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Abstract It is known that along an interface between

two isotropic halfspace satisfying the widely used in

geophysical applications Wiechert condition, Stone-

ley waves may propagate with speed of propagation

that is independent from frequency. A recent proof on

non-existence of Stoneley waves in functionally

graded (FG) plates with continuous transverse inho-

mogeneity may indicate that in real situations, when

there is no abrupt change of material properties, the

Stoneley waves arise less frequently than it can be

supposed. The current analysis is targeted to elucidate

the situation of vanishing Stoneley waves, when the

initially abrupt interface between elastic layers starts

to diffuse.

Keywords Stoneley wave � Surface acoustic wave �
Dispersion � Functionally graded (FG) medium �
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1 Introduction

It is known (Stoneley 1924; Sezawa 1938; Sezawa and

Kanai 1939; Scholte 1942a,b, 1947; Yamaguchi and

Sato 1955; Chadwick and Borejko 1994; Bostron et al.

2013) that along an interface between two elastic

isotropic halfspace or layers satisfying the widely used

in various geophysical applications Wiechert condi-

tion (Wiechert and Geiger 1910; Wiechert 1919;

Malischewsky 1987; Kuznetsov 2020), Stoneley

waves arise and propagate with velocity that is

independent from frequency. Similarly, Stoneley

waves may arise and propagate along an interface

between two contacting dissimilar anisotropic halfs-

paces or anisotropic layers in a stratified plate (Lim

and Musgrave 1970; Chadwick and Currie 1974;

Barnett et al. 1985; Goda 1992; Vinh and Seriani

2010; Ting 2011).

Suppose now that the interface, along which

Stoneley wave propagates, becomes diffused, as can

be anticipated in some real situations, Fig. 1.

It could naturally be supposed that if Stoneley wave

exists in a system containing two homogeneous layers

with the abrupt interface, then such a wave should also

exist in a systemwith the same layers and a sufficiently

thin FG layer between them; see Fig. 2.

However, a recent proof on non-existence of

Stoneley waves in functionally graded (FG) plates

with continuous transverse inhomogeneity (Kuznet-

sov 2021) may indicate that in real situations, when no
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abrupt change of material properties occurs, Stoneley

waves arise less frequently than it can be supposed.

The current analysis is targeted to elucidate the

situation of vanishing Stoneley waves when the

initially abrupt interface between elastic halfspaces

starts to diffuse. The developed method is based on

solving dispersion equations for both cases of abrupt

and diffused interfaces; construction of dispersion

equations relies on Cauchy sextic formalism and the

exponential fundamental matrix method (Kuznetsov

2020).

2 Wiechert condition

The Wiechert condition plays an important role in

seismology (Stevens and Day 1986) and various

geotechnical and geophysical applications (Pfender

and Villinger 2006; Ou and Wang 2019). As was

mentioned earlier, the Wiechert condition ensures

existence of the interfacial Stoneley waves, propagat-

ing along an interface between contacting halfspaces

at any frequency, and in case of contacting layers of

finite thickness at x ! 1 (Malischewsky 1987).

Denoting respectively longitudinal and shear bulk

wave velocities in the adjacent isotropic homogeneous

layers or halfspaces, as

ak ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kk þ 2lk
qk

s

; bk ¼
ffiffiffiffiffi

lk
qk

r

; k ¼ 1; 2; ð1Þ

where kk; lk are Lame’s constants and qk; k ¼ 1; 2 are

the material densities, the Wiechert condition could be

written as (Ewing et al. 1957)

a1
a2

¼ b1
b2

¼ 1: ð2Þ

In view of (1), Wiechert condition (2) can be rewritten

in terms of Lame’s constants moduli and material

densities

k1
k2

¼ l1
l2

¼ q1
q2

¼ g; ð3Þ

where g 2 ð0; 1Þ [ ð1; 1Þ is the dimensionless

parameter, at g ¼ 1 both contacting media become

acoustically identical implying that no Stoneley wave

can propagate (Chadwick and Borejko 1994).

Another observation flowing out from Eq. (3) and

an easily verified monotonic variation of a function of

Poisson’s ratio

f ðmÞ � k
l
¼ 2m

ð1� 2mÞ ; m 2 ð�1; 0:5Þ; ð4Þ

yields: Wiechert condition implies equal Poisson’s

ratios of the contacting media, and taking into account

(3), the Rayleigh wave velocities in media that

satisfies Wiechert condition, are necessary equal.

Fig. 1 The abrupt (left) and

diffused (right) interfaces

between two media in a

contact

Fig. 2 Three layered medium with thin FG intermediate layer

with schematic variation of physical properties (right); dotted

lines indicate median planes of the layers
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3 Dispersion equations

Herein, the case of a stratified plate is considered; the

plate contains either two homogeneous layers with

single abrupt interface (Fig. 1) or three layers with thin

FG layer (Fig. 2) modeling the diffused interface.

3.1 Equations of motion

Equation of motion for a heterogeneous elastic

anisotropic medium can be written in a form (Achen-

bach 1987)

divxCðxÞ � �rxuðx; tÞ ¼ qðxÞo2ttuðx; tÞ; ð5Þ

whereC is the elasticity tensor, assumed to be positive

definite; u is the displacement field; q is the material

density; x is spatial coordinate; and t is time. The

harmonic surface wave with the plane wave front

admits the following representation

uðx; tÞ ¼ mðx � mÞ exp irðx � n� ctÞð Þ; ð6Þ

wherem is the wave polarization; m is the unit normal

to the median plane of a layer; n is the unit wave

normal; c is the phase velocity; and r is the wave

number, usually (but not necessary) defined as:

r ¼ x
c
; ð7Þ

herein x is the circular frequency.

Considering transverse inhomogeneity in Eq. (5)

and substituting displacement field (6) into Eq. (5),

yields the equation of motion in terms of Cauchy

sextic formalism (Kuznetsov 2020)

o

ox0
Yðx0Þ ¼ Gðx0Þ � Yðx0Þ; ð8Þ

where

x0 ¼ irðx � mÞ ð9Þ

is the transverse imaginary coordinate, and

Yðx0Þ ¼
mðx0Þ
wðx0Þ

� �

; wðx0Þ ¼ o

ox0
mðx0Þ;

Gðx0Þ ¼
0 I

�A�1
1 ðx0Þ � A3ðx0Þ �A�1

1 ðx0Þ � A2ðx0Þ

� �

;

ð10Þ

3� 3-matrices Ak; k ¼ 1; 2; 3 are as follows

A1ðx0Þ ¼ m � Cðx0Þ � m
A2ðx0Þ ¼ m � Cðx0Þ � nþ n � Cðx0Þ � mþ m � ox0Cðx0Þ � m
A3ðx0Þ ¼ n � Cðx0Þ � n� qðx0Þc2Iþ m � ox0Cðx0Þ � n

:

ð11Þ

In (10), (11) the 3� 3-matrices 0 and I denote zero

and unity matrices respectively. In case of homoge-

neous layer, both elasticity tensor and material density

are independent of coordinate x0 with the correspond-

ing simplifications in Eq. (11).

3.2 Boundary and interfacial conditions: two-

layered plate

In case of a two layered system when the interface

between homogeneous layers is abrupt, the traction

free boundary conditions at the outer upper and bottom

surfaces can be written as

tð1Þm ðx; tÞ � m � Cð1Þ � �rxu
ð1Þðx; tÞ

�

�

x�m¼þh1
¼ 0

tð2Þm ðx; tÞ � m � Cð2Þ � �rxu
ð2Þðx; tÞ

�

�

x�m¼�h2
¼ 0

; ð12Þ

where indices 1; 2 are referred to the upper and bottom

(homogeneous) layers.

Equations (12) can be rewritten in terms of vector

Yðx0Þ:

A
ð1Þ
4 ;A

ð1Þ
1

� �

� Yð1Þðx0Þ
�

�

�

x0¼þirh1
¼ 0

A
ð2Þ
4 ;A

ð2Þ
1

� �

� Yð2Þðx0Þ
�

�

�

x0¼�irh2
¼ 0

; ð13Þ

where A
ðkÞ
4 ; k ¼ 1; 2 are 3� 3-matrices:

A
ðkÞ
4 ¼ m � CðkÞ � n; k ¼ 1; 2: ð14Þ

At the interface between layers the continuity

conditions imply

uð1Þðx; tÞ
�

�

x�m¼�h1
¼ uð2Þðx; tÞ

�

�

x�m¼þh2

tð1Þm ðx; tÞ
�

�

x�m¼�h1
¼ tð2Þm ðx; tÞ

�

�

x�m¼þh2
;

ð15Þ

or in terms of vector Yðx0Þ:

Zð1Þ � Yð1Þðx0Þ
�

�

x0¼�irh1
¼ Zð2Þ � Yð2Þðx0Þ

�

�

x0¼þirh2
; ð16Þ

where ZðkÞ; k ¼ 1; 2 are 6� 6 impedance matrices;

see (Kuznetsov 2020):

ZðkÞ ¼ I 0
A

ðkÞ
4 A

ðkÞ
1

� �

: ð17Þ
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Note, that due to the assumed positive definiteness of

the elasticity tensor, the impedance matrices are non-

degenerate.

3.3 Boundary and interfacial conditions: three-

layered plate with FG intermediate layer

In case of a three layered system with a FG interme-

diate layer (Fig. 3), modeling the diffused interface,

the outer boundary conditions are analogous to

conditions (12), (13) with necessary renumbering

bottom layer (k ¼ 3), reserving k ¼ 2 for the FG

intermediate layer:

A
ð1Þ
4 ;A

ð1Þ
1

� �

� Yð1Þðx0Þ
�

�

�

x0¼þirh1
¼ 0

A
ð3Þ
4 ;A

ð3Þ
1

� �

� Yð3Þðx0Þ
�

�

�

x0¼�irh3
¼ 0

; ð18Þ

In view of presence of the intermediate FG layer the

interfacial continuity conditions become

Zð1Þ � Yð1Þðx0Þ
�

�

x0¼�irh1
¼ Zð2Þðx0Þ � Yð2Þðx0Þ

�

�

x0¼þirh2

Zð2Þðx0Þ � Yð2Þðx0Þ
�

�

x0¼�irh2
¼ Zð3Þ � Yð3Þðx0Þ

�

�

x0¼þirh3

;

ð19Þ

where Zð2Þðx0Þ depends upon x0-coordinate.

3.4 Dispersion equation: two-layered plate

Taking into account Eqs. (12)–(16) and the exponen-

tial solution of Eq. (8) written as (Logemann and Ryan

2014; Kuznetsov 2020)

Yðx0Þ ¼ expðx0GÞ � Y0; ð20Þ

where Y0 is defined by boundary conditions, the

desired dispersion equation takes the form (Kuznetsov

2020):

det

�

ð0; IÞ � Zð2Þ � expð�2irh2G
ð2ÞÞ � Zð2Þ

� ��1

� Zð1Þ � expð�2irh1G
ð1ÞÞ � Zð1Þ

� ��1

�
I

0

� ��

¼ 0:

ð21Þ

Equation (21) admits another interpretation; it states

that a map from the three-dimensional subspace

generated by vanishing surface tractions acting on

the upper surface into three-dimensional subspace of

surface tractions acting on the bottom surface is

degenerate. That ensures existence of the non-trivial

magnitudes mð1ÞðþirhÞ.

3.5 Dispersion equation: three-layered plate

with FG layer

In case, when a FG intermediate layer is present, the

exponential solution for FG layer is of a more

complicated form (Logemann and Ryan 2014; Kuz-

netsov 2020):

Yðx0Þ ¼ exp Fðx0Þð Þ � Y0; ð22Þ

where Fðx0Þ is an anti-derivative of Gðx0Þ:
ox0Fðx0Þ ¼ Gðx0Þ.

Combining Eqs. (18)–(22), the desired dispersion

equations takes the form; see Kuznetsov 2020):

det ð0; IÞ �
Zð3Þ � expð�2irh3G

ð3ÞÞ � Zð3Þ� 	�1

�Zð2Þ � exp Fð2Þð�irh2Þ � Fð2Þðirh2Þ
� 	

� Zð2Þ� 	�1

�Zð1Þ � expð�2irh1G
ð1ÞÞ � Zð1Þ� 	�1

0

B

B

@

1

C

C

A

� I
0

� �

0

B

B

@

1

C

C

A

¼ 0:

ð23Þ

4 Stoneley wave analysis

It is known, that the interfacial Stoneley wave in

layered plates may arise at high frequencies, when

conditions of existence are satisfied (Chadwick and

Borejko 1994; Bostron et al. 2013).

Fig. 3 Dispersion portrait of Lambwaves in a two-layered plate

satisfying Wiechert condition; dashed lines denote the high

frequency asymptotes, related to (1) Rayleigh wave; (2) bulk

S-wave; (3) Stoneley wave
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4.1 Two-layered plate with abrupt interface

Herein, a two-layered plate with homogeneous layers

and abrupt interface is considered with layers having

the following physical and geometrical properties

Eð1Þ ¼ 1; qð1Þ ¼ 1; mð1Þ ¼ 0:25; 2h1 ¼ 1

Eð2Þ ¼ 10; qð2Þ ¼ 10; mð2Þ ¼ 0:25; 2h2 ¼ 1
:

ð24Þ

Parameters (24) ensure satisfying Wiechert condition

(3) with the dimensionless g ¼ 2.

Computing dispersion curves by dispersion

Eq. (21), results in the following dispersion portrait

shown in Fig. 3. Computations were done with the

dimensionless variables

xH
a

;
c

a
; ð25Þ

where x is the circular frequency; H is the overall

thickness of the plate; and a is the common (for both of

the layers) bulk P-wave velocity; c is the phase

velocity. The corresponding dimensionless Rayleigh,

Stoneley and S-wave velocities are obtained by

solving the Rayleigh polynomial equation for Ray-

leigh wave (Achenbach 1987); the modified Scholte

algebraic equation (Kuznetsov 2020) for Stoneley

wave; and Eq. (1) for the S-bulk wave velocity,

yielding

cRayleigh
a

� 0.488;
cStoneley

a
� 0:547;

b
a
� 0:577;

ð26Þ

The fundamental symmetric and asymmetric (flex-

ural) branches in Fig. 3 are marked as S0 and A0

respectively; A1 branch stands for the first asymmetric

mode.

The plots in Fig. 3 reveal presence of three distinct

asymptotes numbered 1,2,3 corresponding to the

relative velocity values given in (26). Note that at

high frequencies the first asymmetric branch A1

transforms into Stoneley wave. Note also, that as

Fig. 3 shows, the first asymmetric branch A1 trans-

forms into Stoneley wave at high frequencies. Note

that intersections of the dispersion curves were studied

in (Kausel et al. 2015) and in regard of dispersion of

Love and SH waves, see (Ilyashenko et al. 2018;

Kuznetsov 2006).

4.2 Three-layered plates with intermediate FG

layer

Now, a three-layered plate with the same outer layers

and a median FG layer, is considered. Physical

properties of the layers are as follows

Eð1Þ ¼ 1; qð1Þ ¼ 1; mð1Þ ¼ 0:25; 2h1 ¼ 1

Eð2Þ ¼Eð1Þ þEð1Þ �Eð3Þ

2h2

x0

ir
�h2

� �

; qð2Þ ¼ qð1Þ þqð1Þ �qð3Þ

2h2

x0

ir
�h2

� �

; mð2Þ ¼ 0:25

Eð3Þ ¼ 2; qð3Þ ¼ 2; mð3Þ ¼ 0:25; 2h3 ¼ 1

;

ð27Þ

where x0 is defined by (9). Conditions (27) ensure

continuity of the physical properties across thickness

of the plate, and the same values of the bulk wave

velocities across thickness of the FG layer. Four

different thickness values of the FG layer modeling the

diffused interface, were considered:

2h2 ¼ 1; 0:1; 0:05; 0:025.

Comparing dispersion portraits shown in Fig. 4

reveals (i) absence of the vertical asymptote relating to

the high frequency interfacial Stoneley waves, for all

the considered cases; (ii) the first asymmetric branch

A1 at presence of the FG layer, tends asymptotically to

vertical asymptote related to the bulk S-wave; (iii) at

any fixed frequency the distances between A1 and the

closest S1 branch increases with the decreasing

thickness of the FG layer.

Thus, the observed disappearance of Stoneley

waves in layered media with the diffused interfaces

between layers may indicate that in real situations

Stoneley waves are hardly to arise, or at least they are

much less frequent than it can be assumed.

The main computations in this subsection were

done by applying the high precision numerical algo-

rithms (Bailey and Borwein 2015; Kuznetsov 2020)

with long mantissas having 250 decimal digits.

5 Concluding remarks

Comparing dispersion portraits shown in Figs. 3 and 4

reveals: (i) the only dispersion asymmetric branch A1

leads to appearing interfacial Stoneley wave in case of

media with abrupt interface, Fig. 3; (ii) in case of the

diffused interfaces (Fig. 4) the vertical asymptote

relating to Stoneley wave, disappears; (iii) the first

asymmetric branch A1 at presence of the FG layer,

tends asymptotically to vertical asymptote related to
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the bulk S-wave; (iv) in case of the FG layer and at any

fixed frequency the distances between A1 and the

closest S1 branch increases with the decreasing

thickness of the FG layer.

Thus, the observed absence of Stoneley waves in

layered media with the diffused interfaces between

layers may indicate that in real situations the genuine

Stoneley waves are less frequent than it can be

assumed. Another remark concerns energy needed to

generate a monochromatic Lamb wave. It is known

(Achenbach 1987; Ewing et al. 1957) that both

fundamental (monochromatic) A0; S0 modes need

less energy for their generation than needed for

generating all higher modes. In this respect, the plots

in Fig. 3 demonstrate that in case of the abrupt

interface and at fixed frequency, Rayleigh waves

demand less energy for their generation than the

interfacial Stoneley waves.
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