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Abstract Porous infill, rather than the solids, can

provide high stiffness-to-weight ratio, energy absorp-

tion, thermal insulation, and many other outstanding

properties. However, porous structure design to date

have been majorly performed with topology optimiza-

tion under small deformation assumption. The effect

of porosity control under large deformation is not

explored yet. Hence, this paper exploits the topolog-

ical design method of porous infill structures under

large deformational configuration. Specifically, the

neo-Hookean hyperelasticity model is adopted to

simulate the large structural deformation, and the

adjoint sensitivity analysis is performed accordingly

with the governing equation and constraint. The

maximum local volume fractions before and after

deformation are concurrently constrained and

especially for the latter, the representative volume

points (RVPs) are modeled and tracked for evaluating

the local volume fractions subject to the distorted

mesh configuration. The local volume constraints are

then aggregated with the P-norm method for a global

expression. Iterative corrections are made to the

P-norm function to rigorously restrict the upper bound

of the maximum local volume. Finally, several

benchmark cases are investigated, which validate the

effectiveness of the proposed method.

Keywords Porous infill � Nonlinear analysis �
Hyperelastic material � Topology optimization � SIMP

1 Introduction

Topology optimization has been extensively studied in

the past three decades since the remarkable work by

Bendsøe and Kikuchi (Bendsøe and Kikuchi 1988). It

provides a robust and capable tool for optimal

structural design while complying the specific bound-

ary conditions and domain restrictions. Nowadays,

topology optimization has been recognized and widely

adopted in both academia and industry. As an

emerging aspect of topology optimization, porous

infill design has attracted a great deal of attention,

which has the potential to exhibit high stiffness-to-

weight ratio, energy absorption, thermal insulation,
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and other outstanding properties that are non-achiev-

able by the solids (Liu et al. 2018).

Given the specific methods for porous structure

design, a routine approach is to investigate the

microstructures through homogenization. The homog-

enization-based scheme builds the cross-scale con-

nection by bridging the microscopic structures and the

macroscopic equivalent material properties (Zhang

et al. 2021a, b). At the early stage, the inverse

homogenization method was developed to design unit

microstructures exhibiting maximum shear and bulk

moduli (Huang et al. 2011; Sigmund 2000), outstand-

ing buckling strength (Wang and Sigmund 2020),

negative Poisson’s ratio (Andreassen et al. 2014), etc.

Moreover, the unit microstructures were also tailored

to employ excellent physical features, including

magnetic and electrical permittivity (Huang et al.

2012), fluid permeability (Guest and Prévost 2006),

acoustic wave propagation (Zhang et al. 2021a, b) and

others. Later, beyond the unit cell optimization,

methods were developed to support the concurrent

macroscopic topology and microscopic porous infill

design (Guo et al. 2015; Yan et al. 2016; Xu et al.

2021a, b). The cross-scale sensitivity information is

established on the microscopic density variables by

solving the homogenization and adjoint equations.

The approaches are classified into optimization with

parameterized unit cell microstructures and optimiza-

tion with freeform unit cell microstructures with

restricted or unrestricted material distribution, con-

nectivity, and orientation conditions (Wu et al. 2021).

So far, most of researches are focused on linear

material elastic model under small deformation

assumption. Trials on nonlinear porous infill or

microstructure design were rarely attempted. Behrou

et al. (Behrou et al. 2021) designed periodical

microstructures exhibiting prescribed constitutive

model under certain large strain state considering the

geometric nonlinearity. Wang et al. (Wang 2018;

Wang et al. 2014b) designed the auxetic meta-

materials based on the hyperelastic fundamental

material model to enable the structure demonstrating

prescribed nonlinear properties. Other works also

addressed the meta-material or multi-scale structural

topology optimization incorporating the elastoplastic

(Kim and Yun 2020), viscoelastic (Huang et al. 2015),

elastoviscoplastic (Fritzen et al. 2016) nonlinear

material models.

Recently, an alternative approach for porous infill

design was developed and widely followed which

employ sufficiently fine mesh and maximum local

material fraction constraints to achieve the ‘multi-

scale’ design effect with controlled porosity distribu-

tion. Wu et al. (Wu et al. 2018) originally proposed the

idea and applied it to shell-infill structure design (Wu

et al. 2017). In the above work, the local volume

fraction constraints were aggregated into a global

expression through P-norm method, but the local

porosity constraints cannot be strictly satisfied with

the static P-norm approximation. Later, the above

method was extended to design functionally-graded

(Liu et al. 2021; Schmidt et al. 2019), multi-material

(Li et al. 2020), and thermal dissipation (Das and

Sutradhar 2020) porous infills. In an alternative

approach, Dou (Dou 2020) incorporated the maximum

local volume requirement into the material interpola-

tion model by customizing two layers of filtering and

projection operations, which also achieved the porous

infill design effect with controlled porosity. So far, the

above mono-scale porous infill designs were all

conducted based on linear elasticity assumption, while

the extension to nonlinear structures was rarely

targeted.

In fact, macroscopic topology optimization based

on geometric nonlinearity or hyperelasticity has been

addressed with different branches of topology opti-

mization methods, including level set (Chen et al.

2017; Ha and Cho 2008), bi-directional evolutionary

structural optimization (BESO) (Han et al. 2021),

Solid Isotropic Material with Penalization (SIMP)

(Ortigosa et al. 2020; Zheng et al. 2015), etc. A severe

issue happens to the low-density elements that are

prone of excessive deformation, incurring structural

instability of the Newton–Raphson procedure. Buhl

et al. (Buhl et al. 2000) relaxed the convergence

criteria during the FEA process. Bruns and Tortorelli

(Bruns and Tortorelli 2003) proposed the element

removal and reintroduction technique to overcome the

problem. To enable larger deformation, Wang et al.

(Wang et al. 2014a) modified the energy interpolation

model by assigning linear model to low density

elements. Luo et al. (Liu et al. 2017; Luo et al.

2015) utilized the Yeoh hyperelastic model to avoid

over distortion of the void elements. Moreover, Yoon

and Kim (Yoon and Kim 2005) proposed an element

connectivity parameterization (ECP) method, which

applied zero length links between elements as design
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variables that eliminates the low-density elements. van

Dijk (van Dijk et al. 2014) applied the element

deformation scaling (EDS) to project the local internal

displacements into an acceptable range.

In this research, we propose a porous infill topology

optimization method considering hyperelastic mate-

rial behavior under the SIMP framework. The neo-

Hookean hyperelasticity model is adopted to simulate

the large structural deformation, and the adjoint

sensitivity analysis is performed accordingly with

the governing equation. To address the structural

instability, the hyperelastic strain energy model is

reformulated by incorporating the Heaviside-pro-

jected element densities to scale the element distor-

tion. Another highlight was put on the maximum local

volume fraction control. Previous works (Dou 2020;

Wu et al. 2018, 2017) mainly concentrated on local

porosity control subject to a fixed mesh and small

mesh distortion, which is no longer valid for the large

distortion cases. Hence, a newmethod was contributed

for the maximum local volume fraction control under

the large deformation scheme. This new method

utilizes representative volume points (RVPs) to

discretize the finite elements. Then, each RVP corre-

sponds to a sub-element volume and the deformation

trajectories of the RVPs are followed to track the

changes of the sub-element volumes. In this way, the

local material volumes can be accurately counted

under any deformed mesh state. The maximum local

volume constraint is established with the P-norm

aggregation function to convert the large amounts of

local volume constraints into one concise and differ-

entiable expression. To ensure stability and close the

gap between the P-norm approximation and the exact

maximum local volume fraction, iterative corrections

are made to the P-norm function (Long et al. 2019;

Yang et al. 2018). Finally, for the numerical imple-

mentation, concurrently constraining the maximum

local volume fractions before and after deformation is

made possible.

The remaining part of this paper proceeds as

follows: Sect. 2 demonstrates the details of introduc-

ing RVPs for local porosity estimation under deformed

mesh state; Sect. 3 illustrates nonlinear finite element

analysis, especially the neo-Hookean model for

hyperelastic analysis; in Sect. 4, the topology opti-

mization is established, and the sensitivity is calcu-

lated. To validate the proposed method, several

benchmark examples are studied in Sect. 5. In the

last section, discussions and conclusions of this paper

are provided.

2 Maximum local volume constraint

In this study, topology optimization for porous infill

structures under large deformation is explored. The

structural porosity is achieved by configuring maxi-

mum local volume fraction constraints and hence,

properly counting the local material volume fraction is

extremely important. Local volume fraction calcula-

tion is usually established on a fixed design domain

discretized with quadrilateral elements. Each element

is assigned a pseudo physical density ~q 2 0; 1ð � and
has the element volume ~v. In the undeformed state, the

linearly interpolated material volume is expressed by:

v ¼ ~q~v ð1Þ

As illustrated in (Wu et al. 2018), the local material

volume fraction is counted within a circular neigh-

bourhood based on the percentage of solid elements

againest the total (Fig. 1a), through:

vfe ¼
Ri2Ne

~qi
Ri2Ne

1
ð2Þ

where Ne is collection of elements inside the circular

neighborhood of element e; see Fig. 1a. ~v is a constant

given the uniform mesh and the small deformation

assumption and thus, is eliminated when formulating

Eq. (2).

Apparently, Eq. (2) is not applicable to structures

experiencing large deformation since the element

sizes vary significantly alongside the structural defor-

mation and some growing elements should be sub-

discretized to increase the volume counting accuracy.

Therefore, a new method for counting the local

material volume fraction is developed in the current

study by prescribing the local material volumes on

RVPs (Representative Volume Points). As shown in

Fig. 1b, the RVP is a smaller unit to capture the

material distribution information. In case of sub-

discretized into 9 RVPs, each RVP corresponds to 1/9

of the element volume and the exact percentage

evolves according to the element distortion condition.

Hence, the RVPs fine-tune the material volume

counting and even for obviously growing elements,

the RVPs keep a good approximation of the local
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material distribution due to sub-discretization effect.

Increasing the number of RVPs provides better

precision. As shown by Fig. 1b, the RVPs vary about

their positions along with the structural deformation

and the number of RVPs inside a local circular area

alters simultaneously.

To formulate the new equation of local volume

faction calculation, the distance di;e between any target

RVP and the centroid of the current element e is first

defined, as:

di;e ¼ rmin� k pi � pe k2 ð3Þ

in which rmin is the radius of the circular area, k � k2
calculates the vector norm, pi represents the i th RVP’s

coordinate vector, which can be any blue dot in

Fig. 1b, and pe is the coordinate vector of the e th

element’s centroid, which may correspond to any red

dot in Fig. 1b. All local material volume fraction

constraints are built based on the element centroids,

and hence, the local material volume fraction under

any deformed configuration is calculated by:

vfe ¼
Rn
i¼1yi ~viH di;e

� �

Rn
i¼1 ~viH di;e

� � ð4Þ

in which H �ð Þ is the Heaviside function. n is the total

number of RVPs. yi and ~vi are the pseudo density and

material volume associated to the i th RVP, respec-

tively. Apparently, ~vi is not a constant and depends on
the structural deformation condition. Given the need

of porosity control, vfe in Eq. (4) should be smaller

than the allowable upper bound vf .

vfe � vf ð5Þ

Fig. 1 The schemes of local volume calculation for undeformed and deformed configurations
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3 Nonlinear finite element analysis

3.1 The neo-Hookean model

In this research, we employ the neo-Hookean model

(Klarbring and Strömberg 2013) to describe large

deformation behavior, which involves both geometric

and material nonlinearity. The model is established by

its strain energy expression. The strain potential

energy is defined as:

/ ¼ l
2

I1 � 3ð Þ þ 1

2
k J � 1ð Þ2�llnJ ð6Þ

where l and k are Lame’s material parameters.

l ¼ E

2 1þ mð Þ ð7Þ

k ¼ mE
1þ mð Þ 1� 2mð Þ ð8Þ

E and m represent Young’s modulus and Poisson’s

ratio, respectively. The hyperelastic energy model is

determined by two invariant terms, I1 and J, which is

demonstrated as follows:

I1 ¼ tr Cð Þ ð9Þ

J ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det Cð Þ

p
ð10Þ

where C is the right Cauchy-Green deformation

tensor.

C ¼ FTF ð11Þ

The deformation gradient F is expressed in

Eq. (12).

F ¼ Iþr0u ð12Þ

wherer0 denotes gradient defined based on the initial

configuration. I represents the identity tensor.

The Green-Lagrangian strain E is express as:

E ¼ 1

2
C� Ið Þ ð13Þ

In hyperelasticity, the second Piola-Kirchoff stress

is calculated as follows

S ¼ o/
oE

¼ 2
o/
oC

ð14Þ

The elasticity tensor is given by:

D ¼ o2/

oE2
¼ 4

o2/

oC2
ð15Þ

3.2 Nonlinear finite element analysis

In this study, all analyses are performed based on the

total Lagrangian formulation, wherein all the stress

and strain variables correspond to the initial config-

uration at time t ¼ 0. For example, a point P (defined

by X) translates to Q (identified by vector x) and the

kinematic relation of the point in the initial and current

configurations shows below:

x ¼ Xþ u X; tð Þ ð16Þ

where u is the displacement, and t is the measurement

of time. The Green-Lagrangian strain E is formulated

as:

E ¼ 1

2
r0uþr0u

T þr0u
Tr0u

� �
¼ 1

2
FTF� I
� �

ð17Þ

where r0 denotes gradient operation based on the

initial configuration. I represents the identity tensor.

Here, the variance of Green-Lagrangian strain E is

defined as:

E u; uð Þ ¼ 1

2
r0uþr0u

T þr0u
Tr0uþr0u

Tr0u
� �

ð18Þ

in which u is the virtual displacement. To solve the

nonlinear FEA problem, the Newton–Raphsonmethod

is adopted. The equilibrium equation of Eq. (19) is

formulated to describe the kinematics in a static

analysis.
Z

X0

S uð ÞE u;uð ÞdX0¼
Z

X0

uTfbdX0þ
Z

C0

uTfsdC0

ð19Þ

in which fb and fs are the body force and surface

traction, respectively. fb is applied inside the domain

X0 and fs is employed on the boundary C0. In general,

the nonlinear problem is solved by the Newton–

Raphson method, and the analysis is divided into

numerous steps. Assuming an arbitrary step, equations

are achieved by:
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tþDtu ¼ tuþ Du ð20Þ

tþDtE ¼ tEþ DE ð21Þ

tþDtS ¼ tSþ DS ð22Þ

and the increment DE is expressed as:

DE ¼ 1

2
r0 Duð Þ þ r0 Duð ÞTþr0 Duð ÞTr0uþr0 uð ÞTr0 Duð Þ

� �

þ 1

2
r0 Duð ÞTr0 Duð Þ

ð23Þ

In Eq. (23), the first and second term have notations

as follows:

DE1 ¼
1

2
r0 Duð Þ þ r0 Duð ÞTþr0 Duð ÞTr0uþr0 uð ÞTr0 Duð Þ

� �

ð24Þ

DE2 ¼
1

2
r0 Duð ÞTr0 Duð Þ ð25Þ

In the FEA formulation of Newton–Raphson

method (Belytschko et al. 2014; De Leon et al. 2020;

Kim 2015; Wriggers 2008), Eq. (19) can be rewritten

as:
Z

X0

DSDEdX0þ
Z

X0

tSDE2dX0¼
Z

X0

DuTtþDtfbdX0

þ
Z

C0

DuTtþDtfsdC0�
Z

X0

tSDE1dX0

ð26Þ

According to Eq. (26), the FEA analysis can be

rewritten as:

KL þKNð ÞDu ¼ fext � f int ð27Þ

where

KL ¼ r
X0

BT
LDBLdX0 ð28Þ

KN ¼ r
X0

BT
N
tSBNdX0 ð29Þ

fext ¼ r
X0

DuTtþDtfbdX0 þ r
C0

DuTtþDtfsdC0 ð30Þ

f int ¼ r
X0

BT
N
tSdX0 ð31Þ

where BL and BN are displacement–strain matrices

related to linear and nonlinear terms, respectively

(Zhang et al. 2020). S is the second Piola-Kirchoff

stress, and D is the material elasticity tensor. The

general nonlinear FEA equation of Eq. (27) is given

by:

KTDu ¼ r ð32Þ

where KT is tangent stiffness and r is the residual

force. The structural status is analyzed by solving

Eq. (32) step by step.

3.3 Structural stabilization scheme

As previously mentioned, structural instability in FEA

is the most challenging issue in density-based topol-

ogy optimization due to mesh over distortion. With the

classic SIMP interpolation, void elements and low-

density elements co-exist that have penalized close-to-

zero stiffness, and consequently, severe local mesh

distortions tend to happen, leading to negatively

defined global structural stiffness matrices. To cir-

cumvent this problem, inspired by Wang’s work

(Wang et al. 2014a), the strain energy of an element

is reformulated with:

/ ¼ / ~qeue
� �

ð33Þ

/ is the strain energy as defined in Eq. (6). The

subscript e denotes the element index. The parameter

~qe is mapped through Heaviside projection from the

original ~qe. The smoothed Heaviside projector is

employed as Eq. (34) (Wang et al. 2011).

~qe ¼
tanh bgð Þ þ tanh b ~qe � g

� �� �

tanh bgð Þ þ tanh b 1� gð Þð Þ ð34Þ

g 2 0; 1ð Þ is the projection threshold, and b is the

parameter controlling sharpness of the projection

curve. Namely, if the pseudo physical density ~qe falls
below the threshold, it will be transformed into a small

positive value; in contrast, when ~qe is larger than the

threshold, ~qe projects to 1. In implementation, due to

the severe distortion occurring for pseudo physical

densities ranging from 0.1 to 0.3 (Luo et al. 2015), the

parameter g in Eq. (34) is assigned 0.215 based on

numerical experiments. The projection sharpness

control parameter b is set as 500. Referring to

Eq. (33), the low-density elements’ nodal displace-

ments reduce significantly with the multiplication of

the projected element densities, which ensure the
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global structural stiffness being positive definite. The

above displacement reduction, however, scales up the

element tangent stiffness, but the low-density ele-

ments still contribute little to the overall structural

stiffness because of the SIMP interpolation of

Eq. (41).

4 Topology optimization

4.1 Formulating topology optimization for end-

compliance minimization

In general, the minimization of structural end-com-

pliance, namely the maximization of structural stiff-

ness, is defined as the objective for hyperelastic

structure optimization. The end-compliance mini-

mization problem with maximum local material

volume fraction constraint is mathematically formu-

lated as follows:

min
0\q� 1

w qð Þ ¼ fTextu

s:t:r ¼ fext � f int ¼ 0
~V � 1� 0

ð35Þ

where r, fext and f int represent residual, external and

internal force of the Newton–Raphson method,

respectively. u denotes the displacement. ~V is the

aggregated local material volume fraction

measurement.

The topology optimization problem is solved by the

method of moving asymptotes (MMA) (Svanberg

1987). Hence, the gradients of the objective and

constraint functions with respect to design variables

play a critical role. The sensitivity of the augmented

objective function with respect to ~qe is expressed as

follows:

oL

o~qe
¼ fText

ou

o~qe
þ kT

or

o~qe
þ or

ou

ou

o~qe

� �
ð36Þ

To eliminate the unknown ou
o~qe

, the adjoint equation

is given by:

fext ¼ � or

ou
k ð37Þ

The tangent stiffness can be obtained by:

KT ¼ � or

ou
ð38Þ

According to Eq. (37) and Eq. (38), the adjoint

equation is derived as follow:

fext ¼ KTk ð39Þ

Here, the sensitivity of the objective function is

rewritten as:

oL

o~qe
¼ kT

or

o~qe
ð40Þ

For topology optimization with SIMP method, the

material interpolation is shown as follows:

E ~qe
� �

¼ Emin þ E0 � Eminð Þ~qpe ð41Þ

where E0 is the Young’s modulus of the solid material

and Emin equals 10�9 � E0. p is the penalty of the

SIMP interpolation. Then, the energy density is

reformulated based on the structural stabilization

scheme of Eq. (34), the hyperelasticity model of

Eq. (6), and the interpolation of Eq. (41).

/ ¼ Emin þ E0 � Eminð Þ~qpe
� �

� / ~qeue
� �

jE¼1 ð42Þ

where / ~qeue
� �

jE¼1 is the unit hyperelastic energy

with respect to E ¼ 1. The internal force is calculated

by Eq. (43).

f int ¼ Emin þ E0 � Eminð Þ~qpe
� �

� f int ~qeue
� �

jE¼1 ð43Þ

f int ~qeue
� �

jE¼1 is the unit internal force and calcu-

lated by Eq. (31) in term of E ¼ 1. According to

Eq. (40) and Eq. (43), the sensitivity of objective is

written as follows

oL

o~qe
¼ �kT p E0 � Eminð Þ~qp�1

e

� �
� f int ~qeue

� �
jE¼1

ð44Þ

In general, the density filter is employed to avoid

checkerboard patterns and the involved convolution

operation transforms the design variable q into:

~qe ¼
Ri2Ne

Hiqi
Ri2Ne

Hi
ð45Þ

where qi is design variable corresponding to element i.

The weight function Hi defines as follows:

Hi ¼ rf � ci � ce2k k ð46Þ
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Fig. 2 The porous infill cantilever structure

Fig. 3 Converging history of the maximum local volume fraction constraint for the undeformed and deformed state
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in which ci and ce are the centroid coordinates of

element i and e, respectively. rf is the filter radius. To

eliminate blurred boundary from the optimization

result, Heaviside projection (Eq. (34)) is made

following the smoothing filter, which projects the

intermediate densities (~qe) into pseudo physical den-

sity ~qe. The sensitivity of the objective function related
to design variables (qe) is written by the chain rule, as:

Fig. 4 The deformed local material volume control with 1, 9 and 25 RVPs for an element

Fig. 5 The cantilever (300*120 elements) optimization results with different local volume influence radii: a rmin = 9; b rmin = 15; c
rmin = 21; d rmin = 27
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oL

oqe
¼ oL

o~qe

o~qe
o~qe

o~qe
oqe

ð47Þ

4.2 Aggregation of the maximum local volume

fraction constraints

For topology optimization, too many local constraints

lead to difficulties to the convergence speed and

stability, and hence, Eq. (5) should be transformed

into a global and derivable expression. In this work,

the P-norm method is employed to aggregate the local

volume fraction constraints:

V ¼ Rnele
e¼1

vfe

vf

� �P
" #1=P

� 1 ð48Þ

where nele is the total number of elements.

The P-norm formula in Eq. (48) is equivalent to

applying the many local constraints of Eq. (5) when

parameter P is large enough. However, a too large P

value causes high nonlinearity of the optimization

problem, leading to numerical difficulties for a

stable convergence. Hence, a medium P value is

oftentimes employed but the P-norm approximated

maximum local volume fraction cannot accurately

reflect the exact maximum local value. To remedy this

issue, the corrected P-norm aggregation is imposed.

According to (Yang et al. 2018; Xu et al. 2021a, b), the

P-norm aggregation is iteratively corrected as:

~V ¼ cp � V � 1 ð49Þ

wherein the parameter cp is given by Eq. (50) to

eliminate the gap between the P-norm approximated

maximum local volume fraction and the exact max-

imum local volume fraction.

cpk ¼ qk
max vfeð Þk
vf � V

þ 1� qkð Þcpk�1 ð50Þ

in which k is the iteration index, and qk 2 0; 1ð � is
used to balance cpk and cpk�1.

As of the constraint function in Eq. (49), the

derivative of the constraint function with respect to

the design variable is derived as:

o ~V

oqe
¼ o

oqe
cp � Rnele

e¼1

vfe

vf

� �P
" #1

P

0

@

1

A

¼ cp � Rnele
e¼1

vfe

vf

� �P
" #1

P
�1

Rnele
e¼1

vfe

vf

� �P�1
1

vf

Rn
i¼1

oyi
oqe

~viH di;e
� �� �

Rn
i¼1 ~viH di;e

� �� �

2

4

3

5

ð51Þ

Fig. 6 The L-bracket

example

123

298 J. Huang et al.



5 Numerical examples

In this section, the proposed method is validated by the

benchmark examples. The neo-Hookeanmodel is used

to describe the large deformation behavior, addressing

both the geometric and material nonlinearities. The

Young’s modulus is 3 9 109, and Poisson’s ratio is

0.4. In the FEA algorithm, the convergence criteria

(10�3) is measured by the ratio of residual force to the

original value in the Newton–Raphson method. And

for the topology optimization process, the structure is

accepted when the ratios of objective changes fall

below 10�2 for 6 consecutive iterations. The penalty p

of Eq. (41) is chosen 3. P of P-norm is 8 for cases. qk
of Eq. (50) defines 0.5. In Heaviside projection for

overcoming blur boundary, the threshold (g) is 0.5,

and the sharpness (b) increases by 30% for every 30

iterations.

Fig. 7 L-bracket optimization results with different loading combinations: a fx ¼ 300 and fy ¼ 160; b fx ¼ 300 and fy ¼ 200;

c fx ¼ 300 and fy ¼ 240; d fx ¼ 300 and fy ¼ 280
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5.1 Case 1

As illustrated in Fig. 2a, the 2D cantilever beam is

studied, wherein the left edge is clamped and a

concentrated load (f = 320) is applied at midpoint of

the right edge. The whole domain is discretized by

100 9 40 uniform grids. The optimization problem is

to minimize the end-compliance subject to the local

material volume fraction limit of 0.6 for the deformed

state and global materials fraction of 0.6. The local

volume influence radius rmin ¼ 6:5 is prescribed. The

optimized porous infill structure is shown in Fig. 2b

and the converging history of objective value is

presented in Fig. 2c. Figure 3 depicts the converging

history of the maximum local material volume con-

straint, which is calculated with Eq. (52).

cp � Rnele
e¼1

vfe

vf

� �P
" #1=P

�1� 0 ð52Þ

The constraint satisfaction threshold is marked by

the dashed line in Fig. 3. It can be seen that all local

material volumes in the deformed state fall below the

upper limit upon convergence, indicating the effec-

tiveness of the proposed maximum local volume

control method. For the comparison purpose, the local

volume fractions for the undeformed state along the

iterations are shown in the same figure and it is clearly

indicated that, the maximum local material volume

Fig. 8 The cantilever example

Fig. 9 The optimized structure and converging history for setup (i)
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fractions for the deformed and undeformed states

differ significantly. It is unrealistic to simultaneously

constrain the maximum local material volumes for the

deformed and undeformed states with a single con-

straint, and therefore, it is significant to develop the

method for deformed local material volume measure-

ment and control. In general, more RVPs would

increase the accuracy of maximum local material

volume control. Figure 4 depicts the constraint satis-

faction statuses with different amounts of RVPs inside

an element, which gives the evidence that 9 RVPs can

provide sufficiently accuracy.

Then, the impact of the local volume influence

radius is explored. In Fig. 5, the optimized structures

with deformed maximum local volume fraction con-

straint are demonstrated with different local influence

radii. For the large radii of rmin = 15, rmin = 21 and

rmin = 27 in Fig. 5b, c and d, the clear-cut black and

white structural designs are derived. However, in

Fig. 5a, the algorithm fails to converge to a clear-cut

design due to the divergence of Newton–Raphson

method when analyzing the structural response

involving buckling phenomenon. It is shown in the

results that the local influence radius affects the sizes

of holes and structural components. A smaller influ-

ence radius results in smaller-sized structural compo-

nents, which are prone to buckling failure that

degrades the robustness of the finite element program.

Adding buckling constraint may alleviate the above

issue, but a more likely result is the conflict to the

maximum local volume fraction constraint since the

buckling constraint adds materials to strengthen the

local compressing structures. Hence, a small local

volume influence radius is not preferred, even though

increasing the influence radius reduces the level of

structural porosity.

5.2 Case 2

This case studies the porous infill design of the

L-bracket structure. The optimization problem is to

minimize the end-compliance subject to the local and

Fig. 10 The optimized structure and converging history for setup (ii)

Fig. 11 The long beam example
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global material volume fraction limit of 0.7 for the

deformed state. The local volume influence radius

equals rmin ¼ 6:5. The boundary conditions are

depicted in Fig. 6, wherein two concentration forces

are loaded to the structure and their magnitudes are

varied to derive a series of porous designs; see Fig. 7.

From Fig. 7a-d, the loading magnitude in x-direction

remains unchanged while the loading magnitudes in

y-direction changes from 160 to 280. First of all,

regardless of the loading combination, the optimiza-

tion processes successfully converge with well-con-

trolled maximum local volume fractions. It is

important to note that, the x-direction loading reduces

the compression load at the left supporting leg of the

L-bracket, so that the structure can undergo relatively

large deformation while not appearing buckling fail-

ure. It is also observed from the results that, the

increased y-direction loading creates more long and

slender bar structures for anisotropic structure

strengthening instead of the isotropic porosity.

5.3 Case 3

In this case, the cantilever example (Fig. 8) is studied

again by considering a combining force acting at the

right-bottom corner. The force is composed of a

horizontal component of fx and a vertical component

fy. The horizontal force fx decreases the element

compression along the bottom edge to prevent buck-

ling at relatively small deformation stages. In this way,

the vertical force fy can lead to large structural

deformation. For this example, the maximum local

volume constraints for the deformed and undeformed

states are simultaneously imposed. Two optimization

Fig. 12 Porous infill optimization results of the long beam structure

123

302 J. Huang et al.



setups are considered with (i) undeformed local volume

fraction limit of 0.55, deformed local volume fraction

limit of 0.60, and global material fraction limit of 0.6

(fx ¼ 160; fy ¼ 280), and (ii) undeformed local vol-

ume fraction limit of 0.60, deformed local volume

fraction limit of 0.55, and global material fraction

limit of 0.6 (fx ¼ 160; fy ¼ 280). The design domain

is discretized by 150 � 60 elements and the local

influence radius equals 6.5. Then, the optimization

results are shown in Fig. 9 for setup (i) and Fig. 10 for

setup (ii). First of all, the optimization processes

successfully converge with well-controlled maximum

local volume fractions for both deformed and unde-

formed states. It is interesting to see that regardless of

targeting the undeformed or deformed state, the

constraint with smaller volume fraction upper limit

are prone to activation while the other constraint

remains deactivated for most of the iterations. Hence,

imposing only one constraint with the smaller volume

fraction upper limit would be sufficient.

5.4 Case 4

In case 4, we try to exploit the long beam example

subject to both global volume constraint and deformed

maximum local volume constraint. In Fig. 11, the

boundary condition is depicted: the upper-left and

upper-right corners are fixed, and a concentrated force

(f = 110) is applied to the midpoint of the top edge.

The design domain is discretized by 200 9 40

Fig. 13 The converging histories of the constraints
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elements. The local volume fraction upper limit for

deformed state is 70%, and the local influence radius

equals 6.5. Three sets of global volume fraction upper

limits of 35%, 45% and 55% are explored and the

corresponding optimization results are presented in

Fig. 12a, Fig. 12b, and Fig. 12c, respectively. It is

found that with the increased global material volumes,

increasingly more structural details are added to the

optimized structure. The convergence histories are

plotted in Fig. 13, demonstrating the robust and

effective global and local volume control.

5.5 Case 5

Aiming at demonstrating the feasibility of proposed

method applied to a practical part, this case focuses on

a connection rod part. As shown in Fig. 14a, the right

hole is clamped, and the left hole is applied of a

concentrated force. The whole domain is divided into

7158 quadrilateral elements. The optimization objec-

tive is to minimize the end-compliance subject to the

local and global volume fraction upper bound of 0.6.

The local volume influence radius of rmin = 6.5 is

prescribed. From Fig. 14b–f, the loadings are set as 15,

30, 45, 60, 75, respectively. As shown in Fig. 14, the

end-point displacement is proportional to the loading

magnitude. With the increased loading level, the end

point can experience very large deformation owing to

the emerged hinge-like connection. Around the hinge

connection, lots of elements overlap and over-distort,

while the developed finite element solver successfully

addresses the overlapping and over-distorted low-

Fig. 14 Connection rod optimization subject to different loading options
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density elements. Then, the right-end, close to the

clamping hole, does not show obvious deformations

which, therefore, does not experience the buckling

issue. In addition, we also explore the design with

varying local volume fraction upper limits. Subject to

the loading of 30, the optimization results subject to

the deformed local volume fraction upper limits of

60%, 65%, 70%, 75%, and 80% are presented in

Fig. 15a–e, respectively. The larger local volume

fraction deservedly enhances structural performance.

It is interesting to see how the hinge-like connection

forms with the reduced local volume fraction upper

limit.

6 Conclusion

This paper presents a topology optimization method

for hyperelastic porous structure design. The RVPs are

adopted to tackle the local volume estimation without

need of the time-consuming re-meshing. The cor-

rected P-norm method facilitates the accurate control

of the maximum local volume fraction. It has been

proved in the numerical case study section that the

maximum local volume fractions of the deformed and

undeformed states can be concurrently controlled with

the proposed method.

On the other hand, buckling failure has been

identified as the main factor degrading the stability

of the proposed method. Thin structural members are

generated with the porous structure optimization

Fig. 15 Connection rod optimization subject to different maximum local volume fraction upper limits. The end-compliance is

a w ¼ 557:38, b w ¼ 494:61, c w ¼ 459:90, d w ¼ 432:69, and e w ¼ 380.53
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method and when imposed of compression load, these

thin structures are prone of bucking failure, leading to

divergence of Newton’s method for analyzing the

structural nonlinear response. Increasing the radius for

local volume fraction counting results in thicker

structural members and increased buckling strength;

however, the structural porosity is reduced as well.

Adding buckling constraint may alleviate the above

issue, but a more likely result is the conflict to the

maximum local volume fraction constraint since the

buckling constraint adds materials to strengthen the

local compressing structure member. Hence, a buck-

ling-free and numerically-stable algorithm for hyper-

elastic porous structure design still deserves careful

investigations.
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