
Thermoelastic attenuation of circular-cross-sectional
micro/nanoring including single-phase-lag time

Jung-Hwan Kim . Ji-Hwan Kim

Received: 14 December 2020 / Accepted: 1 July 2021 / Published online: 22 July 2021

� The Author(s), under exclusive licence to Springer Nature B.V. 2021

Abstract In this work, the thermoelastic dissipation

(TED) for circular-cross-sectional micro/nanoring

model is studied including the single-phase-lag

(SPL) time based on the non-Fourier heat conduction

model. The toroidal solid ring is simple to manufac-

ture and thus the potential is high for future develop-

ment. Also, the present model is more precise than the

1D or 2D beam or rectangular-cross-sectional ring

because the governing equation is established by 3D

coordinate system.Moreover, the SPL shows the delay

time of heat-flux and is especially important in

cryogenic or ultrafast-vibration environments. In this

regard, characteristics of the TED is mainly analyzed

according to the lagging time, geometrical shape,

mode number and temperature, etc. Using the exper-

imental data in literatures, the effectiveness of this

work is verified to represent the investigations. The

spectra of the TED with the phenomenon of multiple

peaks are presented, and then the results can be

grouped and compared with previous works.

Moreover, the temperature distribution is graphically

described to explain the SPL mechanism.

Keywords Circular-cross-sectional ring � Second
sound velocity � Single-phase-lagging � Thermoelastic

dissipation (TED)

1 Introduction

A ring structure can be a general form to apply for

modern MEMS/NEMS devices such as resonator,

sensor, etc. And the model is topologically reliable and

stable, furthermore the eigenfrequency is much higher

than a beam. Additionally, it is easy to manufacture

just by bending a micro/nanowire and sticking both

ends together with few restriction of the cross-

sectional shape. Especially, the long and thin material

model with circular-cross-section that forms the

source of toroidal ring is easy to obtain. Up to now,

(Tao et al. 2011) developed a gyroscope ring model

including the piezoelectric effect. Furthermore, (Pau-

zauskie et al. 2006) represented the triangular-cross-

sectional nanowire ring resonator. (Gu et al. 2015) also

introduced hybrid plasmonic pseudo-ring resonators

by bending a linear wire structure. (Senkal et al. 2014)

performed experimental work for an epitaxial silicon

encapsulated toroidal ring gyroscope model. (Seder-

berg et al. 2011) experimentally proved the possibility

of the design a plasmonic nano-silicon-ring resonator
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for optical switching application. In this regard, the

toroidal ring for MEMS/NEMS has excellent devel-

opment potential in the near future.

The thermoelastic dissipation (TED) is one of

representative intrinsic damping due to the inter-

molecular friction heat during the repetitive motion,

and is a function of the frequency, temperature, and

some other thermal characteristics. While, the atten-

uation is difficult to control rather than the external-

environmental-cause damping mechanisms. (Kim

et al. 2010) To ensure the efficiency of the structure

as higher quality factor (Q-factor; Q), the TED should

be investigated by the classical molecule-scale heat-

conduction model. Numerous researchers have stud-

ied the dissipation in order to ensure the high-

efficiency such as: (Zener 1937) suggested the dissi-

pation as a function of the natural frequency in a

yardstick. (Lifshitz and Roukes 2000) proposed the

micro-beam model to present the TED effect. Wong

et al. (2004),(2006) extended the dissipation mecha-

nism into the micro-ring models using the beam Zener

(1937); Lifshitz and Roukes (2000). Li et al. (2016)

analyzed the dissipation of the circular-cross-sectional

ring structure (Razavilar et al. 2016) presented the

TED in a microplate resonator based on the modified

plane stress and strain theories. Moreover, Kim and

Kim researched the rings with TED for circular- Kim

and Kim (2018) cross-section including point masses.

Particularly in the nano-scale, the efficiency can be

higher in the ultralow temperature or ultrahigh

frequency vibration. For example, the modern devices

such as a superconductor or space developments

should be designed and analyzed in these extreme

environments. Practically, the slow heat flux cannot

overcome the fast vibration, thus the delay of the flux

occurs in the small structure. In the cryogenic or nano-

scaled characteristics, the single-phase-lagging (SPL)

can be defined as the time deviation. And thus the

delay cannot be investigated by using only the

classical principle of Fourier’s heat conduction.

Therefore, the thermoelastic attenuation characteris-

tics due to the lagging time are different from classical

models should be represented in detail. Moreover, the

properties are essential for analysis of NEMS struc-

tures which can be applied into mechanical signal

processing, ultrasensitive mass detection, or injection

probe microscopes, etc. Then, the SPL is a crucial

complement to the limitations, and a lot of researches

have been continued such as: (Cattaneo 1958) and

(Vernotte 1958) independently proposed a model well

known as the ‘‘CV equation’’ or ‘‘non-Fourier (nF)’’ to

supplement the limitations of the literature using the

previous Fourier’s equation. Especially, Lord and

Shulman (Lord and Shulman 1967) concretized the

CV heat conduction equation for the elastic medium

known as ‘‘LS’’ model. (Vitokhin and Ivanova 2017)

Moreover, (Khisaeva and Ostoja-Starzewski 2006)

examined the damping mechanism of the Euler–

Bernoulli nanobeam model during the flexural vibra-

tion. (Sharma 2011) studied the vibration for a silicon

beam including the frequency shift and dissipation

induced by the phase-lagging time. Also, (Zhou and Li

2017) predicted the more accurate characteristics in

micro/nano-beams with the TED based on the non-

Fourier heat conduction theory. Zhou et al. organized

the estimations of the dissipation of the beam with

circular- (Zhou et al. 2018) and ring with rectangular-

(Zhou et al. 2019) cross-sections, respectively. More-

over, (Kim and Kim 2019) extended the analysis of the

dissipation for the cylindrical shell model with the

lagging of the heat flux through the thickness

direction.

In thiswork, the TEDof the toroidal solid-ringmodel

is investigated including SPL for the MEMS/NEMS

structures. Primarily, the eigenfrequency of the ring is

obtained during the in-plane and inextensional vibration

behavior. Then, the dissipation effect is analyzed for the

ringwith the phase-lagging by the non-Fourier (nF) heat

conduction equation. The 3-dimensional heat conduc-

tion is considered with the circular cross-sectional

configuration of the model. Thus, the temperature

profile is expressed in the analytical form using Bessel

functions. Furthermore, quality factor (Q-factor) of the

ring is obtained bymaximum and dissipated energies in

single cycle.Numerical data ofQ are comparedwith the

previous experimental literatures, and the temperature

distributions are representedgraphically.Finally, phase-

lagging effect for the normalized cross-section is

demonstrated as a function of the frequency and the

delaying time.

2 Modeling of the toroidal ring

Figure 1 shows a toroidal circular solid ring model

with mean radius R0, cross-sectional radius r0, radial
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coordinate x, and tangential coordinate y. (Li et al.

2016) Additionally, the global and local coordinates

are designated as (R; h; Z), and (x; y; z) with b as a local
angle, respectively.

2.1 Eigenfrequency of the structure

Generally, the ring is sufficiently thin as r0 � R0, thus

Euler–Bernoulli beam model is suitable in this anal-

ysis. Additionally, the local distance from the neutral

plane in the cross-section is xj j �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2o � z2
p

. Moreover,

the ring is materially homogeneous, isotropic and

uniform in the whole structure.

For the nth mode of the in-plane vibration, the

shapes in the radial and circumferential directions can

be defined as u h; tð Þ; v h; tð Þf g =

= Ûn sin nhð Þ; V̂n cos nhð Þ
� �

� exp jxtð Þ. In this work,
the length of centerline remains constant during the

motion known as ‘‘inextensional assumption’’ is

introduced into the toroidal ring with Un hð Þ ¼
� oVn hð Þ

oh and V̂n ¼ � Ûn

n Li et al. (2016); Soedel and

Qatu (2005). Thus, the eigenfrequency of the toroidal

micro/nano-ring can be obtained as

xn0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

EI

qAR4
0

n2 � 1ð Þ2n2
n2 þ 1

s

ð1Þ

where, I ¼ 0:25pr40 and A ¼ pr20 are the moment of

inertia and cross-sectional area of a toroidal ring,

respectively.

2.2 Non-Fourier heat conduction in 3-dimensional

model

To overcome the paradox of infinite speed included in

the classical Fourier’s approach of thermal conduction

(Khisaeva and Ostoja-Starzewski 2006), the time

derivative term should be considered in the general

heat flux. Also, delay of the flux is much larger than

that of temperature gradient, thus the phase-lagging is

considered only into the flux vector. Furthermore, the

temperature profile according to local z-axis as well as

x-axis and circumferential direction should be consid-

ered because the boundary conditions are different

from rectangular cross-section (Zhou et al. 2019).

Thus, the 2D expression in Zhou et al. (2019) is not

valid in this work, therefore the 3D modeling of the

TED is suitable for the toroidal ring.

In order to obtain the temperature profile, the

solution of the heat conduction model is assumed as

(Li et al. 2016)

T R; Z; h; tð Þ ¼ T̂ R; Z; h; tð Þ � T̂a
¼ T0 R; Z; hð Þ exp jxtð Þ ð2Þ

where T̂ , T̂a, j, x, and t are the instantaneous and

ambient temperatures,
ffiffiffiffiffiffiffi

�1
p

, frequency, and time,

respectively.

When the temperature deviation is small enough,

the coupled heat conduction equation during the

relaxation for a single-phase-lag thermoelastic struc-

ture, known as Lord-Shulman (LS) model, including

the lagging time of heat flux vector sQ is (Khisaeva and

Ostoja-Starzewski 2006):

1þ sQ
o

ot

� �

q ¼ �krT ð3Þ

where q, k, r, and T are the heat flux vector, constant

thermal conductivity, gradient operator, and the abso-

lute temperature, respectively.

Then, the coupled temperature distribution with the

strains as in Wong et al. (2006); Kim and Kim (2019)

are:

rq ¼ �Cv
oT

ot
� EaT̂a
1� 2v

oê

ot
ð4Þ

where E, a, Cv, v, ê ¼ eh þ eR þ ez, and r2 ¼
r rð Þ ¼ o2

oR2 þ 1
R

o
oR þ 1

R2
o2

oh2
þ o2

oz2
are the Young’s mod-

ulus, thermal expansion coefficient, specific heat,

Poisson’s ratio, cubic dilatation, and the Laplacian

operator for the toroidal ring, respectively.

Thus, the coupled heat conduction equation with

the lagging time sQ depending on the material property

is obtained as:

Fig. 1 An imperfect toroidal-solid ring model
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1þ sQ
o

ot

� �

rq¼�kr2T

¼ 1þ sQ
o

ot

� �

�Cv
oT

ot
� EaT̂a
1� 2v

oê

ot

� �

ð5Þ

in here, Cv and
EabT a

1�2v are independent of time.

This equation can be re-arranged as:

kr2 � Cv
o

ot
þ sQ

o2

ot2

� �� �

T

¼ EaT̂a
1� 2v

o

ot
þ sQ

o2

ot2

� �

ê ð6Þ

On the other hand, the thermal strains are

ethermalh ¼ ethermalR ¼ aT R; h; z; tð Þ ð7Þ

Then using the stress (r)—strain (e) relationships
with the thermal effect, components of be can be

written as:

eh ¼
rh
E

þ ethermalh ð8Þ

eR ¼ ez ¼ � vrh
E

þ ethermalR ð9Þ

Also, the strain is proportional to x for the ring, then

the inextensional assumption can be adopted into

Love’s shell theory. (Soedel and Qatu 2005) For this

way, the circumferential strain for in-plane vibration

can be obtained as (Wong et al. 2004):

eh ¼ � x

R2
0

o2u

oh2
þ u

� �

ð10Þ

Then, the stress rh including thermal effect is

rh ¼ �Ex

R2
0

o2u

oh2
þ u

� �

� aET ð11Þ

Using Eqs. (7) to (11), the Eq. (6) can be reduced

with DE ¼ Ea2T̂a
Cv

� 1 as:

vr2T � oT

ot
þ sQ

o2T

ot2

� �

¼ �DE

a
o

ot
þ sQ

o2

ot2

� �

x

R2
0

o2u

oh2
þ u

� �� �

ð12Þ

in here, v ¼ k
Cv

is the thermal diffusivity, and DE is

relaxation strength of elastic modulus.

Applying the Laplacian, R ¼ R0 þ x for the thin

ring, and the Cartesian coordinate x; zð Þ can be

transformed into the local polar coordinate r; bð Þ to

present the temperature profile in the circular cross-

section as (Li et al. 2016).

x
z

	 


¼ r � sin bð Þ
cos bð Þ

	 


ð13Þ

Then, Eq. (12) can be written using the method (Li

et al. 2016) with the local polar coordinate as:

v
o2T

or2
þ 1

r

oT

or
þ 1

r

o2T

ob2
þ 1

R2
0

o2T

oh2

� �

� oT

ot
þ sQ

o2T

ot2

� �

¼ �DE

a
o

ot
þ sQ

o2

ot2

� �

r sin bð Þ
R2
0

o2u

oh2
þ u

� �� �

ð14Þ

2.3 Temperature profile including the TED effect

in the ring model

In order to present the TED, the temperature profile

using Cartesian coordinate R; Zð Þ in Eq. (2) is re-

written by the local polar coordinates r; bð Þ as:

T ¼ T r; b; h; tð Þ ¼ T0 r; b; hð Þ exp jxtð Þ ð15Þ

The boundary condition for adiabatic surface, and

the continuity condition in the circumferential direc-

tion are oT0
or ¼ 0 at r ¼ r0 and T0 hð Þ ¼ T0 hþ 2pð Þ,

respectively.

Using the Eq. (15) with x, the differential equation
is finally reduced as:

v
o2T0
or2

þ 1

r

oT0
or

þ 1

r

o2T0

ob2
þ 1

R2
0

o2T0

oh2

� �

� jx� sQx
2

� �

T0

¼ � jx� sQx
2

� �DE

a
r sin bð Þ

R2
0

1� n2
� �

Ûn sin nhð Þ

ð16Þ

Using the kth order Bessel function of first kind Jk,

the temperature profile can be defined as (Li et al.

2016):

T0 r; b; hð Þ ¼
X

inf

m¼0

X

inf

k¼0

X

inf

q¼1

Jk
akq
r0

r

� �

Akqm sin kbð Þ þ Bkqm cos kbð Þ

 �

sin mhð Þ
ð17Þ

In here, akq, Akqm, Bkqm are arbitrary numbers with q th

thermal order.
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Then, T0 can be simplified using Eq. (16) with the

boundary and continuous conditions as:

T0 r; b; hð Þ ¼
X

inf

m¼0

X

inf

q¼1

J1
a1q
r0

r

� �

Cqm sin bð Þ

 �

sin mhð Þ

ð18Þ

in here, Cqm ¼ A1qm is obtained from Akqm for only

k ¼ 1, otherwise all Akqm and Bkqm can be zero. The

methodologies can be similarly referred to Li et al.

(2016) easily because the terms including sQ are

constant.

In this way, the a1q can be obtained as (Li et al.

2016):

o

or
J1

a1q
r0

r

� �� �

r¼r0

¼ a1q
2r0

J0 a1q
� �

� J2 a1q
� �
 �

¼ 0

ð19Þ

and the results are presented in Table 1.

Furthermore, the expressions Cqm ¼ Cqn in the case

ofm ¼ n can be obtained from the orthogonality of the

Bessel function (Li et al. 2016) as:

Cqm ¼ Cqn

¼ 2r0
R2
0

DE 1� n2ð ÞÛn

a
1

a21q � 1
� �

J1 a1q
� �

jx� sQx2ð Þsq
1þ c2 þ jx� sQx2ð Þsq

ð20Þ

Otherwise for m 6¼ n, all results are zero.

In addition, the thermal relaxation time according

to the local radius (Li et al. 2016) is

sq ¼
r20
va21q

ð21Þ

Moreover, c � c a1q; n; r0;R0

� �

¼ nr0
a1qR0

is a constant

according to the heat conduction through the circum-

ferential direction. In other words, c is an additional

attenuation in the 3D model (Li et al. 2016). Then, this

work can illustrate the heat conduction along the

circumferential direction based on the term 1
R2
0

o2T0
oh2

, and

also all results are exactly the same as (Li et al. 2016)

except sQ.
Substituting Eqs. (20)–(21) into (18), the final form

of the temperature profile is:

T0 r; b; hð Þ ¼ 2r0
R2
0

DE 1� n2ð ÞÛn

a
sin bð Þ sin nhð Þ

�
X

inf

q¼1

J1
a1q
r0
r

� �

a21q � 1
� �

J1 a1q
� �

jx� sQx2ð Þsq
1þ c2 þ jx� sQx2ð Þsq

2

4

3

5

ð22Þ

In here, the Real and Imaginary parts of T0 r; b; hð Þ
are

Real T0 r; b; hð Þ½ �
Imag T0 r;b; hð Þ½ �

	 


¼ 2r0
R2
0

DE 1� n2ð ÞÛn

a
sin bð Þ sin nhð Þ

�
X

inf

q¼1

� J1
a1q
r0
r

� �

a21q � 1
� �

J1 a1q
� �

1

1þ c2 � sQ x2sq
� �� �2þ xsq

� �2

�
NR

NI

	 
�

ð23Þ

where NR ¼ �x2sQsq 1þ c2ð Þ þ
xsq
� �2

1þ xsQð Þ2
n o

and NI ¼ 1þ c2ð Þxsq.
Furthermore, the Q-factor is defined as the ratio of

the maximum elastic energy Wmax with respect to the

energy loss during a single cycle DW as (Li et al.

2016):

1

QTED
¼ 1

2p
DW
Wmax

ð24Þ

In here, the elements in the equation are:

Table 1 Solutions for the Bessel Function (a1q) in Eq. (19)

and the contribution factors (b1q)

q th order a1q
a1q
qp b1q ¼ 8

a2
1q

a2
1q
�1ð Þ

1 1.841177 0.586065 0.987444

2 5.331456 0.848528 0.010263

3 8.536351 0.905735 0.001528

4 11.70600 0.931534 0.000429

5 14.86358 0.946245 0.000165

10 30.60192 0.974090 9.13E-06

20 62.03233 0.987275 5.40E-07

50 156.2886 0.994964 1.34E-08

100 313.3711 0.997491 8.30E-10

infinite qp 1.000000 8

qpð Þ4� qpð Þ2 ! 0

123

Thermoelastic attenuation of circular-cross-sectional micro/nanoring including single-phase-lag… 919



Wmax ¼
1

2

ZZZ

vol

rhehdV

¼ 1

2

ZZZ

vol

rheh R0 þ xð ÞdSdh ð25Þ

DW ¼ �p
ZZZ

vol

rhImag ethermalh


 �

dV

¼ �p
ZZZ

vol

rhImag aT0½ �dV ð26Þ

where dV , dS, and dh are the coefficients of the

integral for small volume, surface area, and circum-

ferential angle, respectively.

Also, the TED is sufficiently smaller than the strain

and stress, then the simplified expressions are:

eh 	
rh
E
;rh 	 �Ex

R2
0

o2u

oh2
þ u

� �

ð27Þ

Therefore, Wmax and DW are:

Wmax ¼
Z x¼þr0

x¼�r0

Z z¼þ
ffiffiffiffiffiffiffiffiffiffi

r02�x2
p

z¼�
ffiffiffiffiffiffiffiffiffiffi

r02�x2
p

Z h¼2p

h¼0

rheh R0 þ xð Þf gdhdzdx

¼ pEIR0

2

1� n2ð ÞÛn

R0
2

� �

ð28Þ

DW ¼ �p
Z x¼r0

x¼0

Z b¼2p

b¼0

Z h¼2p

h¼0

rhImag aT0½ �f gdhdbdx

¼
X

inf

q¼1

2pDE
8

a21q a21q � 1
� �

1þ c2ð Þxsq
1þ c2 � sQ x2sq

� �� �2þ xsq
� �2

2

4

3

5

ð29Þ

Inserting Eqs. (28) and (29) into Eq. (24), the

expression of Q-factor can be re-written as:

1

QTED

¼
X

inf

q¼1

b1qDE
1þ c2ð Þxsq

1þ c2 � sQ x2sq
� �� �2þ xsq

� �2

" #

�
X

inf

q¼1

1

QTED;q

ð30Þ

with the contribution factor of q th thermal mode

b1q ¼ 8

a2
1q

a2
1q
�1ð Þ.

Especially, b11 ¼ 0:987 	 1, and other b1q s

(q[ 1) are much smaller than 1 (Li et al. 2016), thus

the result can be simplified with only q ¼ 1 as:

1

QTED;q¼1

¼ DE
1þ c2ð Þxs1

1þ c2 � sQ x2s1ð Þ
� �2þ xs1ð Þ2

ð31Þ

The result is exactly the same as (Li et al. 2016),

when sQ is zero for toroidal ring based on classical

Fourier’s heat conduction model.

3 Numerical simulations and discussions

In this section, the results of the numerical studies are

presented for a solid toroidal micro/nano-ring model

with the TED effects. The contents are organized as:

approximation and normalization by using asymptotic

lines, verifications, numerical results for the ring

model, and the temperature profiles including the

time-lagging.

To consider the TED with non-Fourier heat

conduction, single-phase-lag time sQ is introduced

for the material properties as (Khisaeva and Ostoja-

Starzewski 2006)

sQ ¼ v

V2
C=3

¼ v

V2ndð Þ2
ð32Þ

In here, VC ¼
ffiffiffiffiffiffiffiffiffi

E=q
p

is the phonon velocity in the

medium, well known as ‘‘ordinary’’ or ‘‘first’’ sound

velocity. While, the ‘‘second’’ sound velocity V2nd is

the finite speed of the heat wave propagation. Addi-

tionally, VC is the RMS value of the 3-dimensional

phonon speed, thus V2
C ¼ 3� V2ndð Þ2 (Chester 1963).

Interestingly, characteristics of both the normally

hearable sound and the heat are the similar waves, then

V2nd can be considered as another acoustics. Also, this

is the crucial difference between the CV’s (i.e. non-

Fourier) and classical Fourier’s heat conduction

models (Zhou and Li 2017). Moreover, sQ is indepen-

dent to any geometrical shape, unlike sq. Moreover,

(Table 2) shows the data of phase-lagging time sQ on

NaF based on a curve-fitting from experiment (Kovács

and Ván 2016), another method as ‘‘RET’’ (Kovács

and Ván 2018), and Eq. (32). In the comparison, the

result from Eq. (32) is well matched with existing

works, thus the validity of the sQ can be secured for

this study.

Table 3 shows the properties of the material under

the various ambient temperatures of silicon (Sharma

2011), and the lagging time sQ on 40[K] is about 370

times longer than the room temperature. In addition,

the Poisson’s ratio v is 0.22 in all selected

temperatures.
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Furthermore, in order to find the peak value of the

QTEDð Þ�1
with respect to the frequency, the differen-

tial expression can be written as:

o

ox
QTEDð Þ�1¼ 0 ð33Þ

3.1 Asymptotic lines for normalized frequency

and quality factor

To compare the TED in beam and previous ring

models, the normalized frequency (i.e. x̂peak;q) and

peak value of QTEDð Þ�1
(i.e. Q̂TED;peak

� ��1
) are

introduced according to the non-dimensional lagging

time bq ¼
sQ
sq
. Thus, the trends of the data can be

simplified into the clear forms, then the easy predic-

tion can be possible for the effect due to the lagging. In

this regard, the frequencies of the peak for the [rad/

sec] dimension xpeak;q and normalized one x̂peak;q,

respectively, are

x̂peak;q

� �2¼ xpeak;q � sq
� �2¼ 1

b2q

f bq
� �

6
ð34Þ

In here, the reasonable expression f bq
� �

without

meaningless negative sqrt term is:

f bq
� �

¼ 2bq 1þ c2
� �

� 1
� �

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2bq 1þ c2ð Þ � 1
� �2þ12 1þ c2ð Þ2b2q

q

ð35Þ

Using Eq. (34) into Eq. (30), thus

1

Q̂TED;peak;q

¼ 1

QTED;peak;q

� �

� b1qDE

¼
bq 1þ c2ð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

6f bq
� �

q

6 1þ c2ð Þbq �
f bqð Þ

6

	 
2

þf bq
� �

ð36Þ

In here, Q̂TED;peak;q

� ��1
is no longer 0:5DE Zhou

and Li (2017); Zhou et al. (2018),(2019) due to the

lagging time effect, rather than classical Fourier’s

model Lifshitz and Roukes (2000);Wong et al. (2006).

Also, in a sufficiently thin ring when c is neglected,

then the result without c is equal to the cases of beams

Zhou and Li (2017); Zhou et al. (2018) and 1D

rectangular-cross-sectional ring cases Zhou et al.

(2019). Additionally, Q̂TED;peak;q

� ��1
of the rectangu-

lar-cross-sectional ring with 2D heat conduction

model Zhou et al. (2019) is much similar to the

present work, except c.

Table 2 Data of phase-lagging time on NaF with T = 13 [K], E = 79 [GP] and q = 2866 [kg/m3]

j[W/(mK)] Thermal

conductivity
Cv[10

6 J/(m3K)] specific

heat per volume

sQ[10�12sec]

Measured data by fitting (Kovács

and Ván 2016)

RET method (Kovács

and Ván 2018)

Equation (32)

10,200 5.159E-03 0.21 0.21 0.2015

Table 3 Material properties of silicon for various temperatures. (Sharma 2011)

T̂a[K] ambient

temperatures

E[109 P]

Young’s

modulus

q[kg/m3]

Material

density

j[W/(mK)]

Thermal

conductivity

a[106/K] Thermal

expansion

coefficient

Cv[10
6 J/(m3K)]

specific heat per

volume

sQ[10�12sec]

Phase-lagging

time

40 169.3 2330 3660 -0.164 0.10275 1470.64

80 169.2 2330 1360 -0.472 0.43804 128.263

160 168.5 2330 375 0.689 1.06248 14.6416

293 165.9 2330 156 2.590 1.66129 3.95649

400 163.1 2327 105 3.253 1.82670 2.46029
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Moreover, approximations of Eq. (35) can be

obtained by using Taylor’s expansion with much

small bq, and taking an infinite on the bq, respectively,
as:

f bq
� �

	 6b2q 1þ c2
� �2

for small bq ð37Þ

lim
bq!inf

f bq
� �� �

¼ 6bq 1þ c2
� �

for large bq ð38Þ

Substituting these results into Eqs. (34) and (36),

thus the normalized peak frequencies and the values of

Q̂TED;peak;q

� ��1
s are:

x̂peak;q

� �2¼ 1þ c2
� �2

for small bq ð39Þ

x̂peak;q

� �2¼ 1þ c2ð Þ
bq

for large bq ð40Þ

1

Q̂TED;peak;q

¼ 1

1� bq 1þ c2ð Þ
� �2þ1

for small bq

ð41Þ

1

Q̂TED;peak;q

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

bq 1þ c2ð Þ
q

for large bq ð42Þ

Table 4 shows the expressions of the normalized

TEDs for classifications of models and cross-sections.

Although, the forms of the equations obtained from

beams with rectangular-(Zhou and Li 2017), circular-

(Zhou et al. 2018) cross-section, and the ring with

rectangular-cross-section (Zhou et al. 2019) are much

similar to the result of the toroidal ring, but the factors

c and b1q in the calculation are different from existing

models. Additionally, there is straight temperature

distribution in a rectangular-cross-sectional structure

(Wong et al. 2004), thus the z-direction can be

neglected. On the contrary, the temperature profile

must exist in a curved pattern except the center for the

toroidal ring. Thus there is one more dimension with

the z-coordinate in the circular section. (Li et al. 2016).

In other words, the equations themselves can be

seen the same as the previous works, but the case of the

toroidal-ring model in this work is completely differ-

ent as shown in here. Especially, c is the specific term
for only ring models rather than beams, and b1q can be

grouped by the shape of cross-section. Obviously, a1q
is the characteristic of the circular cross-section

expressed by Bessel function because the cross-

section is circular.

In this regard, normalized results of TED are

compared with the previous literatures based on the

beam with circular cross-section (Zhou et al. 2018)

and ring with rectangular cross-section (Chester

1963). Figure 2(a) shows the plots of f bq
� �

for c2 ¼
0, 0.5, and 1 with the one-term approximations.

Moreover, the special term c for the 3D toroidal ring

model can affect the deviation of the f bq
� �

, and the

curves are moved toward smaller bq. Then, f bq
� �

can

be also applied into small or large bq for the 3D ring.

However, the inflection point is nearby bq 1þ c2ð Þ,
thus checking the range of the curve is necessary to

ensure the accuracy of the simplification.

Figure 2b, c represent the normalized eigenfre-

quency x̂peak;q for the peak of normalized Q̂�1, and the

Q̂�1 with respect to the non-dimensional lagging time

bq, including the asymptotic curves based on Eqs. (39–

40) and (41–42) respectively. When the ring is

sufficiently thin as c ! 0, all asymptotic curves are

the same as Zhou and Li (2017); Zhou et al. (2018) for

a beam model with circular-cross-section. On the

contrary, c and the peak frequency approach also

larger due to the effect of the thickness or high mode

numbers. In Fig. 2(c), the normalized Q̂�1 is nearby

0:5DE when the lagging time is neglected Lifshitz and

Table 4 Comparison of the

results for various shapes
Structure Normalized TED Cross-section c b1q

Beam bq
ffiffiffiffiffiffiffiffiffiffiffi

6f bqð Þ
p

6 bq�
f bqð Þ

6

� �2

þf bqð Þ
Rectangular (Zhou and Li 2017) N/A 96

p4 2q�1ð Þ4

Circular (Zhou et al. 2018) 8

a2
1q

a2
1q
�1ð Þ

Ring bq 1þc2ð Þ
ffiffiffiffiffiffiffiffiffiffiffi

6f bqð Þ
p

6 1þc2ð Þbq�
f bqð Þ

6

� �2

þf bqð Þ
1D Rectangular (Zhou et al. 2019) N/A 96

p4 2q�1ð Þ4

2D Rectangular (Zhou et al. 2019) nh
2q�1ð ÞpR0

2D Circular (Present) N/A 8

a2
1q

a2
1q
�1ð Þ

3D Circular (Present) nr0
a1qR0
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Roukes (2000); Wong et al. (2004). While, the lagging

time is larger, the magnitude of Q̂�1 approaches

extremely larger for the thick model. Generally,

x̂peak;q is 1 and the peak of the Q̂�1 is 0:5DE for the

classical Fourier’s heat conduction equation. On the

other hand, the peak value is the function of the time-

lagging, thus the peak of the Q̂�1 is no longer 0:5DE

and x̂peak;q cannot be 1 with larger bq. The figures can
be applied into Zhou and Li (2017); Zhou et al.

(2018),(2019), but the application of the data is much

different because c and b1q are not the same as any

previous literatures.

3.2 Toroidal ring model considering SPL

In this part, practical parametric studies are shown for

the Q-factors of the toroidal silicon ring based on non-

Fourier heat conduction. To identify the validity and

the trend of the model, Table 5 compares the

experimental data (Wong et al. 2004) using COMSOL

FEM and analytical form of the rectangular-cross-

sectional ring model. (Zhou et al. 2019) The expres-

sion of Q for the structure can be obtained by replacing

c and b1q from the toroidal ring in Table 4. Further-

more, the values of the 2D model are a little closer to

the experimental and FEM data than 1D as shown in

Table 5, thus the present work can be valid to apply

into the toroidal ring model. Moreover, the differences

in Qs come from the deviation of undamped and

damped eigenfrequencies Hossain et al. (2016), and

the meshes of the FEM due to the thickness effect.

Moreover, the legs of the structure or other sources in

vacuum can be neglected for in-plane vibration Wong

et al. (2004), then the analytical expressions for 1D

and 2D with
P

q ¼ 1
 100ð Þ is reasonable in the

verification.

Fig. 2 Plots of the (a) f bq
� �

and asymptotic curves, (b) Normalized values and asymptotic curves of xpeak;q, (c) Q̂TED;peak;q

� ��1

according to the normalized lagging time bq and c
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Figure 3 shows the effect of TED for various n, r0
and R0 at 293[K] in the model. In (a) and (b), the more

peak points appear when r0/R0 is large due to the

thickness of the ring in the non-Fourier heat conduc-

tion. Because the thermal propagation cannot catch up

with extremely fast vibration, the peaks appear at

numerous different values. (Khisaeva and Ostoja-

Starzewski 2006) On the other hand, the delay of heat

flux is important also, but the 1st term (i.e. q ¼ 1) is

more significant in [lm]-scale rather than [nm]-scale

as in (c) and (d). Thus the multiple peaks do not appear

in [lm]-scale rather than [nm]-scale. Moreover, the

difference of the TED between 2 and 3D rings is larger

as increased r0/R0. This is the reason that the time

delay phenomenon is relatively noticeable in thick

materials. Furthermore, the increasing values of each q

th order are different due to the properties of circular

section in terms of Bessel function. In all cases, more

energy losses in 3D than 2D models are observed

because the TED of circumferential direction is

similarly considered the rectangular-cross-sectional

ring with 1D and 2D models (Zhou et al. 2019).

Figure 4 indicates Q�1 according to the order of q

and summation of Q�1 for the CV heat conduction

model, and the results obtained from classical Four-

ier’s law (Li et al. 2016) with r0 ¼ 10 nm½ �,
R0 ¼ 500 nm½ �. In the figure, the q = 1st thermal order

term is significantly dominant for the damping rather

than higher q. However, the peak of the higher q are

important in the high mode numbers because the q th

term of the TED is largest in the summation of the

dissipation except q = 1st thermal order. Moreover,

the result of the nF heat conduction model can be

neglected for the lower-mode of frequency vibration

less than n = 50, thus classical Fourier heat conduc-

tion can be valid only in the lower range of x. While,

the delay of the heat flow should be considered in the

higher frequency regions.

Figure 5 compares the trends of the summation of

Q�1 for the various temperature ranges. For the ultra-

low temperature under 100 [K], the peaks appear

sufficiently sharp in general. On the contrary, the sharp

peaks do not occur in higher temperatures. Strictly

speaking, the peak also appears in the high tempera-

ture, but Q�1 is sufficiently smaller in higher order

than the case for the q = 1st order. While, mode

numbers according to the peak of the TED are

independent of the ambient temperature. In addition,

it would be a more reasonable study to predict where

peaks will occur, rather than checking the peak values

themselves at that time with discrete values of n. But

the peak values of the dissipation are more irregular in

the lower temperature because the phase-lagging is

significant in ultralow temperature. In conclusion, the

peaks are the key characteristic of the low temperature

or high sq, and thus the phase-lagging can be estimated

in the region of the higher frequency.

4 Dimensional temperature profiles

In this section, the normalized temperature profiles

with the Real and Imaginary parts are shown to

visualize the phase-lagging effects during the motion

on the local-radial position in the cross-section. Addi-

tionally, the 3D heat conduction model should be used

in order to predict the heat conduction through the

circumferential direction in toroidal ring. Moreover,

the temperature profile can be observed with respect to

the local radius on the cross-section by normalization.

In this regard, the dimensionless parameters of the

frequency and the radii are defined as:

X̂nq ¼ xnsq; R̂ ¼ r

r0
ð43Þ

where r is the local-radial position through the

thickness radius, thus 0� R̂� 1 only.

Table 5 Comparison of the

data from experimental

results

Mean radius [mm] 3 3 2 2 2

Radial thickness [lm] 120 117 50 52 38

xn[kHz] 13.8 13.49 12.97 13.49 9.85

Q (Experiment) (Wong et al. 2004) 10,500 10,000 24,000 22,000 48,000

Q (COMSOL FEM) 10,068 9,951 26,024 23,366 56,051

Q (1D, q = 1 * 100) 10,730 10,464 22,029 19,866 47,979

Q (2D, q = 1 * 100) 10,727 10,461 22,034 19,871 47,986
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Then, the normalized Real and Imaginary parts by

modifying Eq. (23) and using Eq. (43) are:
where N̂R ¼ �X̂2

nqbq 1þ c2ð Þ þ X̂2
nq 1þ X̂nqbq

� �2
	 


and N̂I ¼ 1þ c2ð ÞX̂nq.

Fig. 3 Thermoelastic damping with respect to the mode numbers for 293[K] and (a) r0;R0ð Þ = (10,500) (b) (10,103), (c) (103,5� 104),

(d) (103,105) [nm]

Real T̂0 r; b; hð Þ

 �

Imag T̂0 r; b; hð Þ

 �

( )

¼
Real T0 r; b; hð Þ½ �
Imag T0 r; b; hð Þ½ �

	 


= 2r0

R2
0

DE 1�n2ð ÞÛn
a

� �

¼sin bð Þ sin nhð Þ�
P

inf

q¼1

J1 a1qR̂ð Þ
a2
1q

�1

� �

J1 a1qð Þ
1

1þc2�X̂2nqbqð Þ2þX̂2nq

�
N̂R

N̂I

( )

2

4

3

5

ð44Þ
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Figures 6(a) and (b) present the temperature distri-

butions of the ring by Real and Imaginary parts. In

order to predict the effect of the lagging clearly and

simply, sin bð Þ sin nhð Þ ¼ 1 at R̂ ¼ 0:1 are assumed as

inner layers. In here, all lines with c2 ¼ 0 can be

applied for the beam model with circular sec-

tion. (Zhou et al. 2018) And although the cross-

sectional shape differs from circular to rectangular

(Zhou et al. 2019), the equations in Zhou et al. (2019)

can be explained by the same figures because the

normalized forms are similar as in Table 4. The

temperature profile is relatively monotonic for the

classical Fourier heat conduction, but is distorted

when bq is non-zero based on the CV equation. The

negative values within the cases of existing bq s are

originated from the time-delay of the heat conduction

during the vibration. Moreover, the Real and Imagi-

nary parts of the distribution at R̂ ¼ 1 as the surface of

the structure are demonstrated in (c) and (d). The

multiple peaks can be explained by the mathematical

characteristics of the Bessel function as (Zhou et al.

2018). Especially, the toroidal ring stands for the

larger discrepancy of the distribution because of the

dissipation through the circumferential direction with

respect to c ¼ nr0
a1qR0

term. In other words, c can

reinforce the lagging especially in 0\X̂nq\1. More-

over, the peaks with respect to X̂nq are changed due to

the term c in 1þ c2 � X̂2
nqbq

� �

.

For a case with X̂nq ¼ 1, c2 ¼ 0:4 and bq ¼ 5,

Fig. 7 shows the 3-dimensional temperature profile in

the (a) Real and (b) Imaginary parts on the normalized

axes of x and z with respect to R̂. As the results, the

distorted surface appears when the time-lagging bq
exists, then the complicated inflection point indicates

the delay based on the finite speed of the propagation

in the heat flux. Especially, the peaks due to the phase-

lagging on the range for R̂\1 are changed with respect

to the c as Figs. 6(a) and (b). On the points with R̂ ¼ 1

on the neutral plane represented with

sin bð Þ sin nhð Þ ¼ 1, the normalized maximum values

are the same in Figs. 6(c) and (d).

5 Conclusion

In this work, the thermoelastic damping (TED) effect

for a toroidal micro/nano-ring model is investigated by

using Lord-Shulman (LS) heat conduction equation.

The influence of the single-phase-lagging (SPL) of

heat flow is analyzed using the polar coordinate during

the inextensional and in-plane vibration of the model.

In this regard, the TED including the SPL is mainly

analyzed according to the geometrical shape,

Fig. 4 Q-1 of q = 1 to 30, and the summation of theQ-1 s with

the temperatures as 293 [K] for a ring with r0;R0ð Þ = (10,500)

[nm]

Fig. 5 Summation of Q-1 with respect to the various

temperatures and frequencies for a ring with r0;R0ð Þ = (10,

500) [nm]
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temperature, mode number, etc. The key conclusions

are listed as follows:

(A) The 3D expression of the temperature profile

including SPL is similar to the 1D or 2D beams

or ring with rectangular-cross-section. While,

the result is much different to the previous

models because the governing equation for the

ring is solved by Bessel function.

Fig. 6 Normalized temperature profiles (a) Real, (b) Imaginary parts at R̂ ¼ 0:1, (c) Real, (d) Imaginary parts at R̂ ¼ 1

Fig. 7 3Dimensional plots of the normalized temperature fields with bq ¼ 5 and X̂nq ¼ 1. (a) Real parts (b) Imaginary parts
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(B) In the 3D ring model, the dissipation through the

circumferential direction should be considered

for higher mode number or large ratio of r0/R0.

(C) The SPL effect is dominant in the lower

temperature, nano-scale or higher-mode num-

bers. Temperature profiles can be normalized

with respect to the geometrical shape, mode

number, lagging time, etc. On the other hand,

the SPL can be sufficiently neglected when the

scale is larger then [lm].

(D) The lagging can be described by the distorted

points through the cross-sectional area. And the

size of the peak can be observed by the

normalized temperature profile.

(E) The final data of this work can be compared with

the beams or rectangular-cross-sectional ring

including TED with SPL. However, the special

characteristics are discussed in detail for the

toroidal solid micro/nanoring, which is much

different to the previous results.

Thus, the nF heat conduction effect is an important

factor in the higher frequencies or ultralow tempera-

ture ranges. And this work could be applied for

predicting the phenomenon based on the extreme

conditions with ultrahigh frequency vibration or

cryogenic environments to obtain the environment

for operation with high Q of resonator.
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