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Abstract Laser powder-bed fusion (LPBF) process,

as one of the most widely used technologies of

additive manufacturing, enables fabrication of parts

with intricate geometries. The choice of process

parameters in this technology plays a major role in

defining the microstructural, mechanical and surface

properties of the fabricated parts. In this study, the

effects of LPBF process parameters on static tensile

properties (including yield strength and ultimate

tensile strength and elongation) of Ti-6Al-4V samples

were investigated using artificial intelligence methods.

Deep learning approach was employed by using neural

networks for prediction, optimization and parametric

and sensitivity analyses. Relevant experimental data

available in the literature were collected to feed the

network. Stacked auto-encoder was assigned to the

networks for high accuracy pre-training. LPBF pro-

cess parameters including laser power, scanning

speed, hatch spacing, layer thickness and sample

direction were regarded as inputs while yield strength,

ultimate strength and elongation were considered as

outputs of the neural networks. The obtained results

indicate the high potential of neural networks to be

used as a powerful tool for process parameter

optimization for enhanced mechanical performance

of additive manufactured parts.

Keywords Additive manufacturing � Mechanical

properties � Optimization � Deep learning � Neural

networks

1 Introduction

Additive manufacturing (AM) has gained notable at-

tention to enhance fabrication efficiency in a wide

range of sectors including aviation, automotive, med-

ical, etc. Complex geometries can be fabricated more

efficiently using various AM technologies, compared

to conventional subtractive manufacturing techniques

or other forming methods such as rolling, casting, etc.

(Gardan 2016; DebRoy et al. 2018).

During the last decades, several techniques have

been developed for AM of metallic materials. Based

on the ASTM F2792 standard, AM methods have been

classified into two major categories of direct energy

deposition (DED) and powder bed fusion (PBF)

(ASTM International 2013). Main used technologies

in both groups of DED and PBF for metals and alloys

are presented in Table 1.

Moreover, some other alternative techniques

including sheet lamination (SL) (Gu et al. 2012),
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binder jetting (BJ) (Thompson et al. 2015), friction stir

welding AM (FSW AM) (Sharma et al. 2017), cold

spraying (CS) (Bagherifard et al. 2017, 2018, 2020;

Bagherifard and Guagliano 2020; Ghelichi et al. 2014)

direct metal writing (DMW) (Chen et al. 2017) and

diode-based processes (DBP) (Matthews et al. 2017)

are also suggested for metal AM of metallic materials.

Besides the beneficial features of AM, because of

the layer-by-layer fabrication process and the complex

physical phenomena during melting and solidification

or fusion and bonding of the material (Yadroitsev and

Smurov 2011), various types of defects can be

generated on the surface and through the bulk of AM

parts (Maleki et al. 2020a). These irregularities and

defects are mainly created by overheating and unsta-

ble melting, vaporization and lack of fusion, attach-

ment of partially melted powders, changes in chemical

composition, thermal residual stresses, uncontrolled

wetting and surface contaminants (DebRoy et al.

2018; Yakout et al. 2017,2018,2019; Nasab et al.

2018; Sames et al. 2016). These defects can negatively

affect the mechanical properties of AM materials

compared to the ones fabricated by conventional

manufacturing processes (Yadollahi and Shamsaei

2017). Each AM technology is characterized and

controlled by a set of particular parameters, the

alteration of which directly affects the properties of

the fabricated material. A notable effort has been

recently put into experimental investigation of the role

of individual process parameters for different AM

techniques to obtain the optimal range for different

classes of materials. Table 2 lists the experimental

studies performed using different AM technologies on

various types of metallic materials. These process

parameters optimization was mostly carried out with

the aim to modulate a specific physical or mechanical

property such as porosity, yield and ultimate tensile

strength, hardness and surface roughness.

Besides experimental studies, as presented in

Table 3, other alternative methods of modelling and

optimization such as finite element modelling (FEM),

multi-objective accelerated process optimization (m-

APO), response surface methodology (RSM), Taguchi

method (TM), analysis of variance (ANOVA), genetic

algorithm (GA), artificial neural network (ANN),

recurrent neural network (RNN) and convolutional

neural network (CNN) have also been used to analyse

and optimize the process parameters of AM technolo-

gies. In addition, it should be mentioned that a

comprehensive review study about applications of

AI and machine learning in AM was performed by

Wang et al. (Wang et al. 2020a). Also, some other

studies based on analytical solutions were also

suggested to investigate the effect of AM process

parameters on tensile properties (Campoli et al. 2013;

Choren et al. 2013) and residual stresses (Aggarangsi

and Beuth 2006; Fergani et al. 2017).

Despite the vast number of studies performed in this

field, there are still several issues to be addressed

considering the quality and performance of AM

metallic materials. Artificial intelligence (AI) based

methods such as neural networks (NN) has demon-

strated a remarkable capability in optimization in

different fields of science and engineering (Maleki

et al. 2017; Maleki and Unal 2019; Maleki and Farrahi

2018), and have been already used also in AM, as

mentioned in Table 3. In general, a NN has three major

layers of input, hidden and output (Maleki and Unal

2020a). Shallow neural network (SNN), as the primary

generation of artificial neural networks mostly used in

Table 1 Classification of the main AM processes for metals and alloys

AM process technologies

DED PBF

Direct metal deposition (DMD)

Laser engineered net shaping (LENS)

Directed light fabrication (DLF)

Wire and arc additive manufacturing (WAAM)

Gas metal arc welding additive manufacturing (GMAW-AM)

Laser cladding (LC)

Selective laser sintering (SLS)

Direct metal laser sintering (DMLS)

Electron beam melting (EBM)

Selective laser melting (SLM)
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simulation of different processes, has 1 or 2 hidden

layers, which are generally trained by back-propaga-

tion (BP) algorithm (Maleki and Maleki 2015; Maleki

et al. 2018, 2020b). The large number of data set

required for SNN development, can be quite limiting

(Livingstone et al. 1997). Considering the improve-

ments achieved in NNs by deep learning methods

including restricted Boltzmann machine (RBM) and

deep belief network (DBN) presented by Hinton et al.

(Hinton et al. 2006; Hinton and Salakhutdinov 2006),

it is feasible to develop deep neural network (DNN)

using greedy layer-wised pre-training with a smaller

data set. Other alternative methods for pre-training of

DNN such as stacked auto-encoder (SAE) were later

presented, to make the development of DNN possible

with small data set while achieving higher efficiency

by increasing the number of hidden layers and using

SAE in between them (Bengio et al. 2007; Feng et al.

2019; Liu et al. 2018; Bin Wang et al. 2017).

The studies on the application of ANNs for process

parameters optimization of different AM technolo-

gies, as presented in Table 3, used mainly SNNs. Deep

learning was only employed in the studies, which

considered RNN and CNN. Herein, we investigate the

application of deep learning method by using NNs on

LPBF process parameters’ optimization for fabrica-

tion of Ti-6Al-4V parts based on the experimental data

available in the literature. NN modelling was carried

out by developing different SNN, DNN and stacked

auto-encoder assigned deep (SADNN) neural net-

works to analyze and optimize the process parameters’

effects on yield strength and ultimate tensile strength

and elongation of LPBF fabricated Ti-6Al-4V parts.

Figure 1 illustrates the methodology used in this study

Table 2 Experimental

studies on the role of

different AM process

parameters on mechanical

and physical properties

AM type Technology Feed-stock material Reference

DED DMD Al/AlN Riquelme et al. (2019)

GMAW-AM H08Mn2Si Xiong et al. (2018)

WAAM S960 Liberini et al. (2017)

DMD AISI 304L Wang et al. (2016)

LENS AISI H13 Wołosz et al. (2020)

PBF SLS WC–Co Kumar and Czekanski (2017)

DMLS AlSi10Mg Fathi et al. (2019)

EBM Ti-6Al-4V Maizza et al. (2019)

EBM Ti-6Al-4V Manjunath et al. (2020)

EBM Ti-6Al-4V Ge et al. (2014)

EBM W Yang et al. (2019a)

EBM Inconel 718 Ding et al. (2019)

EBM AISI 316L Wang et al. (2018)

SLM Ti-6Al-4V Cunningham et al. (2019)

SLM Ti-6Al-4V Sun et al. (2019)

SLM Ti-6Al-4V Baitimerov et al. (2017)

SLM Ti-6Al-4V Qiu et al. 2013)

SLM AlSi10Mg Yang et al. (2019b)

SLM AlSi10Mg Kempen et al. (2011)

SLM AlSiMg0.75 Bai et al. (2018)

SLM CoCr Tonelli et al. (2020)

SLM CoCrW Wang et al. (2020b)

SLM Inconel 718 Gockel et al. (2019)

SLM Inconel 718 Moussaoui et al. (2018)

SLM Mg-Ca Liu et al. (2017)

SLM Zr-1Mo Sun et al. (2020)

SLM 17–4 PH Averyanova et al. (2012)

SLM 18 Ni marage 300 Mutua et al. (2018)
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for process parameters optimization of Ti-6Al-4V

fabricated by LPBF.

2 Collected data from literature

In this study, the experimental data available in

literature for Ti-6Al-4V parts fabricated via LPBF

technology were collected to feed the NNs. In the

LPBF process, parts are fabricated by successive layer

by layer laser beam irradiation to a powder bed,

selectively melting the powders to create a melt pool.

Afterward, by quick cooling and solidification of the

molten pool the part is progressively constructed layer

by layer (Thijs et al. 2010). A series of process

parameters have been recognized to significantly

Table 3 Numerical and analytical studies on the role of different AM process parameters on mechanical and physical properties

Modelling or optimization methods AM Technology Feed-stock material Output parameter Reference

FEM SLM Inconel 625 Surface roughness Zheng et al. (2019)

EBM Inconel 718 Grain morphology Raghavan et al. (2016)

SLM AlSi10Mg Fatigue life Schnabel et al. (2019)

LENS AISI 304L Plastic strain Stender et al. (2018)

m-APO SLM Ti-6Al-4V Relative density

Elongation

Aboutaleb et al. (2019)

RSM SLS Ti Total area of sintering Paul and Anand (2012)

TM SLM AISI 316L Surface roughness Campanelli et al. (2013)

SLM Ti-6Al-4V Relative density Alfaify et al. (2018)

SLM Ti-6Al-4V Density Sun et al. (2013)

SLM VV751P Ultimate strength Khaimovich et al. (2018)

ANOVA SLM Ti-6Al-4V Relative density Malỳ et al. (2019)

SLM Ti-6Al-4V Porosity Hassanin et al. (2016)

SLM Ti-6Al-4V Young modulus

Tensile strength

Ultimate strength

Elongation

Zhang et al. (2019a)

SLM 18 Ni marage 300 Relative density Casalino et al. (2015)

SLM Cu–Cr–Zr Density Ma et al. (2020)

SLS Ni Porosity Liao and Shie (2007)

LC P420 Cladding width Saqiba et al. (2014)

GA SLM Al Bead width Garg et al. (2014)

ANN SLM Al Bead width Garg et al. (2014)

LC P420 Cladding width Saqiba et al. (2014)

SLS AISI 316L Porosity Marrey et al. (2019)

GMAW-AM Cu coated steel Bead width

Bead height

Xiong et al. (2014)

DMD Ti Porosity Zhang et al. (2019b)

RNN DED AISI 316L Thermal history Mozaffar et al. (2018)

CNN SLM Ti-6Al–4V

AlSi10Mg

Inconel 718

AISI 316L

17–4 PH

Surface quality Scime and Beuth (2018)

SLM AISI 316 Melt-pool classification Kwon et al. (2018)
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affect the quality and properties of the LPBF material.

Laser power, laser diameter, scanning speed, hatch

spacing, thickness of the melted layer and building

direction as well as power density E (described in

Eq. 1) can be considered as the major controlling

parameters (Cardaropoli et al. 2012):

E ¼ p=vht ð1Þ

where p is the laser power, v is the scanning speed, h is

the hatch spacing and t is the thickness of melted layer.

Due to the high cooling rate, as-built LPBF Ti-6Al-

4V parts exhibit mostly fine a0-martensite microstruc-

ture (Wu et al. 2016; Cain et al. 2015). The yield and

ultimate tensile strength of the as-built parts are

generally higher than those of materials produced by

conventional manufacturing methods; however, due to

the low ductility of a0-martensite, these parts are

characterized by lower elongation and ductility (Ed-

wards and Ramulu 2014; Simonelli et al. 2014; Vilaro

et al. 2011). In addition to the microstructural

characteristics, the selection of LPBF process param-

eters controls also the risk to generate defects, voids

and surface irregularities, which can remarkably affect

the mechanical properties of as-built material. Fig-

ure 2 provides some examples to illustrate the effects

of variation of LPBF parameters on the quality of as-

built Ti-6Al-4V in terms of porosity and surface

morphology.

Considering laser power, scanning speed, hatch

spacing, thickness of melted layer and the angle

between building direction and sample main axis as

input parameters and yield strength, ultimate tensile

strength and elongation as output parameters, the

collected data from the literature are presented in

Table 4. From the data provided in the 3rd column in

Table 4, it can be observed that the powders have a

wide particle size distribution; therefore, due to this

high scatter, the effects of powder particle size are not

considered as input for developing NNs. Figure 3

depicts the morphology of Ti-6Al-4V feedstock

powder used for LPBF technology, highlighting the

wide variation.

3 Developed neural networks

NNs are inspired from performance and capability of

human’s brain in understanding problems and pre-

senting logical solutions by means of functional

relations. These networks can be used for modeling

and analysis of complex and non-linear processes with

several variable factors (Maleki et al. 2019). Sche-

matic architecture of a single layer NN fed with r and s

number of input (p) and output (a) parameters, with

correspondent weight matrixes (w), bias vectors (b),

linear combiner (u) and transfer function (f), is

presented in Fig. 4a. Among 52 datasets collected

from the literature, 42 cases (80%) were considered for

training and 10 cases (20%) were regarded to assess

the obtained network structures. A random selection

strategy was followed for the data used in training and

testing processes. Performance and accuracy of the

networks was evaluated through calculating the cor-

relation coefficient (R2) described as follows (Tetko

et al. 1995):

R2 ¼
Pn

i¼1 fEXP;i � FEXP

� �
fANN;i � FANN

� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

i¼1 fEXP;i � FEXP

� �2
fANN;i � FANN

� �2
� �r

ð2Þ

where, n is the number of fed samples, and fEXP and

fANN represent the experimental and predicted values,

respectively. FEXP and FANN are determined as

described below:

Fig. 1 Schematic illustration of the methodology used in this study for process parameters optimization of Ti-6Al-4V fabricated by

LPBF
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FEXP ¼ 1

n

Xn

i¼1

fEXP;i ð3Þ

FANN ¼ 1

n

Xn

i¼1

fANN;i ð4Þ

The flowchart of the methodology followed in this

study is presented in Fig. 4b. Different SNNs and

DNNs were developed by trial and error to obtain high

performance NN. Main LPBF process parameters as

described before were considered as inputs and tensile
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test properties of the fabricated Ti-6Al-4V material

were regarded as outputs assigned to the developed

NNs.

Figure 4c reveals a typical SNN with two hidden

layers. Besides the number of layers in a NN, the

number of neurons acting as computational nodes is

one of the major variable parameters of the network

structure. Oftentimes, increasing the number of neu-

rons can improve the performance of the NN, although

it increases the computational costs (Maleki et al.

2021). Figure 4d provides a schematic illustration of

the architecture of a DDN, which is basically a

modified SNN with more hidden layers. DNNs can be

developed with or without pre-training process. In

Fig. 4d, SAE is assigned to DNN for pre-training. SAE

is assigned in between the layers of DNN. Therefore to

construct SADNN with j layers and full inter-connec-

tion, j-1 SAEs are required and for the presented

model with a total of 6 layers consisting of: input

layer ? 4 hidden layers ? output layer, 5 SAEs were

utilized. Considering the number of layers and

neurons, 6 layers SADNN with

6 ? (15 ? 12 ? 9 ? 6) ? 3 structure, has 5 SAEs,

with 6 ? (15) ? 6, 15 ? (12) ? 15, 12 ? (9) ? 12,

9 ? (6) ? 9, 6 ? (3) ? 6 structures.

Assignment of SAEs to DNNs according to the

number of neurons in each layer of DNN is shown in

the right part of Fig. 4d. The number of neurons in

each SAE is similar to the ones used in the corre-

sponding DNN layer. First the SAE catches the input

fed to DNN as its own inputs and outputs data; after

processing them the outputs in its hidden layer are

transferred to the second SAE as the new input. This

process continues up to a point when it reaches the last

SAE. After successfully training all SAEs, the

obtained initial weight and bias values of each layer

wj(0), are assigned to DNN’s corresponding layer to

initialize the modelling process with fine-tuned

SADNN.

After identifying the optimum structure of NN with

the highest performance, chain rules based on the

values of weights and biases are implemented to

determine the model functionality considering the

results obtained in all the layers, as described below:

a1 ¼ f 1 w1iþ b1
� �

ð5Þ

a2 ¼ f 2 w2i1 þ b2
� �

ð6Þ

a3 ¼ f 3 w3i2 þ b3
� �

ð7Þ

a4 ¼ f 4 w4i3 þ b4
� �

ð8Þ

a5 ¼ f 5 w5i4 þ b5
� �

ð9Þ

a6 ¼ M m 1ð Þ; m 2ð Þ; m 3ð Þð Þ ¼ f 6 w6i5 þ b6
� �

¼ f 6ðw6f 5ðw5f 4ðw4f 3ðw3f 2 w2f 1 w1iþ b1
� �

þ b2
� �

þ b3Þ þ b4Þ þ b5Þ þ b6Þ
ð10Þ

where a1, a2, a3, a4 and a5 are the outputs of the first to

fifth layers, respectively. Function M assigns the

values of the 6 considered input parameters of laser

power, scanning speed, hatch spacing, thickness of

melted layer and sample direction to the 3 output

parameters of yield strength m(1), ultimate tensile

strength m(2) and elongation m(3).

Finally, to specify the relative impact of each input

parameter on the outputs, a sensitivity analysis is

carried out by means of the obtained weight matrix of

NN and Garson equation as follows (Olden et al. 2004;

Maleki and Unal 2020b):

bFig. 2 Representative images illustrating the effects of SLM

process parameters including laser power p, laser beam diameter

d, scanning speed v, hatch spacing h, thickness of melted layer t,
and energy density E on the quality of as-built LPBF fabricated

Ti-6Al-4V. Cross-sectional optical micrographs of single scan

track produced with different beam diameters and speeds of

a d = 50 lm, p = 400 W, v = 25 mm/s, b d = 50 lm,

p = 400 W, v = 50 mm/s, c d = 50 lm, p = 400 W,
v = 75 mm/s, d d = 50 lm, p = 400 W, v = 100 mm/s,

e d = 200 lm, p = 400 W, v = 25 mm/s, f d = 200 lm,
p = 400 W, v = 50 mm/s, g d = 200 lm, p = 400 W,

v = 75 mm/s and h d = 200 lm, p = 400 W, v = 100 mm/s
adopted from (Shi et al. 2018). Optical micrographs of as built

Ti-6Al-4V fabricated with different energy densities of

i E = 74 J/mm3, j E = 100 J/mm3, k E = 32 J/mm3 and

l E = 27 J/mm3 adopted from (Gong et al. 2015). Variation of

Ti-6Al-4V porosity with different thicknesses of melted layer

m t = 20 lm, p = 400 W, v = 2400 mm/s, n t = 60 lm,
p = 400 W, v = 2400 mm/s and o t = 100 lm, p = 400 W,
v = 2400 mm/s adopted from (Qiu et al. 2015). Surface

morphologies of fabricated material with different thicknesses

of melted layer and scanning speed p t = 20 lm, p = 400 W,
v = 2300 mm/s, q t = 20 lm, p = 400 W, v = 3500 mm/s,

r t = 60 lm, p = 400 W, v = 2400 mm/s and s t = 80 lm,
p = 400 W, v = 2400 mm/s adopted from (Qiu et al. 2015)
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where Ij is the importance of jth input parameter

relevant to the output parameter, Ni and Nh are the

numbers of input and hidden neurons, respectively,

and W is the connection weight; the superscripts i, h,

and o in turn refer to input, hidden and output neurons.

4 Results and discussion

To achieve a NN structure of high performance and

compare the efficiency of SNN, DNN and SADNN,

several networks with different architecture and

network parameters were developed. Accuracy of

the results in terms of output parameter of yield

strength obtained from SNNs with 1 and 2 hidden

layers as a function of neurons’ number is shown in

Fig. 5a. It can be observed that increasing the number

of neurons, notably enhances the performance of the

SNN network.

Figure 5b compares the accuracy of the estimated

yield strength using SNNs, DNNs and SADNNs. In all

cases, 6 and 3 neurons were respectively used for input

and output layers, considering a learning rate of 0.195

and a Logarithmic-Sigmod transfer function. The

results indicate that SADNN with a structure of

6 ? (15 ? 12 ? 9 ? 6) ? 3 exhibited the highest

performance among all the developed NNs, showing

accuracies of 0.99 and 0.98 for training and testing

processes, respectively. The details of the developed

network performance evaluation are presented in

Table 5. In order to investigate the performance

independency of the obtained optimum structure from

the used data fed to the network, three more orders of

data set were generated using random function to

select the data for training and testing (42 samples for

training and 10 samples for testing). Performance

evaluations of the other randomly selected data are

shown in Table 6. It can be observed that in the whole

considered randomly derived data sets, like the one

already used, accuracies of at least 0.99 and 0.98 were

obtained for training and testing processes,

respectively.

In this study, high prediction accuracy for tensile

properties such as elongation was obtained which is

usually highly fluctuated particularly for the LPBF

samples due to unforeseen processing defects by using

a relatively small dataset. This point can be

Fig. 3 Morphologies and particle size distribution of Ti-6Al-

4V feed-stock powder used in LPBF processes a 10–50 lm

adopted from (He et al. 2019), b 26–51 lm adopted from (Zhao

et al. 2016), c 25–55 lm adopted from (Shi et al. 2017),

d 15–70 lm adopted from (Yu et al. 2017), e 20–44 lm adopted

from (Yang et al. 2019c), f 16–50 lm adopted from (Cao et al.

2018), g 18–40 lm adopted from (Simonelli et al. 2014) and

h 20–40 lm adopted from (Zhang et al. 2018)
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Fig. 4 a Schematic illustration of structure of a NN with one

hidden layer considering the weight matrixes w, bias vectors b,

linear combiner u and transfer function f. b The flowchart de-

scribing the approach used in this study considering R2 value as

an index of predicted results’ accuracy. c Schematic represen-

tation of a SNN with 2 hidden layers. d The architecture of the

developed 6 layers DNN and SADNN models considering

assignment of SAE to SADNN
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investigated with two different aspects. Firstly, in this

study, as all major parameters of LPBF process

including laser power, scanning speed, hatch spacing,

layer thickness and sample direction were considered

as inputs, the whole process is modeled completely.

Variations of the mentioned input parameters affect

the states of the fabricated LPBF materials in terms of

internal (such as porosities resulted by entrapment of

inert gas in the melt pool during the melting of powder

or keyhole pores or lack of fusion discontinuity) and

surface (such as surface morphology) properties which

directly affect the tensile behaviors such as elongation

of the material. In addition, considering the feed-stock

material, same material was investigated and only the

effects of powders size were neglected due to their

high scattering in each performed experiment. Sec-

ondly, as the main novelty of this study, it was found

that, stacked auto-encoder as a pre-training tool can

play a critical role to increase the accuracy of the

modeling developed by a small set of data.

Having validated the high performance of the

developed SADNN, model function was generated for

parametric analysis of LPBF process to evaluate the

contribution of each process paramter to the tensile

properties of Ti-6Al-4V samples. For the paramteric

analysis, based on the available experimental data, the

following intervals were considred for each input

paramter: 42 W B laser power B 500 W, 70 lm B

hatch spacing B 200 lm, 20 lm B thickness of

melted layer B 90 lm and 0 B sample

direction B 90�.
The results of the parametric analysis in terms of

yield strength, ultimate tensile strength and elongation

are presented in Figs. 6, 7 and 8, respectively.

According to the obtained results, the variation of

LPBF procerss paramters affects the considered

outputs in a various ways directly correlated with the

role of the corresponding parameter in the build up

formation.

As shown in Figs. 6a and 7a, high scanning speed

and low laser power lead to the lack of fusion and poor

adhesion, and thus result in very low yield and

ultimate strengths, as confirmed by experimental

studies (Yakout et al. 2019; Mutua et al. 2018; Tran

and Lo 2019); Fig. 8a shows a similar trend for

elonagtion. For high power and scanning speed[
600 mm/s, due to the exposure to temperatures higher

than boiling temperature of Ti-6Al-4V and evapora-

tion, the fabricated material becomes distorted leading

to extremely low yield and ultimate tensile strengths

(Tran and Lo 2019; Yan et al. 2018). Experimental

Fig. 5 a The effects of number of neurons in each layer of SNNs vs. accuracy of yield strength estimation. b Comparison of the yield

strength estimation accuracy between developed NNs of different structures

Table 5 R2 values for individual output parameters in both

training and testing phases obtained using SADNN

Output parameter Obtained R2

Training Testing

Yield strength 0.9932 0.9887

Ultimate strength 0.9956 0.9921

Elongation 0.9944 0.9917
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studies have evidenced that in the area representing

high power ([ 200 W) and low speed, due to the

overheating and unsatbale melting, keyhole melting

phenomena can occur leading to the formation of gas-

induced defects and large spherical pores (Tran and Lo

2019; Le et al. 2019; Meier et al. 2018). These pores

will negatively affect the mehchanical properties of

the LPBF fabricated material (Choo et al. 2019). As

illustrated in Fig. 8a, in the high power ([ 300 W) and

low scanning speed (\ 500 mm/s) regime, the

induced high energy density can activate the keyhole

mechanism that will result in notable reduction of

elongation.

In the LPBF process, hatch spacing can directly

affect the heat-transfer and extent of overlap in the

scanning direction (Tran and Lo 2018; Xia et al. 2016),

as well as the relative density and build-up rate (Qiu

et al. 2015; Su and Yang 2012). Increased hatch

spacing upto unfavorable ranges will reduce the

maximum temperature and heat accumulation; this

will result in reduced melt pool width leading to

inadequate melting of the particles, and decreased

density of the part (Dong et al. 2018; Aboulkhair et al.

2014). As it can be observed in Figs. 6b and 7b, in the

area correponding to high hatch spacings ([ 150 lm)

due to the increased porosity of material, yield and

ultimate tensile strengths are quite low. Also, in the

low hatch spacing (&70–100 lm) and high scanning

speeds (&900–1600 mm/s) zones, due to the insuffi-

cient melting of powders, the yield and ultimate tensile

strengths are reduced. However, the obtained results

for elongation (Fig. 8b) reveal that high elonagtion

can be achieved, whithin the ranges of 140–200 lm

and 1000–1600 mm/s for hatch spacing and scanning

speed, respectively.

The thickness of the melted layer, as one of the

main parameters of the LPBF process, can directly

affect the building rate and fabrication efficiency. This

parameter also influences the heat and mass transfer as

well as cooling rate whithin the melt pool. These

aspects can control the tensile properties of the LPBF

fabricated materials. For high thicknesses, the gener-

ated energy density might not be enough to fully melt

the powder layer and thus balling phenomenon could

occur. Thereore, the insuefficnt bonding could be

obtained between powders and the underlying mate-

rial, resulting also in lower density (Zhang et al. 2013;

Guan et al. 2013; Olakanmi et al. 2015). This

phenomenon can be observed in Figs. 6c and 7c, in

the regimes corresponding to layer thick-

nesses[ 50 lm, where the yield and ultimate

strengths are reduced. Considering that the final

properties of the material is controlled by the syner-

gistic effect of all process paramters, in the high layer

thicknesses regime, if favorable scanning speeds are

used, higher elongation can be obtained for the

fabricated material. For instnace, it has been reported

that for SLM fabricated 1Cr18Ni9Ti stainless steel

samples, the elongation enhanced by increasing the

layer thickness from 100 to 150 lm while setting the

scanning speeds in the high range of 2000–4000 mm/

s; however the yield and ultimate strengths were

reported to be decreased for these samples (Ma et al.

2015). Herein, Fig. 8c, shows that the elongation of

the LPBF fabricated Ti-6Al-4V samples is increased

by rising layer thickness whithin the range of

30–90 lm and scanning speeds in the range of

Table 6 R2 values for

individual output

parameters in both training

and testing steps obtained

by SADNN in the three

different orders of randomly

selected data

Randomly selected data set Output parameter Obtained R2

Training Testing

Data set 1 Yield strength 0.9911 0.9853

Ultimate strength 0.9907 0.9879

Elongation 0.9962 0.9927

Data set 2 Yield strength 0.9909 0.9916

Ultimate strength 0.9934 0.9909

Elongation 0.9944 0.9921

Data set 3 Yield strength 0.9957 0.9902

Ultimate strength 0.9912 0.9889

Elongation 0.9924 0.9931
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1000–1600 mm/s; however, the elongation is very low

in areas with thicknesses[ 40 lm and scanning

speeds\ 1000 mm/s.

Sample direction in terms of the relative angle

between the longitudinal axis of the sample and the

considerded building direction is another important

parameter known to affect the properties of LPBF

fabricated material. As also reported in Table 4, in

most of the experiments in the field, parts have been

fabricated either vertically or horizentally with sample

directions of 0� and 90�, respectively (considering z

axis parallel to the building direction). Adjusting this

parameter is quite challenging as besides its depen-

dancy on other process paramters, it is very sensitive

to the powder type in trerms of material and morpho-

logical aspects. It was reported that while keeping all

LPBF process parameters constant, parts fabricated

with larger size powders demonstrate lower yield and

ultimate strengths progressively when built along 0�,
45� and 90� directions; however, the effect of

Fig. 6 Parametric analysis of the effects of LPBF process

parameters on yield strength of Ti-6Al-4V in terms of a laser

power and scanning speed, b hatch spacing and scanning speed,

c thickness of melted layer and scanning speed and d sample

direction and scanning speed
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orientation is on elongation follows a trend cotrary to

yield and ultimate tensile strength (Spierings et al.

2011). As mentioned before, in this study the effects of

powder size and morphology were not considered in

the NN modelling, due to the high scatter of the

available experimental data. Furthermore, due to the

quality of the bonding and the bundaries of solidified

material in the layer-by-layer fabrication, the yield and

ultimate stngths are reduced and elongation is

increased for 0� (vertically built sample) compared

to 90� sample dirtection (horizentally built sample)

(Guan et al. 2013; Buchbinder et al. 2011; Sui et al.

2019). The results obtained in terms of sample

direction and scanning speed indicate that sample

directions whithin 40–90� lead to higher yield and

ultimate strengths compared to other build-directions

(see Figs. 6d and 7d). On the other hand, as shown in

Fig. 8d, in most cases the elogation is higher in lower

angles of build-direction in particular for 0� in the

scanning speed ranges of 700–800 and 900–1200 mm/

s. Also, in the higher angle sample directions of about

75–90� and scanning speeds of 1000–1200 mm/s, the

elonagtion is in midlevel and quasi high.

Fig. 7 Parametric analysis of the effects of LPBF process

parameters on ultimate tensile strength of Ti-6Al-4V in terms of

a laser power and scanning speed, b hatch spacing and scanning

speed, c thickness of melted layer and scanning speed and

d sample direction and scanning speed
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Parametric analysis were performed for prediction

of yiled strength, ultimate tensile strength and elon-

agtion in terms of energy density and sample build-

direction as depicted in Fig. 9. The effects of laser

power, scanning speed, hatch spacing and layer

thickness are included in energy density. The results

indicate that for high energy densities and low angle

sample dirctions, lower yield and ultimate tensile

strengths can be obtained due to the insuefficent

melting (see Fig. 9a and b). However, for energy

densities\ 4500 J/mm3 and sample dirction

angles[ 30�, higher yield and tensile ultimate

strengths can be reached. Also for energy densities

of about 1000–2000 J/mm3 and sample directions

angles of 70–90�, yield and ultimate tensile strengths

can reach to their highest values. However, as

presented in Fig. 9c, different behavoir is obtianed

for elonagtion in terms of energy denisty and sample

Fig. 8 Parametric analysis of the effects of LPBF process

parameters on elongation of Ti-6Al-4V in terms of a laser power

and scanning speed, b hatch spacing and scanning speed,

c thickness of melted layer and scanning speed and d sample

direction and scanning speed

123

214 E. Maleki et al.



direction. High elonagtion can be obtained in two

different areas: in the region corresponding to energiy

density of 2700–4500 J/mm3 and sample direction

angle of 0–20�, and also in the region of energy density

of 3000–5900 J/mm3 and sample direction angle of

70–90�.
Figure 10 illustrates the results obtained from

sensitivity analysis. The analysis confirms that all

the considered input parameters for the developed

SADNN, directly affect the tensile properties of LPBF

fabricated Ti-6Al-4V material. Ranks of importance

of each input on outputs parameters are shown in

Fig. 9 to highlight the effectiveness of the variation of

different input parameters on the outputs.

Yield and ultimate tensile strengths were found to

be more sensitive to the scanning speed, laser power,

hatch spacing, layer thickness and sample direction, in

a progressive order. However regarding elongation,

laser power and scanning speed have the most

importance, hatch spacing and layer thickness have

equal effects in the 3rd rank and sample direction has

the least significant effect. These results reveal that for

instance to achieve higher tensile strength, variation of

scanning speed and laser power can be more effective

compared to other parameters.

Based on the obtained results, it can be observed

that the developed NN model can play crucial role for

LPBF process parameters optimization for fabrication

of Ti-6Al-4V parts. As it mentioned (in introduction),

mostly AM process parameters optimization has been

carried out by design of experiment and the relevant

experimental characterizations which are often costly

Fig. 9. 2D contours representing the effect of energy density and sample direction on tensile mechanical properties of LPBF fabricated

Ti-6Al-4V a yield strength, b ultimate strength and c elongation

Fig. 10 Sensitivity analysis data on the tensile properties of LPBF fabricated Ti-6Al-4V
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in terms of time and money. In addition, novel

experiments in this field which are based on trial-

and-error approach are time consuming and exorbitant

in particular for metal AM (Wang et al. 2018,2019;

Sun et al. 2016). Therefore, using AI based systems

such as NNs for optimization of AM process param-

eters for different materials can pave a path to reduce

the extra costs by eliminating successive experiments.

In development of the NN based models, rather than

the process parameters and characteristics of the feed-

stock material, the effects of used equipment as well as

scanning strategies can be considered in upcoming

studies.

5 Conclusion

In this study neural networks were used to investigate

the effects of laser powder-bed fusion process param-

eters on the mechanical tensile properties of Ti-6Al-

4V. Combination of deep learning and stacked auto-

encoder was used for prediction, and optimization as

well as parametric and sensitivity analyses using

neural networks. Different neural networks including

shallow neural network, deep neural network and

stacked auto-encoder assigned deep neural network

were developed and evaluated in terms of their

efficiency. An extensive review was performed to

collect all the relative experimental data available in

the literature on Ti-6Al-4V to feed the developed

networks. The main parameters of laser powder-bed

fusion process including laser power, scanning speed,

hatch spacing, layer thickness and sample direction

were considered as inputs and yield strength, ultimate

tensile strength and elongation were regarded as

outputs of the neural networks. Comparing the accu-

racy of the obtained outputs of the developed networks

indicated that pre-trained stacked auto-encoder

assigned deep neural network exhibited the highest

performance; thus this network was used for further

analysis. The results also indicated that increasing the

depth of the neural network in terms of number of

layers could play an important role in enhancing the

accuracy of the predicted outputs.

Parametric analyses revealed that, laser powder-

bed fusion parameters affect the yield and ultimate

tensile strengths in a similar manner, while elongation

represented a different trend as a function of all the

considered input parameters. The results indicated that

using high laser power, scanning speed, hatch spacing

and layer thickness could have detrimental effects on

tensile properties; the analysis provided an optimal

range for each of the abovementioned parameters. The

sensitivity analysis showed that scanning speed, laser

power, hatch spacing, layer thickness and sample

direction have the most significant role in variation of

yield and ultimate tensile strengths, in a sequential

order. However in terms of elongation, laser power

was found to be the most important parameter,

whereas scanning speed, hatch spacing, layer thick-

ness and sample direction represented least influence,

progressively.

Overall, the results indicate the high potential of

artificial intelligence systems such as stacked auto-

encoder assigned deep neural network to be used as a

powerful alternative tool for parametric analysis and

optimization of different additive manufacturing

technologies such as laser powder-bed fusion with

very high accuracy. These approaches can be sourced

to efficiently tune the process parameters based on the

target mechanical properties.
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