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Abstract Using the Kröner–Lee elastic and plastic

decomposition of the deformation gradient, a differ-

ential-algebraic system is obtained (in the so-called

semi-explicit form). The system is composed by a

smooth nonlinear differential equation and a non-

smooth algebraic equation. The development of an

efficient one-step constitutive integrator is the goal of

this work. The integration procedure makes use of an

explicit Runge–Kutta method for the differential

equation and a smooth replacement of the algebraic

equation. The resulting scalar equation is solved by the

Newton–Raphson method to obtain the plastic multi-

plier. We make use of the elastic Mandel stress

construction, which is power-consistent with the

plastic strain rate. Iso-error maps are presented for a

combination of Neo-Hookean material using the Hill

yield criterion and a associative flow law. A variation

of the pressurized plate is presented. The exact

Jacobian for the constitutive system is presented and

the steps for use within a structural finite element

formulation are described .

Keywords Finite strain plasticity � Differential-

algebraic system � Runge–Kutta method � Mandel

stress

1 Introduction

This work deals with finite strain elasto-plasticity.

Finite strain plasticity, see, e.g. Nemat-Nasser (2004),

including any relevant hardening, damage and strain-

rate effects, is a key ingredient in a realistic simula-

tion. The comprehensive discussion by Wriggers

(2008) shows the effects commonly included in the

simulations and the numerical consequences of the

Kröner–Lee decomposition (Kröner 1960; Lee and

Liu 1967; Lee 1969). In the earliest numerical

developments, the multiplicative decomposition was

applied to specific hyperelastic laws and yield func-

tions, see Simo and Ortiz (1985), Simo (1988), Moran

et al. (1990), Lubliner (1990), Simo (1992) and Areias

and Matouš, (2008). Currently, most papers and

implementations make use of more general spatial-

configuration approach to finite strain plasticity, which

has been summarized in Wriggers (2008). However,

some limits to the elastic and/or plastic laws still exist

in recent works, such as the restriction to isotropic

hyperelastic laws (the case of Vladimirov et al. 2010

and Areias et al. 2012) or the use of a Kirchhoff/Saint-

Venant elastic law, which is the case of Schröder et al.
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(2002). In certain cases, coaxiality is assumed in the

integrator, see also Eidel and Gruttmann (2003),

resulting in a single scalar equation.

In terms of finite element technology, it is worth

mentioning that mixed and enhanced finite elements

do not always provide the required deformation

gradient to feed the constitutive integrator and this

has been the subject of discussion for a considerable

time (Betsch and Stein 1999). Although some work

exists on the combination of classical multiplicative

plasticity with assumed strain elements, a more direct

approach is to make use of the work by Eidel and

Gruttmann (2003). A purely material configuration is

here adopted and therefore, besides the constitutive

history variables, only the Green–Lagrange strain E or

the right Cauchy–Green tensor C are required as

sources to the finite strain plasticity integrator.

This results in a differential-algebraic system (cf.

Hairer et al. 1989), with the flow law being a smooth

differential equation for the plastic deformation gra-

dient Fp (which is the differential variable) and a non-

smooth algebraic equation corresponding to the load-

ing/unloading Kuhn–Tucker conditions. The algebraic

variable is the plastic multiplier (or alternatively the

time). In our case, smoothing of the algebraic equation

is performed, as in Areias et al. (2012), a topic which

is further discussed by Scalet and Auricchio (2018).

The following sections of this work discuss the

equations, implementation and error assessment of

the proposed algorithm.

2 Constitutive updating using the elastic Mandel

stress tensor

Hyperelastic laws can directly incorporated in

assumed-strain large deformation element formula-

tions. Inelastic laws often entail technicalities with

respect to the presence of the assumed deformation

gradient (Betsch and Stein 1999) which led to the use

of the Mandel stress tensor approach in the material

setting. A comprehensive description of the arguments

involved is provided by Eidel and Gruttmann (2003).

Note that there is a compromise: the Mandel stress

(Mandel 1973), instead of the Cauchy stress, is present

in the yield function.

We make use of the Kröner–Lee decomposition

(Kröner 1960; Lee and Liu 1967; Lee 1969), which is a

multiplicative decomposition of the deformation gra-

dient F, in which a stress-free (‘‘relaxed’’) intermedi-

ate configuration is assumed (see also Lubliner 1990

and Menzel 2006):

F ¼ FeFp ð1Þ

This is now relatively standard (Simo and Ortiz 1985),

with Fe providing the elastic part of the deformation

and Fp being the plastic part of the deformation. That

is, local unloading is obtained by imposing Fe ¼ I, see

Lubliner (1990), defining the so-called intermediate

(or unloaded) configuration.

From (1), the velocity gradient is determined by its

definition and then partitioned L ¼ _FF�1 ¼
Le þ FeLpF

�1
e with Le ¼ _FeF

�1
e and Lp ¼ _FpF

�1
p .

Here, Lp is defined in the unloaded configuration.

Since the second Piola-Kirchhoff stress is a function of

the elastic part of F by means of Ce ¼ FT
eFe (cf.

Gurtin 1981), the second Piola-Kirchhoff stress at the

intermediate configuration is given by a function

Se Ceð Þ (this form was proved thermodynamically by

Mandel 1974), from which energy consistency results

in the following form for the second Piola-Kirchhoff

stress

S ¼ F�1
p Se Ceð ÞF�T

p ð2Þ

The flow law follows standard arguments (Eidel and

Gruttmann 2003; Menzel 2006), assuming that the

initial plastic deformation gradient corresponds to the

identity, Fp

� �
0
¼ I. Following standard derivations on

plasticity, a yield function / is introduced, as well as a

plastic multiplier _c. We summarize the constitutive

system as:

S ¼ F�1
p Se Ceð ÞF�T

p ð3Þ

_Fp ¼ _cN Teð ÞFp ð4Þ

Fp

� �
0
¼ I ð5Þ

� / Teð Þ þ _c � � _c ¼ 0 ð6Þ

with � � �¼ �þ �j j
2

being the unit ramp function. In (4),

the elastic Mandel stress (Mandel 1973) Te is defined

as:
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Te ¼ CeSe Ceð Þ ð7Þ

Assuming associativeness of the flow law, we have the

flow vector N Teð Þ determined from the derivative of

/ Teð Þ:

NðTeÞ ¼ d/ Teð Þ=dTe ð8Þ

The Mandel stress tensor is, in terms of plastic

dissipation power, conjugated to Lp, which implies

that the flow law (4) is power-consistent. To increase

the conciseness of the constitutive equations, we use

the replacementQp ¼ F�1
p and remove Ce and Te from

the list of constitutive unknowns, resulting in the more

convenient system:

S ¼ QpSe QT
pCQp

� �
QT

p ð9Þ

_Qp ¼ � _cQpN QT
pCQpSe QT

pCQp

� �h i
ð10Þ

Qp

� �
0
¼ I ð11Þ

� / QT
pCQpSe QT

pCQp

� �h i
þ _c � � _c ¼ 0 ð12Þ

In Eqs. (10–12), Qp and _c are the constitutive

unknowns. System (10, 12) is a differential-algebraic

system (DAE) with (9) being calculated after its

solution. For the rate-independent case, the system is

autonomous and we can re-write the DAE system in

semi-explicit nonlinear autonomous form:

_Qp ¼ W _c;C;Qp

� �
ð13Þ

Uð _c;C;QpÞ ¼ 0 ð14Þ

This is a index-1 DAE, considering _c as the algebraic

variable. We note that since in (14), oUð _c;C;QpÞ=o _c is

non-invertible in general, we cannot use a standard

fully explicit Runge–Kutta (RK) method for this

system, see also Hairer et al. (1989). Since we have an

autonomous system, we consider _c as an unknown

parameter and solve the system in a semi-implicit

form. It turns out that, since W is homogeneous of

degree one with respect to _c, this will play a specific

role in numerical integration. With that in mind, we

introduce the following nomenclature:

_Qp ¼ _cWH C;Qp

� �
) ð15Þ

dQp=dc ¼ WHðC;QpÞ for _c 6¼ 0 ð16Þ

It is straightforward to write (10–12) as a non-smooth

differential system, and therefore standard ODE

integration analysis is applicable.

3 Integration

A description of the semi-implicit time-integration

algorithm for system (13–14) now follows. Tradition-

ally, when one-step methods are selected to integrate

DAE, fully-implicit RK methods are employed (Pet-

zold August 1986). In alternative, extrapolation

methods such as the one described by Deuflhard,

Hairer and Zugck can be used (Deuflhard et al. 1987).

For our specific system, we can still apply an explicit

RK method for the differential variable. We use

superscripts n and nþ 1 to identify two consecutive

time-steps and use Dt as the time-step size. The

number of stages (s) and the corresponding Runge–

Kutta coefficients apq, bp and cp with p; q ¼ 1; . . .; s

define the explicit Runge–Kutta procedure, see Hairer

et al. (2008). Applying the explicit RK integration

with s stages for _Qp and the backward-Euler method

for the plastic multiplier _c results in:

Qnþ1
p ¼ Qn

p þ _cnþ1Dt
Xs

p¼1

bpWH

� cpDC þ Cn;Qn
p þ _cnþ1Dt

Xp�1

q¼1

apqjq

" #

ð17Þ

cnþ1 ¼ cn þ _cDt|{z}
Dc

ð18Þ

where DC ¼ Cnþ1 � Cn. Note that in (18), a simple

backward-Euler integration is performed, since Dc is

determined implicitly. We now introduce the notation

jp to simplify Eq. (17):

jp ¼ WH cpDC þ Cn;Qn
p þ _cnþ1Dt

Xp�1

q¼1

apqjq

" #

ð19Þ

By defining the product /H ¼ Dt/, and making use of

the argument Dc; jp � jp Dcð Þ, the constitutive system

reads:
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Qnþ1
p ¼ Qn

p þ Dc
Xs

p¼1

bpjp Dcð Þ ð20Þ

� /H Qnþ1
p

� �T

�Cnþ1 � Qnþ1
p � Se

�

� Qnþ1
p

� �T

�Cnþ1 � Qnþ1
p

	 
�
þ Dc � �Dc ¼ 0

ð21Þ

Q0
p ¼ I ð22Þ

In (20–21) we have used the function jp Dcð Þ ¼

WH cpDC þ Cn;Qn
p þ DQn

p Dcð Þ
h i

with

DQn
p Dcð Þ ¼ Dc

Pp�1
q¼1 apqjq Dcð Þ. We note that

WHðC;QÞ is the following function of C and Q:

WHðC;QÞ ¼ �Q � N QT � C � Q � Ŝe QT � C � Q
� �� �

ð23Þ

The second Piola-Kirchhoff stress at step nþ 1 is

given by its definition at Ce ¼ Qnþ1
p

� �T

�Cnþ1 � Qnþ1
p :

Snþ1 ¼ Qnþ1
p � Ŝe Qnþ1

p

� �T

�Cnþ1 � Qnþ1
p

	 

� Qnþ1

p

� �T

ð24Þ

With the Eqs. (20–21), the following observations are

in order:

1. The right-hand-side of Eq. (20) is a polynomial of

degree s of Dc.

2. Introducing Q̂pðDcÞ ¼ Qn
p þ Dc

Ps
p¼1 bpjp Dcð Þ

and ĈeðDc;Cnþ1Þ ¼ Q̂T
p ðDcÞ � Cnþ1 � Q̂pðDcÞ the

resulting non-smooth Eq. (21), can be solved for

Dc, with the argument of /H being

ĈeðDc;Cnþ1Þ � Ŝe Ĉe Dc;Cnþ1
� �� �

.

3. If Dc ¼ 0 and /Hð0Þ\0 then obviously Qnþ1
p ¼

Qn
p and (21) is not required.

Focusing on the constitutive unknown,Dc, the residual

corresponding to (21) is written as:

r Dc;Cð Þ ¼� /H ĈeðDc;CÞ � Ŝe Ĉe Dc;Cð Þ
� �� 


þ Dc � �Dc
ð25Þ

An implementation of the RK integration (20) has to

be performed. We adopt s ¼ 1, s ¼ 2 and s ¼ 4-stage

RK integration with one of the following tableaus

(forward-Euler, midpoint and RK4), see Hairer et al.

(2008):

a1 ¼ ½H	 ð26Þ

b1 ¼ f1g ð27Þ

C1 ¼ 0 ð28Þ

a2 ¼
H

1

2

" #

ð29Þ

b2 ¼ f0; 1g ð30Þ

c2 ¼ f0; 1=2g ð31Þ

a4 ¼

H H H

1=2 0 0

0 1=2 0

0 0 1

2

6664

3

7775
ð32Þ

b4 ¼ f1=6; 1=3; 1=3; 1=6g ð33Þ

C4 ¼ f0; 1=2; 1=2; 1g ð34Þ

For unit consistency, the yield function /H is nondi-

mensionalized. When applying the Newton–Raphson

method to solve (25), we accumulate iterative correc-

tions, which are identified here by dDcit as Dc ¼
Pniter

it¼1 dDcit with it ¼ 1; . . .; niter being the iteration

counter with niter being the number of Newton–

Raphson iterations, are given by (omitting the

arguments):

�or=oDcð ÞdDcit ¼ r , ð35Þ

1� � /H þ Dc �0
b

n

1 þ /0
H
: Ĉ0

e � Se þ
1

2
Ce�Ce : Ĉ

0
e

� �	 
�
dDcit

¼� /H þ Dc �b �Dc

ð36Þ

In (36) we identify the following terms:
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Ce ¼ 2
dŜe Ceð Þ

dCe

�����
Ce¼ĈeðDc;Cnþ1Þ

ð37Þ

� x �¼ lim
b!0

� x �b ð38Þ

� x �0
b¼ d � x �b=x ð39Þ

/0
H
¼ d/H=dTe ð40Þ

Ĉ0
e ¼ oĈeðDc;Cnþ1Þ=oDc ð41Þ

where � x �b is a smooth replacement for the unit

ramp function, with b being a smoothing parameter.

This smooth replacement for the ramp function is

defined as (see Chen and Mangasarian 1995, 1996):

� x �b¼
xþ a�1 log 1 þ exp �axð Þ½ 	 x
 0

xþ a�1 �axþ log 1 þ exp axð Þ½ 	f g x\0

�

ð42Þ

with a ¼ log 2=b and b is the residual at the origin, see

Fig. 1. This is in fact a differentiable replacement for

the ramp function satisfying � x �¼ limb!0 � x �b,

x 2 R.

After convergence is obtained in (35), we calculate

the derivative dDc=dC, which is required for the

sensitivity of the solution:

dDc

dCnþ1
¼ � or

oDc

� ��1
or

oCnþ1

� �
ð43Þ

Omitting arguments, we have

or

oCnþ1
¼ � /H þ Dc �0

b

� �
/0
H
:

Ĉ�
e � Se þ

1

2
Ce � Ce : Ĉ

�
e

� � ð44Þ

with:

Ĉ�
e ¼ oĈeðDc;Cnþ1Þ=oCnþ1 ð45Þ

Ĉ�
e � Se

� �
ijkl
¼ Ĉ�

e

� �
imkl

Se½ 	mj ð46Þ

We can therefore calculate the total derivative of Ce

with respect to Cnþ1 as:

Ĉ~

e ðDc;Cnþ1Þ ¼ Ĉ0
eðDc;Cnþ1Þ � dDc

dCnþ1
þ Ĉ�

eðDc;Cnþ1Þ

ð47Þ

These quantities are now introduced in the stress

sensitivity, as:

C ¼ 2
dS

dCnþ1

¼ 2 Q̂0
p �

dDc

dCnþ1

	 

� Se � Qnþ1

p

� �T
	 
�

þQnþ1
p � Se � Q̂0

p �
dDc

dCnþ1

	 
T)

þ Qnþ1
p � Ce : Ĉ

~

e Dc;Cnþ1
� �h i

� Qnþ1
p

� �T

ð48Þ

where Q̂0
p ¼ dQ̂pðDcÞ=dDc. It is now required to

specify the derivatives involved in (36):

Ĉ0
e

� �
ij
¼ Q̂0

p

� �T

�Cnþ1 � Qnþ1
p þ Qnþ1

p

� �T

Cnþ1Q̂0
p

ð49Þ

Ĉ�
e

� �
ijkl
¼ Qnþ1

p

h i

ki
Qnþ1

p

h i

lj
ð50Þ

The implementation of this algorithm is performed

with Mathematica and AceGen (Wolfram Research

Inc 2007; Korelc 2002). We therefore have the

procedure described in Table 1.

In terms of stability of the RK integration, we can

still use the known results from the literature for the

linear case The linear case is obtained by fixing theFig. 1 Graph of xh ib for b ¼ 0:1
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flow vector N. Using the linearized case, we have a

vector form of Qv and the derivative dQv=dc as1:

dQv=dc ¼ BQv ð51Þ

where B depends on the flow-vector components Nij:

B ¼ �

N11 N21 N31 0 0 0 0 0 0

0 0 0 N12 N22 N32 0 0 0

0 0 0 0 0 0 N13 N23 N33

N12 N22 N32 0 0 0 0 0 0

N13 N23 N33 0 0 0 0 0 0

0 0 0 N13 N23 N33 0 0 0

0 0 0 N11 N21 N31 0 0 0

0 0 0 0 0 0 N11 N21 N31

0 0 0 0 0 0 N12 N22 N32

2

66666666666666664

3

77777777777777775

ð52Þ

The linearized stability condition for the RK methods

is a function of the eigenvalues of B (see, e.g. Hairer

et al. 2010), we obtain a condition for z ¼ Dck with

k 2 C being an eigenvalue of B. For the RK4 method,

we have the A-stability condition

R ¼ sup
z

1 þ zþ z2=2 þ z3=6 þ z4=24
�� ��\1

for Re½z	\0 which we assess here. We set R ¼ 0 if

Re½z	 
 0.

4 Equilibrium and finite-element implementation

The use of relative strain measures is convenient in

finite elements. Hence, a description is herein pre-

sented on how to use the constitutive algorithm with

these elements. We make use of three configurations,

X0, Xb and Xc. Configuration X0 is undeformed, Xb is

the reference configuration and Xa is the equilibrium

configuration. To these three configurations we asso-

ciate three frames 0, b and a, respectively. We use the

letter R to represent a frame, with each basis vector

Table 1 Finite strain

constitutive solution with

semi-implicit RK

integration

Required constitutive functions

Hyperelastic constitutive law Ŝe Ceð Þ
Normalized yield function /H Teð Þ
Flow vector N Teð Þ
Data

Source Cnþ1 ¼ 2Enþ1 þ I

History Cn and Qn
p

Initialization Dc ¼ 0 and Q0
p ¼ I; C0 ¼ I

Additional functions

Ŝ C;Qð Þ ¼ Q � Ŝe QT � C � Q
� �

� QT

WH C;Qð Þ ¼ �Q � N QT � C � Q � Ŝe QT � C � Q
� �� �

jp Dcð Þ ¼ WH cpDC þ Cn;Qþ Dc
Pp�1

q¼1 apqjq Dcð Þ
h i

Q̂pðDcÞ ¼ Qn
p þ Dc

Ps
p¼1 bpjp Dcð Þ

Ĉe Dc;Cð Þ ¼ Q̂pðDcÞT � C � Q̂pðDcÞ

/̂H Dc;Cð Þ ¼ /H Ĉe Dc;Cð Þ � Ŝe Ĉe Dc;Cð Þ
� �� 


r Dc;Cð Þ ¼ � /̂H Dc;Cð Þ þ Dc � �Dc

Solution

Dc ¼ arg
cq

r cq;C
nþ1

� �
¼ 0

� �

Qnþ1
p ¼ Q̂pðDcÞ

Output

Snþ1 ¼ Ŝ Cnþ1;Qnþ1
p

� �

C ¼ 2 dSnþ1

dCnþ1

1 Order 11, 22, 33, 12, 13, 23, 21, 31, 32.
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being a column of R. A generic tensor T is written, in

frame c for reference configuration Xb and equilibrium

configuration Xa as Tc
ab. Whenever it is obvious, we

omit the superscript c. After introducing the relative

deformation gradient between configurations Xb and

Xa as Fab we have:

Fab ¼ Fa0F
�1
b0 ð53Þ

The Green–Lagrange strain between configurations

Xa and Xb is obviously Eab ¼ 1=2 FT
abFab � I

� �
and

therefore we can write Ea0 ¼ E as:

Ea0 ¼ Eb0 þ FT
b0EabFb0 ð54Þ

Change of frame of a given second-order tensor T is

obtained in general as: Ta ¼ RaT
0RT

a . Polar decom-

position of the deformation gradient Fa0 is obtained

from the rotation and stretch Ua0 (using the previous

notation):

Fa
a0 ¼ Ra

a0U
a
a0 ð55Þ

where Ra
a0 ¼ RT

0Rb. Having defined the relative

Green–Lagrange strain Eab, which is the traditional

Green–Lagrange strain assuming that the initial con-

figuration is Xb, we now use the power conjugacy

between the Green–Lagrange strain rate ( _E) and the

second Piola-Kirchhoff stress (S � Sa0) to obtain:

Z

X0

S : _Ea0dX0 ¼
Z

Xb

Sab : _EabdXb ð56Þ

In addition, in (56), _Eab ¼ 1=2 _FT
abF

�1
ab þ F�T

ab
_Fab

� �
.

From (56) we obtain the following relation:

Sab ¼
1

Jb0

Fb0SF
T
b0 ð57Þ

where Jb0 ¼ detFb0. Generalizing, we have:

Sac ¼
1

Jcb
FcbSabF

T
cb ð58Þ

In terms of Newton–Raphson iteration, we require the

first variation of (56), the tangent modulus (48) is

employed to read:

Z

X0

S : d _Ea0dX0 þ
Z

X0

dEa0 : C : _Ea0dX0

� �

¼ Fext � _u�
Z

X0

S : _Ea0dX0

ð59Þ

where Fext is the external load vector and _u is the nodal

velocity vector. In our case, pressure is applied in Sect.

6.

5 Prototype model and results

For the hyperelastic law, we use the compressible

Neo-Hookean with properties l and k (analogous to

Lamé parameters in the Hookean case), see Bonet and

Wood (2008) for further details:

ŜeðCeÞ ¼ lðI � C�1
e Þ þ k log

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det Ceð Þ

ph i
C�1
e ð60Þ

corresponding to the following strain energy density:

WðCeÞ ¼
l
2

tr Ceð Þ � 3½ 	 � l log
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det Ceð Þ

p

þ k
2

log
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det Ceð Þ

ph i2
ð61Þ

The nondimensional yield function is given by:

/H Teð Þ ¼ req Teð Þ
ry

� 1 ð62Þ

with, as a prototype equivalent stress, a specific Hill-

criterion is adopted (the subscript e of Te is omitted for

conciseness):

Table 2 Properties for the contour plot of � /̂HðC; IÞ � as a

function of E11 and E22

l 1

k 1

ry 3/10

Q0
p

I
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Fig. 2 Representation of �
/̂H C; Ið Þ �b for

b ¼ 1 � 10�3, b ¼
1 � 10�1 and b ¼ 1. Range

is E11 2 ½�0:35;þ0:35	 and

E22 2 ½�0:35;þ0:35	. b is

the regularization parameter

for the yield function
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Fig. 3 Strain energy density

logarithm, logW in the

elasto-plastic case for b ¼ 0,

b ¼ 1 � 10�3 and

b ¼ 1 � 10�1. Range is

E11 2 ½�0:35;þ0:35	 and

E22 2 ½�0:35;þ0:35	. b is

the regularization parameter

for the yield function
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r2
eqðTeÞ ¼

1

4
4T2

11 þ 6 T2
12 þ T2

21

� �
þ 27

2
T2

13 þ T2
31

� �	

�9T11T22 þ 9T2
22 þ 6 T2

23 þ T2
32

� �
þ T11T33

�9T22T33 þ 4T2
33

�

ð63Þ

From which, N Teð Þ ¼ d/H Teð Þ=dTe is determined as:

Using the smoothed replacement � /̂H C; Ið Þ �b with

the properties shown in Table 2, the effect of b is

observable, cf. Fig. 2. In this figure, we easily identify

the yield function in the strain space (we adopt the

definition E ¼ 1=2 C � Ið Þ). Smaller b results in a

sharper representation of the yield function. In terms

of strain energy density, Fig. 3 shows the results with

s ¼ 4. It is worth noting that a full one-step integration

is required for each pixel in the figure, with the

corresponding calculation of Ce. The yield function

curbs the growth of W with E. The effect of b is clear,

with a sharper contour being obtained with smaller b.

Iso-error maps for the stress are built with the standard

procedure (Simo et al. 2000), but starting from C ¼ I.

Figure 4 presents the three cases s ¼ 1; 2 and 4 with

b ¼ 1 � 10�3, b ¼ 1 � 10�2 and b ¼ 1 � 10�1. The

smoothing parameter has a clear effect on the shape of

the maps and also the stress error. Larger values of b
result in larger integration errors. We note that smaller

values than 1 � 10�3 do not produce visible differ-

ences with respect to that value. Since /H is normal-

ized, we note that this value can be adopted in all

simulations.

In addition, the effect of s is clear from the forward-

Euler to the midpoint rule, with more than double the

error obtained when using the forward-Euler method.

However, between s ¼ 2 and s ¼ 4, some advantage is

observed. Higher order methods also show improved

Newton–Raphson behavior, related to the accuracy of

the flow vector N at the solution. In terms of stability

function R, we show the results for s ¼ 4 and b ¼
1 � 10�3 in Fig. 5. It can be observed that it complies

with the condition R\1 for positive real parts of the

eigenvalues. Of course, in the elastic region, we have

R ¼ 1.

6 Application to an anisotropic elasto-plastic plate

under pressure

We consider the problem of a plate under deformation-

dependent pressure, see Fig. 6. This is an adaptation of

the problem proposed by Buchter et al. (1994) but

with anisotropic laws. Relevant properties are shown

in Fig. 6 along with the effective strain contour plot ep.
We adopt a rotation a ¼ p=6 around the z-axis for the

Hill criterion, with the same yield function previously

introduced 63.

For the compressible Neo-Hookean combined with

the Hill yield criterion, Fig. 7 shows the results. We

determine the pressure from the central displacement

by an additional global equation (see, e.g. Areias et al.

2009 where this procedure was introduced). Very

large step sizes are possible and the effect of the order

of the RK method is observable. In terms of the effect

of b, we note that b\1 � 10�3, since the yield

function is normalized, are indistinguishable in terms

of results. Figure 8 shows the effect of b for Duz ¼ 10

and s ¼ 1. We can observe lower values of pressure

cFig. 4 Iso-error maps for E11 2 ½�0:6;þ0:6	 and

E22 2 ½�0:6;þ0:6	. b is the regularization parameter for the

yield function

N Teð Þ ¼ 1

ryreq Teð Þ

8T11 � 9T22 þ T33

8

3

2
T12

27

8
T13

3

2
T21

18T22 � 9T11 � 9T33

8

3

2
T23

27

8
T31

3

2
T32

8T33 � 9T22 þ T11

8

2

666664

3

777775
ð64Þ
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but also a shallower drop for higher values of

displacement.

7 Conclusions

We proposed a one-step semi-implicit algorithm to

solve the finite-strain elasto-plastic DAE. It makes use

of a fourth-order Runge–Kutta method for the differ-

ential part of the system and a Newton–Raphson root

finder for the algebraic term. Since it is not, in general,

possible to transform the constitutive system into a

ODE, we replace the integrated differential equation

(for dF�1
p =dt) in a smoothed version of the originally

non-smooth algebraic equation.

The effects of (1) order of integration s and (2)

smoothing parameter b are studied for a Neo-Hookean

model coupled with the classical Hill yield criterion

with both elastic and plastic finite strains. Iso-error

maps are presented, allowing the following

conclusions:

1. Effect of the smoothing parameter b is significant,

with larger values imposing resulting in a diffuse

elasto-plastic interface. This has been verified in

the yield function and the strain energy density

contour plots. Since /H is normalized, values of b
less than 1 � 10�3 produce indistinguishable

results.

2. Effect of order s is also important, with a

pronounced difference between s ¼ 1 (forward

Euler) and s ¼ 2 (Runge–Kutta midpoint). Iso-

error maps show a much higher error with the

forward-Euler method. However, between s ¼ 2

and s ¼ 4, iso-error maps show some difference

but it is not pronounced. The maximum value of

the error still shows the benefit of higher order.

3. A-stability is verified for the integration of the

flow law and s ¼ 4.

Extensions both in terms of integration algorithms and

also more intricate constitutive laws are not difficult to

envisage, and one-step extrapolation integrators can

replace the classical Runge–Kutta in this work.

Fig. 5 R values for s ¼ 4, E11 2 ½�0:35;þ0:35	 and E22 2
½�0:35;þ0:35	 (outside these bounds R decreases) and

b ¼ 0:001. R ¼ 1 identifies the yield surface
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Fig. 6 Square plate under

deformation-dependent

pressure. Deformed

configuration and plot of

effective plastic strain ep
(Hill yield criterion and

compressible Neo-Hookean

hyperelastic model)
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