be harmonic at the steady state

to compute the energy loss per cycle.

DEeq ¼ pceqX
TKX

¼ pceqqU
TKUq

¼ pceqxnq
2:

ð6Þ

where ceq is the equivalent structural damping factor.

The energy dissipation derived from Eq. (5) and the

relevant expression given in Eq. (6) are equivalent.

Hence, the equivalent damping can be obtained as

ceq ¼
Wc

pxnq
: ð7Þ

When the shear force was small, the induced friction

forces did not exceed the slip load; thus, the contact

surface was fully stuck. During this stick state, the

tangential friction force was induced by elastic

asperity deformation (Petrov and Ewins 2003). The

variation in the elasticity at the contact surfaces (kt)

added more strain energy to the system. Therefore, the

friction force, which was in phase with the displace-

ment, affected the resonance of the lap joint system.

The average elastic energy due to the friction force Ff

during a cycle can be computed as

D �Eact ¼
1

T

Z

T

xTðtÞFf dt

¼ x
2p

Z

T

qUTFf sinðxtÞdt

¼ 1

2p
q

Z 2p

0

UTFf sinhdh

¼ 1

2p
qWs:

ð8Þ

Similarly, the average stored energy associated with

the tangential friction stiffness at the frictional contact

during the excitation period can be obtained as

D �Eeq ¼
1

T

Z

T

KexðtÞð ÞTxðtÞdt

¼ 1

T

Z

T

qUTKeUqsin2ðxtÞdt

¼ x
2p

Z 2p

0

q2kesin
2h

dh
x

¼ 1

2p
keq

2:

ð9Þ

where Ke is the ðr � rÞ effective stiffness matrix

associated with the tangential friction stiffness. The

average elastic energies defined in Eq. (8), and the

stored energy on average, as described in Eq. (9) are

equal. Thus, the equivalent stiffness can be expressed

as

keq ¼
Ws

q
: ð10Þ

The friction forces considered for energy dissipation

were investigated only in the steady state. Thus, the

equivalent damping and stiffness defined in Eqs. 7 and

10, respectively, were constant for a given force

condition. Based on this idea, the friction force was

linearized by the equivalent stiffness and damping in

the reduced-order space.

2.4 Reduced order modeling

In general, by solving the governing equation in

Eq. (2) with full-order models is challenging owing to

the size of the models and the nature of the nonlinear

force. Hence, effective model reduction is required to

abate the computational efforts to study the dynamic

characteristics of the lap joint. The key idea of the

reduction is to predict the resulting friction force by
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capturing the relative motion. The nonlinear friction

force is localized at the contact DOFs, and these

contact DOFs are a considerably smaller in number

than the rest of the lap-joint DOFs. A recent study by

Dossogne et al. (2017) demonstrated that most of the

energy dissipation occurs when the pressure is low,

which is a regime that is away from the bolted joints.

This indicates that the response data within the

prestressed region or in the vicinity of the prestressed

region should include relative motions.

To capture the relative motions, two linear systems

can be considered by manipulating the constraints in

the contact interfaces: full sliding and sticking. If all

constraints in the tangential motion of the contact

interface are removed, the joint can slide freely

without any energy loss. This full sliding system

motion can be captured by its normal mode, Usl. By

bonding the contact pairs within the prestressed region

of the full sliding system, the relative motions within

and in the vicinity of the prestressed region are

restricted. Such a linear system can also be represented

by the normal mode Ust. The forced response asso-

ciated with friction and its contact status can retain the

intermediate state between the full sticking and limited

sliding. The resulting contact interface motions are

well-captured by the combination of Usl and Ust. A

similar idea was applied by Chen and Menq (1998). In

his paper, the concept of hybrid modes was proposed

to investigate the frictionally constrained system. The

hybrid modes comprise two different modes: free and

constrained modes. The free mode is the normal mode

free from the frictional constraint, and the constrained

mode is obtained by restricting the contact DOFs.

Tang and Epureanu (2019) and Tang et al. (2017) also

adopted a relevant idea to estimate the dynamic

response of frictionally constrained blisks. He pre-

sented a set of mode bases to predict the forced

responses of frictional contact, introducing a normal

mode with gross slip at the contact DOFs and the other

normal mode by constraining the relative motions at

the contact interfaces.

Considering the assumption discussed above, the

motion of a lap joint X is projected onto a modal basis

using the following transformation:

X ¼ Usl Ust½ �
qsl

qst

" #

¼ Tq; ð11Þ

where T is the ðr � 2Þ transformation matrix, and q is

the ð2� 1Þ modal amplitude vector, which comprises

the modal amplitude qsl and qst, corresponding to Usl

and Ust, respectively.

By introducing the transformation matrix T into

Eq. (2), the governing equation can be written as

follows:

�x2mþ ixb þ 1ð Þk
� �

qþ f f ¼ f; ð12Þ

where

m ¼ TTMT ¼ 1 UT
slMUst

UT
stMUsl 1

" #

; ð13Þ

and

k ¼ TTKT ¼ x2
n UT

slKUst

UT
stKUsl UT

stKUst

" #

: ð14Þ

Note that xn is the natural frequency of the lap joint

without a friction force at the contact interfaces. As

addressed in the previous section, the nonlinear

friction force was replaced by the linearized term of

damping and stiffness, which functions as the modal

amplitude ql. The friction force projected onto the

modal basis is expressed as follows:

f f ¼ iceqðqslÞ þ keqðqslÞ
� �

Iq: ð15Þ

Substituting Eq. (15) into Eq. (14), the reduced model

EOMs for the lap joint are as follows:

�x2mþ ixb þ1ð ÞkþðiceqðqslÞþ keqðqslÞÞI
� �

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
H�1

q¼ f:

ð16Þ

Although the receptance matrix H carries response-

dependent components ceqðqslÞ and keqðqÞ, they are

precalculated prior to the ROM processes, providing

rapid assessments. At a particular excitation frequency

x, the following iterative algorithm can be used:

qiþ1 ¼ Hif ð17Þ

where qiþ1 denotes the solution vector at the ðiþ 1Þth
iteration step, and Hi is the receptance matrix at the

iteration step i. The iterations continue until the

relative error of the solution between the current and

the previous step e ¼ jjqiþ1 � qijj=jjqijj converges

below e.
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3 Results

In this section, the idealized lap-joint model is

analyzed to investigate the force transfer, contact

behavior, and energy dissipation at the contact surface.

A bending moment was introduced at the end of the

laps in the form of cyclic loading, as described in

Eq. (1) and was repeatedly applied until a steady state

was attained. The assessment of the interfacial char-

acteristics of the contact behavior was conducted for

both quasi-static and dynamic analyses.

First, nonlinearity of the contact motions induced

by bending moments was quasi-statically explored.

Static analysis was performed as follows: Initially,

normal pressure P was applied to the clamping area,

and system equilibrium was obtained. In this step, the

contact interfaces were assumed to be frictionless so

that the memory effect of the friction force is removed.

Next, a periodic moment MðhÞ ¼ MosinðhÞ was

applied at the end of the joints, and the contact forces

were computed quasi-statically by incrementing h. To
attain a reliable numerical resolution, 150 step sizes

per loading period were adopted. When the loading

cycle was completed, the same procedure was

repeated, and the magnitude of Mo was updated from

the initialized equilibrium. The transition of the

contact states, normalized contact pressure lpðxÞ=P,
and normalized tangential traction f(x)/P distributions

are depicted in Fig. 5. The contact states for the stick,

forward slip, backward slip, and separation are

indicated as 1, 2, 3, and 4, respectively. When

prestress was applied under normal pressure, the

contact ranged in length of 	1:18LP. Under prestress,

all the contacts belong to the stick region. As bending

was applied in the positive direction, where the joint

bends concave up, contact develops unsymmetrically.

At the maximum positive bending moment, the left-

hand side contact contracts to �1:12LP whereas the

right-hand side contact expands to 1:29LP. The contact

pressure and tangential traction distribution atMðhÞ ¼
Mo are shown in Fig. 5b). The transitions between the

forward and backward slips occur at the maximum

magnitude of the moment. As the moment decreased

further and reached 0, the contact distribution recov-

ered its initial region. Additionally, the contact

pressure decreased to its initial distribution. The shear

traction remained a locked-in distribution at the outer

contact edges. (MðhÞ ¼ 0 in Fig 5b). AtMðhÞ ¼ �Mo,

the contact increased to �1:29LP and 1:12LP. The

contact traction distributions at MðhÞ ¼ �Mo are

demonstrated in Fig. 5b). The nonlinear interaction

of the contact surface enters the steady-state solution

during the second loading cycle. Upon reapplication of

the bending moment, the forward slip region shrinks,

but the backward slip region remains the same or

widens. The detailed normal pressure distributions and

tangential contact traction are shown in Fig. 5c. When

the bending moment amplitude is increased, the slip

regions increase, and this determines the relative

motion modal amplitude q.

Next, the contact pressure and shear traction at the

contact interfaces for each loading cycle were inves-

tigated in the time domain. For time-domain analysis,

the time step size Dt is defined by Dt ¼ 1=ðNsfexÞ,
where fex is the excitation frequency and Ns is the

number of time steps. In Fig. 6, the system responses

in the time domain obtained from different sizes of Ns

are shown. As observed, the analysis results start to

converge when Ns is greater than 120. In this study,

each loading cycle was solved in 150 increments to

accurately capture the evolution of the contact region

with stick/slip transitions. The steady state was

determined by computing the energy-dissipation con-

vergence. After 180 cycles, the relative error of the

dissipated energy between consecutive cycles con-

verged to 1 The relevant quasi-static analysis was

generated by applying a proper magnitude of the

bending moment to induce the same level of slip

(q ¼ 0:12). In Fig. 7a, the evolution cycles of the

contact states in the steady state are illustrated for both

dynamic and static analyses. Here, we observe close

alignments of the contact boundaries and the evolution

of stick-slip regions between the analyses for the two

different domains. However, they may contain differ-

ent distributions of contact traction. For instance,

shear traction f in Fig. 7c shows a sudden decrease and

recovery near the boundary of the forward slip

(lp ¼ f ) and stick (lp[ f ) whereas the results

obtained from the quasi-static analysis (Fig. 7b)

indicate the smooth transitions in the same region.

The pressure smoothly disappears at the boundary

of the contact, and the slip velocity decreases to 0 at

the edge of the stick; hence, the maximum slip can be

found at an intermediate point within the slip area.

However, the global distributions of frictional slip

within the slip region may differ between the two

analyses, and this contributes to the generation of

dissimilar energy dissipation in the slip region. For the
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problem considered, the energy dissipation over the

steady state period is illustrated in Fig. 8a. The energy

dissipation is localized and has a peak value in an

intermediate slip region; however, the location and

magnitude of the peak value as well as the overall

profiles for each analysis differ. Although there are

pointwise distinctions between the two results, the

assessment of the contribution of the frictional contact

to the system must be quantified at the system level.

The integrated energy dissipation, which is the area in

the hysteresis loop in Fig. 8b, is extremely close for

both analyses (� 0:18� 10�3). The overall influence

of the friction contact, characterized by the energy

dissipation DEact and the average stored energy D �Eact,

is described in the next section.

3.1 Equivalent damping and stiffness

As explored in the previous section, the characteristics

of the contact behavior are quantified as the dissipated

energy and average stored energy, and are indicated by

Eqs. (5) and (9), respectively. The values obtained

from the quasi-static and dynamic analyses are shown

in Fig. 9. For efficiently generating the data point of

Fig. 5 Interfacial tractions from quasi-static analysis. a Evolution of four contact states. b Distributions of lp=P and f/P during the

initial loading cycle. c Distributions of lp=P and f/P in the steady-state loading cycle
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dynamic analysis, a smaller frequency spacing is

employed near the resonance (175 Hz), but larger

frequency step sizes are used in regions away from the

resonance frequency. DEact and D �Eact increase with an

increase in the excitation frequency until they reach

their maximum at the resonance frequency. These

values then decrease as the excitation frequency

increases beyond the resonance frequency. The effects

of frictional contact, DEact, and D �Eact evolve more

rapidly when the excitation frequency approaches the

resonant frequency from a lower frequency than from

a higher frequency. This nonlinear behavior of the

excitation frequencies contributes to unsymmetrical

profiles of forced responses when a frequency sweep is

introduced. The values ofDEact andD �Eact obtained via

quasi-static analysis are shown as a solid line in Fig. 9.

Discrepancies are observed between the results of the

two analyses. The maximum relative errors are 3.6%

for DEact and 3.9% for D �Eact at 177Hz. The dynamic

behavior of the contact tractions and variations in the

normal force may not be equivalently projected in the

static analysis results. Thus, the contributions of the

contact tractions and stick/slip transitions at the

friction interface under dynamic analysis can differ

Fig. 6 Nodal displacement in x-direction in time domain with different time step size (Ns). The node is examined at x ¼ Lp
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from those under static analysis. However, the overall

assessment of the effect of the contact behavior

corresponding to the amplitude exhibited good

correlations.

Figure 10 shows the evolution of the equivalent

damping and stiffness relative to the modal amplitude

q. The equivalent damping and stiffness are formu-

lated according to Eqs. (7) and (10). The evolution of

contact status between stick and slip can reduce the

equivalent stiffness as the modal amplitude increases.

The maximum modal damping occurs when the

amplitude q lies between 0.05 and 0.1. This can be

found in typical friction systems whose maximal

damping efficiency is attained at the partial slip.

Equivalent damping and stiffness assess the nonlinear

friction force at each iteration of the solution method,

forming the EOMs in Eq. (16) as a piecewise linear

equation. Precalculation of ceq and keq prior to the

process of the ROM ensures a computation speed in

the order of seconds.

3.2 Forced response prediction

The developed ROM was validated by comparing the

forced responses obtained from the ROM and the full-

size FE model. In Fig. 11, the forced responses in the

modal coordinate along with the excitation frequen-

cies are shown. The forced responses, that is, the

solutions to Eq. (16), were obtained by the fixed-point

iteration, as described in Eq. (17). The convergence of

the fixed-point method is not always guaranteed and

relies heavily on the receptance matrix and the choice

of the initial approximation. However, a sufficiently

close initial approximation may be advantageous to its

solution. The converged solution of Eq. (16), which is

Fig. 7 Interfacial tractions at the steady state. a Evolution of

four contact states. b Distributions of lp=P and f/P from static

analysis, resulting in q ¼ 0:12 when Mo=L ¼ 0:03. c Distribu-

tions of lp=P and f/P from the dynamic analysis resulting in

q ¼ 0:12 when fex ¼ 174Hz

Fig. 8 Energy dissipation and hysteresis loop per cycle at the steady state
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generally obtained from excitation frequencies away

from xn, can be adopted as an initial approximation of

the neighboring excitation frequency. The incremental

size of the excitation frequency can be chosen until the

initial approximation satisfies the convergence of the

solution. A detailed description of the convergence

condition of the iterative solution of Eq. (16) can be

found in ‘‘Appendices 1 and 2’’.

To explore the relative influence of the magnitude

of the applied force, contact pressure, and friction

coefficient on the system response, the ratio between

the parameters q ¼ lPL
M is introduced. The first

example includes forced response analyses of lap

joints without a friction force at the contact interface

(q ¼ 0). The frictionless sliding condition at the

frictional contact is modeled by setting l ¼ 0 in this

example. In the absence of a nonlinear friction force,

the EOMs of ROM in Eq. (16) involve a general

harmonic analysis as follows:

�x2mþ ixb þ 1ð Þk
� �

q ¼ f; ð18Þ

Furthermore, the forced response predictions indi-

cated excellent agreement with the analysis results

from ANSYS. When q increased to 0.8, the contact

Fig. 9 Calculation of the a dissipated energy b average stored energy at the contact surface via static analysis and TDA

Fig. 10 TDA of a equivalent damping b equivalent stiffness as results of the ROM at each excitation frequency
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friction force significantly affected the system. The

maximum forced response decreased by approxi-

mately 90%, and the resonance frequency shifted

from 174.6 to 174.9Hz. The relative errors between the

predictions from the ROM and validation data from

ANSYS were 0.8% near the natural frequency. Such a

small error near the natural frequency indicates that

the nonlinear contact behavior represented by the

energy dissipation and stiffening is accurately cap-

tured. A maximum relative error of approximately

11%was observed at 177Hz. The prediction errors are

predominantly due to erroneous predictions of equiv-

alent damping and stiffness.

Additionally, while maintaining guaranteed accu-

racy, the proposed ROM drastically reduced the

computation time. For example, the time to compute

a steady-state response in the time domain was 23 h 14

min. However, the overall response predictions within

the frequency of interest took less than 15 s with an

additional 10 min for the quasi-static analysis process.

Notably, the additional time cost for quasi-static

analysis was the entire time spent for repeated quasi-

static computation. Thus, the quasi-static analysis time

expense varied depending on the number of data

points used to examine the equivalent stiffness and

damping.

The nonlinear terms predicted by the ROM at each

excitation frequency are specified. In Fig. 12, the

resultant damping and stiffness values at each excita-

tion frequency are shown for q ¼ 0:8. There are

discrepancies between the actual values obtained from

the dynamic analysis in Fig. 10 and the prediction

results from the ROM; however, the magnitudes and

tendencies of the equivalent damping and stiffness

along the excitation frequency were well-simulated

with good agreement (Fig. 11). For example, higher

accuracy was obtained near the resonance frequency.

The relative errors at 175Hz were approximately 1%

for the equivalent damping and 0.25% for the equiv-

alent stiffness.

Owing to its efficient computations and high

fidelity provided by the ROM, it enabled the charac-

terization of the overall behavior of the lap joint for

different q values. First, the resonance frequency

increased with q. At a high level of q, the portion of the
slip region during a loading cycle decreased, and this

resulted in an increase in the stick portion, adding to

the equivalent stiffness of the system. Second, the

normalized response amplitude decreased with an

increase in q owing to the development of equivalent

damping. The damping effect lasted until it reached its

optimal value (q � 2:4) and gradually diminished

with an increase in q (Fig. 13).

These typical phenomena of a harmonic nonlinear

response function with stiffening can be interpreted by

the predicted damping and stiffness, as illustrated in

Fig. 14). The predicted ceq and keq values are shown

with respect to q and the excitation frequency. In

general, at low q, where a relatively large amount of

slip is allowed, a higher equivalent damping is

generated; however, maximum damping does not

occur at the resonance frequency each time. For

instance, the maximum damping values and reso-

nances are aligned only when q is close to 2.4.

Likewise, keq tends to have a small value in row q. The
overall keq values monotonously increase with the

increase in q, eventually saturating at 0.09. In contrast
to ceq, the minimum keq values are located at the

resonances, implying that the stiffening effect devel-

ops proportionally to the increase in q.

4 Conclusions

An ROM technique is proposed to examine the

dynamic response of a frictionally constrained joint

under cyclic loading. The proposed technique was

developed based on the equivalent linearization of the

nonlinear characteristics of the friction force at a joint

interface. The key feature of the proposed approach is

the quasi-static computation of the equivalent damp-

ing and stiffness values with the imposed harmonic

Fig. 11 Magnitude of modal amplitude q at each forcing

frequency
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motion. The predictions of the friction-force-associ-

ated dynamic terms by adopting quasi-static results are

validated based on the observations from this study.

Equations 5 and 8 show that the energy dissipation

and average stored energy during an excitation cycle

in the modal domain were modal amplitude depen-

dent. This finding was examined by comparing the

resulting friction force numerically obtained from the

quasi-static and time-domain analyses. Discrepancies

in contact force propagations between the quasi-static

results and the time domain results were observed;

however, the resulting energy dissipation and average

stored energy obtained from two different analyses

were similar. Accordingly, the equivalent scheme for

damping and stiffness was approximated by the quasi-

static results. In turn, the precalculated equivalent

damping and stiffness reduced the iteration costs for

the ROM solution.

Another advantage of the proposed ROM technique

is the prediction accuracy because the nonlinear

friction force was obtained via the FE model. The

results exhibited good accuracy with considerably

reduced computational costs. Forced response com-

putations were performed under various joint contact

and loading conditions. The forced response results

presented typical response transitions exhibiting the

stiffening effect.

Unlike other approaches( Long and Tiso 2016;

Witteveen and Fischer 2014; Pischler et al.

2017, 2017), this study does not provide a direct

assessment of the nonlinear force at the contact

interfaces. Instead, the proposed technique helps

obtain the exact friction force quasi-statically via an

FE analysis and parameterizes it into an equivalent

format. As the ROM technique entails an exceedingly

small (2� 2), it significantly reduces the computation

time for the predictions of the response amplitudes at

Fig. 12 Solution values of a equivalent damping b equivalent stiffness in the ROM at each excitation frequency, where q ¼ 0:8

Fig. 13 Frequency

responses, across for

different q values
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the steady state. One important area for future

development is to extend the proposed ROM tech-

nique to applications involving complex geometries.
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Appendix A: Fixed point iteration convergence

condition

The following theorem satisfies the conditions for the

existence of a fixed point.

Theorem 1 Assume that g 2 C½a; b�, that is, g(q) is contin-
uous on the interval½a; b�. Thus, we arrive at the following

conclusions:

1. If the range y ¼ gðqÞ ensures that y takes values in
½a; b� 8q 2 ½a; b�, then g has a fixed point in ½a; b�
.

2. Further, suppose that g0ðqÞ is defined in a range

ða; bÞ and that a constant 0\a\1 exists with

jg0ðqÞj� a 8x 2 ða; bÞ, then g possesses a unique

fixed point �q in ½a; b�.

Appendix B: Solution convergence of Eq. (16)

The nonlinearity of Eq. (16) only exists in the values

of ceqðqÞ and keqðqÞ. The equivalent stiffness, shown in
Fig. 15b, strictly decreases as q increases; however,

the equivalent damping ceq increases monotonically

until it reaches its peak value ðq
 � 0:05Þ and then

decreases monotonically. Thus, we can divide three

different regimes of the characteristics of nonlinear-

ities as follows:

1. 0\q\q
 : monotonic increase of ceq and strict

decrease of keq
2. q � q
 : near peak value of ceq
3. q
\q : monotonic decrease of ceq and strict

decrease of keq

The solution of Eq. (16) at a given excitation

frequency falls into one of three criteria. We rewrite

the Eq. (17), in the form

gðqÞ ¼ HðqÞf; ð19Þ

and examine the convergence of each criterion. In

Fig. 15, the selected frequencies for each criterion are

presented. The function g(q) for each excitation is

plotted in Fig. 16]. Recall from 1, g(q) is continuous in

Fig. 14 Predicted ceq and keq values for 165Hz� fex � 190Hz

and 0:8� q� 5

Fig. 15 Equivalent damping and stiffness at fex ¼ 160Hz,
fex ¼ 173Hz, and fex ¼ 175Hz
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the mapping range that agrees with the existence of a

fixed point in the range of q (Theorem 1.1). Moreover,

the slope of g(q) is always less than 1 ðy ¼ xÞ, which
satisfies Theorem 1.2. This implies that Eq. (16)

permits a unique fixed point.
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