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Abstract This paper concerns the heuristic-based

material stiffness optimization of frictional linear

elastic contact problems for having control over the

contact stress distribution, aiming to extend the

material stiffness optimization to multiple loading

conditions, in which each of the loadings acts solely on

the structures. A decrease level of the variance of the

contact stress is introduced and a weighted sum of the

decrease levels under all load cases is constructed as

the objective function. The individual criterion for

contact problems with multiple contact regions is

addressed. The worst case design is adopted for

multiple load cases, and an extreme reference stress,

which is the highest stress level of the subdomain

under all load cases, is defined to control the Young’s

modulus modification process in a finite element

framework. Through three numerical examples, it is

demonstrated how an even distribution of the contact

stress can be obtained for contact problems subjected

to multiple load cases with single or multiple contact

regions. Some new features of the material stiffness

optimization with multiple loading conditions are also

illustrated.

Keywords Material stiffness optimization � Contact
stress distribution � Elastic contact � Young’s
modulus � Multiple load cases

1 Introduction

Mechanical structures are commonly an assembly

composed of several components for achieving the

required functions, which will make the contact

inevitable in practical applications. The guarantee of

high-performance contact behavior plays a vital role in

ensuring the realization of the specified functions of

the mechanical structures. Among others, the magni-

tude and distribution of the contact stress are two

factors strongly influencing the performance of the

involved structures (Chen et al. 2019; Collins JA

2010). For example, the magnitude of the contact

stress along the contact interface determines the

leakproofness reliability of a contact seal (Zhang and

Niu 2018). Besides, the fatigue resistance is deeply

affected by the contact stress distribution (Nakazawa

et al. 2003). As the attainment of a uniform contact

stress distribution is beneficial for the wear reduction

and the prolongation of the fatigue life, numerous
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efforts have been devoted to optimizing the contact

stress distribution.

Three pioneers, Klarbring, Strömberg and Hilding

have supplied the basis for the applications of size,

shape and topology optimization to the class of contact

problems throughout the years (Hilding and Klarbring

2012; Hilding et al. 1999; Klarbring 1992; Strömberg

and Klarbring 2009). Methods based on the mathe-

matical programming methods (Conry and Seireg

1971; Haug and Kwak 1978), heuristic-based

approaches (Li et al. 2003; Ou et al. 2013) and

sensitivity analysis method (Hilding et al. 2001) were

adopted for contact shape design. As for contact

topology design, the traditional SIMP (Solid Isotropic

Material with Penalization) model-based density

method (Jeong et al. 2018; Niu et al. 2019, 2020;

Strömberg and Klarbring 2009) and the emerging

level set method (Lawry and Maute 2018, 2015;

Myslinski 2008, 2015) and phase field method

(Myśliński andWróblewski 2017) have been extended

to include the contact conditions. Recently, Kris-

tiansen et al. (Kristiansen et al. 2020) performed a

density-based topology optimization of contact prob-

lems for controlling the contact pressure distribution

by proposing and utilizing a p-norm based objective

function. Fernandez et al. (Fernandez et al. 2020)

presented a topology optimization of multiple deform-

able three-dimensional bodies in contact with large

deformations and maximized the total contact forces.

Considering that the multiple load cases exist

widely in mechanical systems and are a very common

phenomenon in practical engineering, many scholars

have extended the optimization to the problem of

bearing multiple load cases. Topology optimization

dominates the literatures in problems with multiple

load cases until now. Several methods including

homogenization algorithm (Bendsøe et al. 1995),

evolutionary topology optimization method (Young

et al. 1999), material replacement method (Cai et al.

2013), meshless smoothed particle hydrodynamics

(SPH) method (Li et al. 2020) have been proposed and

applied to the topology optimization of the structures

subjected to multiple load cases.

However, when it comes to the optimization

problems under multiple loading conditions, relatively

few publications involve the existence of contact. A

few early papers addressed the optimization problem

of minimizing the potential energies with introducing

the multiple unilateral contact conditions (Ben-Tal

et al. 2000; Kočvara et al. 1998). Another work worth

mentioning is the work of Li et al. (Li et al. 2005), in

which an evolutionary shape optimization algorithm

was introduced to optimize the contact structures

subjected to multiple load cases. This work defines the

uniformity of the contact stress under multiple load

cases as the objective function, through which the

contact stress distribution could be reflected directly. It

differs from many other works related with multiple

load cases, because the objective functions considered

in those works are in an indirect relation with the

contact stress distribution such as the compliance,

potential energies, etc.

With the development of the material science and

inspired by the emerging engineered materials such as

functionally graded materials, 3D printed materials

and fiber-reinforced cement-based composites, mate-

rials with inhomogeneous properties, such as the

Young’s modulus, have begun to attract designers’

attention. Researches showed that an appropriate

inhomogeneous Young’s modulus distribution could

do favors to stress concentration reduction (Goyat

et al. 2018, 2019) and compliance minimization

(Czarnecki and Lewiński 2017a, 2014), and the

optimal Young’s modulus distribution has also been

extended to consider multiple loading conditions

(Czarnecki and Lewiński 2017b; Smyl 2018).

Nevertheless, there was no contact condition

involved in those works, while this study focuses on

the optimization design of the material stiffness in the

considered elastic contact problems. Moreover, com-

pared with the shape or topology optimization, little

progress has been made towards the material stiffness

optimization despite its significant influences on the

contact stress distribution (Johnson 1987).

Regarding now the material stiffness optimization

with contact condition and multiple loading condi-

tions, to the authors’ best knowledge, literature

focusing on the optimization of material stiffness in

the frictional contact problems subjected to multiple

load cases is scarce. In those work from the afore-

mentioned literatures where contact conditions or

multiple loading conditions are introduced, the opti-

mization either refers to the shape or the topology of

the structures. On the other hand, cases considering the

Young’s modulus design or the material stiffness

design are involved with no contact. In this paper, we

consider the material stiffness design, where both the

contact conditions and multiple loading conditions are
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involved. We proposed a heuristic-based material

stiffness optimization algorithm, and extended it to the

frictional contact problems with multiple load cases,

where different objective function and different design

criterion were proposed.

The aim of this paper was to realize the material

stiffness optimization for attaining a uniform contact

stress distribution in the frictional elastic contact

problems subjected to multiple load cases, as illus-

trated in Fig. 1. Each of the multiple loads is

independent and all loads are applied on the structure

non-simultaneously. Thus, in a certain sense, an

optimum compromise of these multiple loads is

perused in this work. Building upon the existing

literatures, the weighted objective function (Diaz and

Bendsøe 1992; Li et al. 2005; Marler and Arora 2009)

and the worst case design criterion (Li et al. 2005) are

adopted.

The rest of this paper is organized as follows.

Section 2 simply describes the frictional elastic con-

tact problems subjected to multiple load cases. Sec-

tion 3 focuses on the weighting criterion for the

objective function with multiple load cases, and the

individual criterion for the contact system with

multiple contact regions is also addressed. Section 4

details the material stiffness optimization design

algorithm. In Sect. 5, we present three contact prob-

lems subjected to multiple load cases, where multiple

contact regions are considered in the third contact

problem, to demonstrate the feasibility and effective-

ness of the proposed material stiffness optimization

under multiple load cases. Finally, Sect. 6 summarizes

all the substantial findings.

2 Frictional elastic contact problems with multiple

load cases

Without loss of generality, a frictional linear elastic

contact problem is illustrated in Fig. 2. Domains XI

and XII are two contact bodies and Cc is the real

contact region. F1 and F2 are two loads that act

independently at different time. We used finite

element analysis (FEM) to solve the contact problem.

Figure 3 depicts the finite element form of the contact

problem, which is discretized with the quadrilateral

elements. The pairs of boundary nodes iI and iII ði ¼
1; 2; . . .; npÞ are the points where contact may occur

during the contact process with np being the number of

the potential contact node pairs. Once the contact

status of these defined contact nodes are classified, the

contact stresses existing in these contact nodes under

each load cases are obtained by a non-linear finite

element analysis.

3 Weighting criterion of objective function

with multiple load cases

In a system with multiple load cases, though it is

highly desirable that the design would be suitable for

all the load cases under the prescribed criteria, it is

often extremely difficult to realize. Thus, compro-

mises of these multiple loads are made.

Consider that P different load cases Fj ðj ¼
1; 2; . . .;PÞ are applied to the contact system. Each

will produce a different contact stress distribution

rðFjÞ. The corresponding variance of the contact stress
is dj, which is a measure to the uniformity of the

contact stress distribution rðFjÞ. Regarding that

Fig. 1 Illustration of the

material stiffness

optimization of a two-body

contact problem subjected to

two load cases for the

contact stress distribution
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different load cases may lead to totally different values

of the variance, the decrease level of the variance of

the contact stress is introduced and defined as

gjðCÞ ¼
d0j � dj

d0j
; ð1Þ

where gjðCÞ is the decrease level of the variance for

contact regionC at jth load case; d0j and dj stand for the

variance before and after the optimization

respectively.

Owing to its conceptual simplicity and numerical

efficiency, a commonly used weighted function (Diaz

and Bendsøe 1992; Li et al. 2005; Marler and Arora

2009) on each load case is adopted. It is assumed that

the weight coefficient corresponding to jth load is wj,

and is defined in a constrained form of
X

j

wj ¼ 1; wj � 0: ð2Þ

A weighted sum of the decrease levels under all

load cases is constructed as the objective function,

which can be given as

f Cð Þ ¼
X

j

wjgjðCÞ: ð3Þ

With the purpose of achieving a uniform contact

stress distribution and from the definition of the

objective function in Eq. (3), we pursue maximizing

the value of the objective function in the following

work.

For systems consisting ofm ðm� 2Þ contact regions
as C¼ [r Cr ðr ¼ 1; 2; . . .;mÞ, a multi-criteria opti-

mization form can be formulated as

max f C1ð Þ ¼ max
X

j

wjgjðC1Þ;

..

.

max f Crð Þ ¼ max
X

j

wjgjðCrÞ;

..

.

max f Cmð Þ ¼ max
X

j

wjgjðCmÞ;

ð4Þ

Fig. 2 Frictional elastic

contact problem between

two bodies

Fig. 3 Finite element form of the contact problem at

undeformed condition
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which means each contact region is optimized indi-

vidually. This so-called individual criteria, which

shows good capabilities in homogenizing the contact

stress field in contact shape optimization (Li et al.

2003), is adopted.

4 Material stiffness optimization design algorithm

Owing to the merits of ease in implementation and free

from gradient information, the heuristic-based design

approach has been successfully applied to the contact

shape design problems (Li et al. 2005, 2003; Ou et al.

2013). Here, for material stiffness optimization

design, the modifications of the Young’s modulus

are based on the relative differences of the contact

stress at different positions. According to the contact

stress distribution of the design domain, the changes of

the Young’s modulus can be expressed as a function

fnð�Þ as

DðUtÞ ¼ EðUtÞ � ½fnð~rðUtÞÞ � 1�; t ¼ 1; 2; . . .;N;

ð5Þ

where Ut is the sub design domain to be modified,

DðUtÞ the current Young’s modulus modification of

sub design domain Ut, EðUtÞ the current Young’s

modulus of domain Ut, ~rðUtÞ the equivalent contact

stress of domain Ut.

As shown in Fig. 4, the calculation of equivalent

contact stress ~rðUtÞ is the same as that in literature

(Zhou et al. 2020) and is also presented here as

~rðUtÞ ¼
1

n Ut

X

i2Ut

ri; ð6Þ

Considering the multiple loading conditions, we

take the worst case design (Ben-Tal et al. 2000; Li

et al. 2005). A stress ~rtref named extreme reference

stress is introduced, which is defined as the highest

stress level of subdomainUt ðt ¼ 1; 2; . . .;NÞ among P

load cases. This could be expressed as

~rtref¼max
j

½~r1ðUtÞ; ~r2ðUtÞ; . . .; ~rjðUtÞ; . . .; ~rPðUtÞ�;

ð7Þ

in which ~rjðUtÞ denotes the equivalent contact

stress of subdomain Ut under jth load case.

A relative stress level factor reflecting the ratio of

the maximum stress and extreme reference stress of

the subdomain to be modified is introduced. And Eq. 5

is re-expressed as

DðUtÞ ¼ EðUtÞ � ðfn
~rtmax

~rtref

 !
� 1Þ; ð8Þ

where ~rtmax is the maximal one among N extreme

reference stresses and is calculated by
Fig. 4 Calculation of the equivalent contact stress of each sub

design domain

Fig. 5 Flowchart of the material stiffness optimization procedure

123

Material stiffness optimization for contact stress distribution in frictional elastic contact… 507



~rtmax = max ½~r1ref ; ~r2ref ; . . .; ~rtref ; . . .; ~rNref �: ð9Þ

It is worth pointing out that different stress levels

used in Eq. 8 may lead to different optimized results.

There are other stress levels we could use, i.e. the

weighted reference stress (Li et al. 2005), which is

calculated by averaging the contact stresses under

each load case instead of taking the maximum

equivalent contact stress as this work dose.

For simplicity, the modification process is adjusted

by a power law function with a constant coefficient STI

as

DðUtÞ ¼ EðUtÞ � ðSTI � ~rtmax

~rtref

 !c

�1Þ ð10Þ

which is of a similar form of the typical evolution-

ary shape optimization procedure (Li et al.

2005, 2003).

A upper Young’s modulus limit Emax and a lower

Young’s modulus limit Emin are defined, and the value

of Young’s modulus (i.e., design variable) will be

replaced by the limit value once it goes beyond the

given range of variation. A convergence tolerance q is

designated to check the convergence condition as

f Cð Þk�f Cð Þk�1

f Cð Þk�1

�����

������ q; ð11Þ

Fig. 6 The elastic-to-rigid contact model

(a) Before optimization (b) After optimization
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where subscript k stands for the number of iterations of

the optimization process, and f Cð Þk is the objective

function at kth iteration.

Figure 5 outlines the material stiffness optimiza-

tion procedure, which mainly consists of the following

four steps.

Step 1 Set up models. Create the geometrical and

finite element model, and set initial values for the

optimization driven parameters.

Step 2 Carry out contact analysis. Perform finite

element analysis for individual load cases. Then

calculate the extreme reference stress ~rtref and the

maximum value ~rtmax according to Eqs. 6, 7 and 9.

Step 3 Check convergence condition. Compute

objective function f Cð Þ as Eq. 3. For a system with

multiple contact regions, calculate objective functions

f Crð Þ for each contact region with the same manner. If

the convergence condition is satisfied, terminate the

iteration and output the results of the optimization.

Otherwise, go to Step 4.

Step 4 Update models. Calculate the new values of

design variable for subdomain Ut, and update the

models with these new values. Regarding that none of

the geometrical situations are changed, no remeshes

are needed. Set k ¼ k þ 1 and go back to Step 3.

5 Numerical examples

To demonstrate how the proposed material stiffness

optimization influences the contact stress distribution

in contact problems subjected to multiple load cases,

three numerical examples are investigated here. The

validation of the numerical simulation has been

conducted in published literature (Zhou et al. 2020).

Single contact region is considered in the first two

examples and the systemwith multiple contact regions

is addressed in the third example.

Plane stress state is adopted for all these three

examples, and the model has a Young’s modulus of

200 GPa and a friction coefficient of 0.1. The upper

Young’s modulus limit Emax and the lower Young’s

modulus limit Emin are set as 300 GPa and 0.2 GPa

respectively. Power law index c is set as 1/2 for all

following examples.

5.1 Elastic-to-rigid contact problem

An elastic-to-rigid contact model subjected to two

symmetrically applied load cases is presented in

Fig. 6. The deep gray area at the bottom represents a

rigid body, the cyan area is an elastic body of 10 mm

height, and the purple area denotes a 2 mm height

design domain. The orange solid line denotes the

contact region. The bottom of the rigid body is fully

fixed and the left and right sides are constrained in the

X-direction. The elastic body is discretized with
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Fig. 9 Iteration histories of the objective function
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120 9 40 quadrilateral elements, and 121 contact

node pairs exist at the contact interface. The coeffi-

cient STI is given as 0.95 and the convergence

tolerance q is set as 0.1%.

Considering the symmetry of these two loads, the

decrease levels of the variance of the contact stress for

these two load cases during the optimization process

are always consistent. Thus, whatever the allocation

scheme of the weight coefficients of these two loads is,

the convergence condition will not be affected.

The contact stress distributions under two load

cases are presented in Figs. 7 and 8. Compared with

the contact stress distribution before the optimization

as shown in Figs. 7a and 8a, a significant improvement

on the uniformity of the contact stress, which is a

decrease of 99.18% on the variance of the extreme

(a) Before optimization (b) Iteration 1
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Fig. 11 Young’s modulus distribution at different iterations
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reference stress specifically, can be observed in

Figs. 7b and 8b.

Similar to the optimized contact stress distribution

after the shape optimization (Li et al. 2005), one can

notice that after optimization, the lower stress level of

the contact stress distribution under each load case is

noticeably non-uniform even after the optimization, as

can be seen in Figs. 7b and 8b. This is due to worst case

design we adopted in this paper, in which the defined

extreme reference stress is utilized in the optimization

process.

The iteration histories of the objective function

plotted in Fig. 9 shows a steady and continuous

increase trend, requiring 76 iterations until conver-

gence. Moreover, the evolutions of the variance of the

contact stress and the maximum stress under each load

cases, as depicted in Fig. 10(a) and 10(b), once again,

illustrate the feasibility and stability of the proposed

material stiffness optimization design under multiple

load cases.

Furthermore, the evolution histories of the Young’s

modulus of the elastic structure are presented in

Fig. 11. The Young’s modulus of the design domain

are symmetrically distributed and range from 21.8

GPa to 182.3 GPa for the final optimized result. It is

interesting to notice that, as the optimization proceeds,

the areas near the locations of the load are inclined to

possess a smaller Young’s modulus and vice versa.

This result may relate with the energy distributions

and needs further investigations.

5.2 Elastic-to-elastic contact problem

The contact problem between two elastic bodies is

studied in this example. As shown in Fig. 12, a

concentrated load case and a distributed load case are

applied on the top edge of the upper elastic body. Here,

the design domain represented by the purple area is

divided into an upper design domain and a lower

design domain, which are of 1 mm height both, by the

solid orange line representing contact region. The

entire model is meshed with 160 9 80 quadrilateral

elements, and 161 contact node pairs exist at the

contact interface. STI is set as 0.95 and q is set as

0.05%.

Different from the previous elastic-to-rigid contact

problem, these two load cases are asymmetrical,

which means the different allocations of the weight

coefficients may lead to different results. Five alloca-

tion schemes of the weight coefficients are investi-

gated and their influences on the iteration histories of

the objective function are shown in Fig. 13.

One can notice that all five iteration curves follow a

similar pattern and the change trend of the objective

function is consistent. This indicates that the general

convergence trend will not be affected by the different

allocations of the weight coefficients in this example.

Fig. 12 The elastic-to-elastic contact model
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Thus, an even allocation of w1 ¼ w2 ¼ 0:5 is selected

to illustrate the optimization effects.

Figures 14(a) and (b) illustrate the contact stress

distributions under each load cases before and after

optimization. Obviously, the peak contact stress is

reduced remarkably and the contact stress field

becomes much more uniform for both two load cases.

The variance of the contact stress has decreased by

99.73% under load case 1 and 98.82% under load case

2. Moreover, the uniformity of the extreme reference

stress is improved considerably too, as shown in

Fig. 14(c).

Figure 15 depicts the contact stress distribution of

the extreme reference stress, the stress under LC1 and

the stress under LC2 before and after optimization. In

the initial stress distribution, as shown in Fig. 15(a),

Fig. 14 Contact stress

distributions before and

after optimization

(a) Before optimization (b) After optimization
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the extreme reference stress is a partial combination of

the stress under load case 1 and the stress under load

case 2. After optimization, the distribution of the

extreme reference stress is consistent with that of the

contact stress under load case 2, as shown in

Fig. 15(b). This could due to the state of the initial

contact stress distribution under these two load cases,

as the initial stress under load case 1 occupies only a

small part of the left of the extreme reference stress

and is more relatively evenly distributed than the stress

under load case 2. Moreover, from the iteration

histories of the variance and the maximum stress as

presented in Fig. 16a, b respectively, one can notice

that the stress under load case 1, which holds all along

a larger variance and a larger maximum stress during

the optimization process, exhibits a ‘worse’ distribu-

tion. In other words, load case 1 owes stronger

relations with the most critical load case than that of

load case 2 in this example. Thus the final extreme

reference stress distribution is more inclined to the

stress distribution under load case 1, even consistent

with that as shown in Fig. 15(b). The results obtained

here are optimal only in a sense of worst case design.

The intermediate results of the Young’s modulus

distribution are presented in Fig. 17. Obviously, no

symmetries of the Young’s modulus distribution

appear. As the iteration process proceeds, the areas

with various Young’s modulus are enlarged gradually

with a more and more gentle enlarging tendency. Still,

areas far from the load locations tend to have a larger

Young’s modulus. The final Young’s modulus of the

design domain range from 0.24 to 295 GPa, which

implies that the material stiffness is diversely dis-

tributed in a large range. This unique Young’s

modulus distribution is favorable for a uniform contact

stress distribution.

5.3 A contact problem of three contact bodies

A contact problem of two elastic bodies and one rigid

body is presented in Fig. 18. Different from the

previous two examples, two contact regions are

considered. Here, as described in Eq. 4, each contact

region is optimized individually. Thus, two design

domains named upper design domain and lower design

domain are defined. Both design domains are of 2 mm

height and are on the middle elastic body, as shown in

Fig. 18. A concentrated load case and a distributed

load case are applied on the top edge of the upper

elastic body. These two elastic bodies are meshed with

120 9 80 quadrilateral elements, and there are 121

contact node pairs on the contact interface. STI is

given as 0.85 and q is given as 1%. w1 ¼ w2 ¼ 0:5 is

adopted.

Figures 19 and 20 are the contact stress distribu-

tions before and after optimization for the upper

contact region and the lower contact region respec-

tively. Tables 1 and 2 summarize the optimization

results. Before the optimization, as shown in Figs. 19a

and 20a, two contact regions have a similar form of the

distributions of the contact stress but with different

magnitudes. After the optimization, the distributions

of the contact stress are much more uniform for both

two contact regions, as shown in Figs. 19b and 20b.

The convergence histories for both design domains

are plotted in Fig. 21(a) and no oscillations appear.

We find that the convergence rate for the lower contact

region is faster than that of the upper contact region,

which is 49 iterations vs 56 iterations. This may be

(a) Variance V.S. iterations (b) Maximum stress V.S. iterations
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Fig. 16 Iteration histories

of the variance and the

maximum stress under two

load cases
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accounted in that the initial contact stress distribution

of the lower contact region is relatively flatter than that

of the upper contact region under both load cases. As

can be seen in Fig. 21(b), where the iteration histories

of the variance are plotted, the variance for the lower

contact region is actually smaller than that of the upper

contact region under the same load cases. The

dramatic reductions on the variances demonstrate the

(a) Before optimization (b) Iteration 1

(c) Iteration 10 (d) Iteration 20

(e) Iteration 40 (f) Iteration 80

(g) Iteration 120 (h) Iteration 176
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effectiveness and the capability of the proposed

material stiffness design on dealing with the contact

problems with multiple contact regions.

After 56 iterations, the final Young’s modulus of

these two design domains are illustrated in Fig. 22.

The final Young’s modulus of the upper design

domain range from 3.84 to 9.91 GPa, and the

distribution follows a similar rule with the previous

examples, as shown in Fig. 22(a). However, with a

similar extreme reference stress distribution, as shown

in Figs. 19a and 20a, the Young’s modulus of the

lower design domain, as presented in Fig. 22b, show a

different distribution pattern, where the Young’s

modulus decreases from the left to the right with a

range from 0.39 to 0.55 GPa. This may due to the

interaction between these two design domains and the

interaction mechanism needs to be further studied.Fig. 18 A contact problem of three contact bodies
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(a) Before optimization (b) After optimization

0 6 12 18 24 30
0

14

28

42

56

C
on

ta
ct

 st
re

ss
 (M

Pa
)

X (mm)

Extreme reference stress
Stress under LC1
Stress under LC2

0 6 12 18 24 30
0

14

28

42

56

C
on

ta
ct

 st
re

ss
 (M

Pa
)

X (mm)

Extreme reference stress
Stress under LC1
Stress under LC2

Fig. 20 Contact stress distributions of the lower contact region

123

Material stiffness optimization for contact stress distribution in frictional elastic contact… 515



6 Discussion and conclusions

Considering the significant effects of material stiffness

on contact stress distribution and the universality of

multiple loading conditions, the problem of material

stiffness optimization in contact systems subjected to

multiple load cases shall not be neglected. A heuristic-

based material stiffness optimization design algorithm

is developed for homogenizing the contact stress

distribution in frictional elastic contact problems

under multiple loading conditions. A weighted sum

of the decrease levels of the contact stress under all

load cases is constructed as the objective function and

the Young’s modulus of the areas around the contact

region is defined as the design variable. The individual

criteria (Li et al. 2003) for contact problem with

multiple contact regions is addressed and the worst

case design (Ben-Tal et al. 2000; Li et al. 2005) is

adopted. A power law function is utilized to control

the Young’s modulus modification process.

Three numerical examples are investigated to

evaluate the feasibility and effectiveness of the

proposed material stiffness optimization under multi-

ple load cases. The results indicate that after the

material stiffness design, the variance of the contact

stress under each loads can be reduced significantly

(e.g. a reduction of 99.73% under load case 1 and

98.82% under load case 2 in the second example).

Moreover, some new features of the material stiffness

optimization with multiple loading conditions are

obtained. It is found that the final distribution of the

extreme reference stress owes a stronger relations with

the most critical load case when the multiple loads are

asymmetric, the convergence rate is affected by the

initial contact stress distribution and that the final

material stiffness (i.e., Young’s modulus) distribution

may be affected by the interactions between multiple

contact regions. We would like to underline the

effectiveness of the proposed heuristic-based material

stiffness optimization design algorithm on homoge-

nizing the contact stress distribution, and the new

features of the material stiffness optimization with

multiple loading conditions.

Table 1 Results before and

after optimization for the

upper contact region

Parameters Before optimization After optimization

Under LC1 Under LC2 Under LC1 Under LC2

Reduction in variance – – 88.73% 91.24%

Maximum contact stress/MPa 71.15 51.25 27.77 30.80

Table 2 Results before and

after optimization for the

lower contact region

Parameters Before optimization After optimization

Under LC1 Under LC2 Under LC1 Under LC2

Reduction in variance – – 96.51% 99.78%

Maximum contact stress/MPa 52.82 47.86 22.05 26.15

(a) Objective function V.S. iterations 

(b) Variance V.S. iterations 
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Fig. 21 Iteration histories of the objective function and the

variance under two load cases

123

516 Y. Zhou et al.



For the manufacturing of the optimized continuous

Young’s modulus distribution, additive manufacturing

(Cramer et al. 2015) is a potential realizable technol-

ogy. Through additive manufacturing, structures com-

posed of various materials with properties varying

continuously along the spatial dimension(s) could be

achieved, which is the exact main feature of the

Young’s modulus distribution obtained in this paper.

Moreover, some post-processing treatments (e.g.,

region-averaging treatment of the Young’s modulus)

can be conducted to convert the optimized continuous

Young’s modulus distribution to a discrete and high-

resolution Young’s modulus distribution, which is

then much easier to be manufactured. Future devel-

opment is also needed to promote the implementation

of the variable Young’s modulus distribution in real

life.
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Czarnecki, S., Lewiński, T.: Pareto optimal design of non-ho-

mogeneous isotropic material properties for the multiple

loading conditions. Phys. Status Solidi B 254(12), 1600821
(2017b). https://doi.org/10.1002/pssb.201600821

Diaz, A.R., Bendsøe, M.: Shape optimization of structures for

multiple loading conditions using a homogenization

method. Struct. Optim. 4(1), 17–22 (1992). https://doi.org/
10.1007/BF01894077

Fernandez, F., Puso, M.A., Solberg, J., Tortorelli, D.A.:

Topology optimization of multiple deformable bodies in

contact with large deformations. Comput. Methods Appl.

Mech. Eng. 371, 113288 (2020). https://doi.org/10.1016/j.

cma.2020.113288

Goyat, V., Verma, S., Garg, R.K.: On the reduction of stress

concentration factor in an infinite panel using different

radial functionally graded materials. Int. J. Mater. Prod.

Technol. 57(1–3), 109–131 (2018). https://doi.org/10.

1504/Ijmpt.2018.092937

Goyat, V., Verma, S., Garg, R.K.: Stress concentration reduc-

tion using different functionally graded materials layer

around the hole in an infinite panel. Strength Fract Com-

plexity. 12(1), 31–45 (2019). https://doi.org/10.3233/sfc-

190232

Haug, E.J., Kwak, B.M.: Contcat stress minimization by contour

design. Int. J. Numer. Methods Eng. 12(6), 917–930

(1978). https://doi.org/10.1002/nme.1620120604

Hilding, D., Klarbring, A.: Optimization of structures in fric-

tional contact. Comput. Methods Appl. Mech. Eng.

205–208, 83–90 (2012). https://doi.org/10.1016/j.cma.

2011.02.014

Hilding, D., Klarbring, A., Pang, J.-S.: Minimization of maxi-

mum unilateral force. Comput. Methods Appl. Mech. Eng.

177(3), 215–234 (1999). https://doi.org/10.1016/S0045-

7825(98)00382-X

Hilding, D., Torstenfelt, B., Klarbring, A.: A computational

methodology for shape optimization of structures in fric-

tionless contact. Comput. Methods Appl. Mech. Eng.

190(31), 4043–4060 (2001). https://doi.org/10.1016/

S0045-7825(00)00310-8

Jeong, G.E., Youn, S.K., Park, K.C.: Topology optimization of

deformable bodies with dissimilar interfaces. Comput.

Struct. 198, 1–11 (2018). https://doi.org/10.1016/j.

compstruc.2018.01.001

Johnson, K.L.: Contact Mechanics. Cambridge University

Press, Cambridge (1987)

Klarbring, A.: On the problem of optimizing contact force dis-

tributions. J. Optim. Theory Appl. 74(1), 131–150 (1992).

https://doi.org/10.1007/Bf00939896
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