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Abstract Snell’s law provides a mathematical basis

for the continuation of wave-field at a boundary. In the

paper under review, theoretical formulation fails in

applying this law correctly. Consequently, the whole

reflection procedure goes off-track and the study

wanders in incorrect domain. Researchers in the field

may note the mathematical discrepancies identifed in

this incorrect procedure.
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1 Introduction

Deswal et al. (2019) considered to study the reflection

phenomenon for the incidence of plane harmonic

waves at the plane boundary of initially stressed fiber-

reinforced thermoelastic half space. Two different

theories of generalized thermoelasticity are applied to

compute the velocities, amplitude ratios and energy

ratios for various reflected waves. Being thermoelas-

tic, this medium behaves dissipative to the propagation

of elastic waves. Then, with anisotropy induced by

fiber-reinforcement and initial stress, this medium no

longer remains isotropic. Mathematically, the com-

plex coefficients Dj, through the relations (23)–(25) in

Deswal et al. (2019), certify the dissipative character

of the medium considered. The dependence of these

coefficients on the propagation direction (i.e., angle h)

defines the anisotropic propagation. Hence, the study

in question deals with the reflection phenomenon at

the plane boundary of a dissipative anisotropic semi-

infinite medium. Throughout this text, the numbers in

parentheses identify the equations or relations, as

specified in Deswal et al. (2019).

2 Anisotropic attenuated propagation

The expressions (22) identify the time harmonic wave-

field restricted to x–y plane of the considered medium.

This medium being orthotropic, such a restriction

demands three orthogonal symmetry planes to coin-

cide with the coordinate planes in Euclidean space.

Then, in the x–y plane, propagation is considered

along a direction making angle h with the x-direction.

Roots of the equation (26), a cubic in V2, defines the

propagation of three bulk waves in considered

medium. In this equation, the complex coefficients

(A, B, C) involve the angle h, which implies the

velocities (V1;V2;V3) as functions of propagation

direction. Hence, for any chosen h, a complex VjðhÞ is

the velocity of the corresponding wave for propaga-

tion along the chosen direction. Then, with complex V,
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the frequency x ¼ kV cannot be real unless k is a

complex number (real multiple of conjugate to V),

which should imply the attenuated wave-field through-

out the x–y plane. Consequently, with complex k, the

phase kð�x cos hþ y sin hÞ � xt in expression (22)

becomes complex. With real h, this phase defines same

direction for propagation as well attenuation vector,

i.e., homogeneous propagation of attenuated wave in

considered medium. This represents only a special

case of the inhomogeneous propagation, which is

generally considered in any dissipative medium

(Borcherdt 1982).

3 Reflection

A harmonic plane wave (qP1) is incident at the plane

surface x ¼ 0, making an angle h0 with the x-direction.

For this h0, the cubic equation (26) is solved into three

complex velocities, Vj; ðj ¼ 1; 2; 3Þ. The direction

dependence in anisotropy demands to consider the

orientation of the angle h0 as well. Then, V0 ¼ V1ðh0Þ
defines the velocity of qP1 wave incident along the

direction of h0 (to be measured anti-clockwise from

positive y-direction in figure 1). Similarly, for the

incidence of qP2 (or, qP3) wave along the direction of

h0, V2ðh0Þ (or, V3ðh0ÞÞ will denote the velocity of

incident wave. It may be noticed that the coefficients

Dj, and hence (A, B, C) in (26), change with the

angle h. The presence of 0 sin h0 in the expressions for

Dj implies different values for V1ðh1Þ and

V1ðh0Þ ¼ V0ðh0Þ, even when h1 ¼ �h0. That means,

only h1 ¼ h0 (in magnitude as well as orientation)

ensures that the velocity V1ðh1Þ of any reflected qP1

wave is same as the velocity V0ðh0Þ of incident qP1

wave. Unfortunately, with orientation, this equality

can only be possible for normal incidence only. Even

in magnitudes, this equality between angles of

incidence and reflection cannot be assumed but needed

to be derived from Snell’s law. In other words, the
0angle of reflection = angle of incidence0 rule does not

hold for any reflection at the boundary of anisotropic

medium. Consequently, the velocity of reflected wave

will be different from the velocity of incident wave,

even when the type of reflected wave is same as that of

the incident wave.

3.1 Snell’s Law

The identical horizontal slowness for all the waves at

the plane surface x ¼ 0 defines the Snell’s law. That

means, an identical 0k sin h0 for incident as well as all

the reflected waves. Hence, the complex relations

k0 sin h0 ¼ k1 sin h1 ¼ k2 sin h2 ¼ k3 sin h3 define a

generalised Snell’s law. Else, the relations (29) make

Snell’s law with complex (anisotropic) velocities

Vj ¼ VjðhjÞ; ðj ¼ 0; 1; 2; 3Þ. Hence, the relation
sin h0

V0ðh0Þ ¼
sin hr
VrðhrÞ should provide the propagation charac-

teristics (propagation direction, attenuation direction,

complex velocity) of each reflected wave (identified

with a value of r ¼ 1; 2; 3Þ. Note that V0ðh0Þ can be

extracted from the cubic equation (26), for fixed

(known) incidence angle h0. Similarly, the velocity

VrðhrÞ of any reflected wave can come from (26), only

when hr is known. Then, Vrðh0Þ cannot be considered

as the velocities of reflected waves (except, for

incidence along some particular symmetry directions).

3.2 Reflected wave: propagation characteristics

Consider the incidence of qP1 wave with velocity

V0 ¼ V1ðh0Þ along the incident angle h0. For the

propagation characteristics of reflected qP1 wave in x–

y plane, it requires to solve sin h0

V1ðh0Þ ¼
sin h1

V1ðh1Þ for h1. But,

through (26), this h1 is implicit in the calculation of

V1ðh1Þ, as complex velocity of reflected qP1 wave.

Unfortunately, presence of anisotropy blocks the

isotropy bye-pass of h1 ¼ h0. This requires solving

the complex irrational equation
0sin h0V1ðh1Þ � V1ðh0Þ sin h1 ¼ 00 for h1, as a complex

function of h0. Similarly, for any other reflected wave

along the direction of hr (r ¼ 2 or 3) in x–y plane, one

needs to solve the relation sin h0

V1ðh0Þ ¼
sin hr
VrðhrÞ for angle hr.

Consequently, the direction (i.e., complex angle hr)
and the complex velocity Vr of any reflected wave

vary with the incident angle of qP1 wave.

Finally, the reflection phenomenon demands to

solve, in turn, sin h0

V0ðh0Þ ¼
sin hr
VrðhrÞ ; ðr ¼ 1; 2; 3Þ; for hr.

Obviously, for incident qP1 wave, we have

V0ðh0Þ ¼ V1ðh0Þ. On starting with a fixed real h0

(assuming the incidence of homogeneous wave), the

equation (26) gets three complex velocities

Vjðh0Þ; ðj ¼ 1; 2; 3Þ. Incident wave is fixed through a

value for j (e.g., j ¼ 1 for qP1 wave). Now, with
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known h0 (chosen) and complex velocity V1ðh0Þ of the

incident qP1 wave from (26), the relation sin h0

V0ðh0Þ ¼
sin hr
VrðhrÞ

(from Snell’s law) defines a complex irrational

equation, sin h0VrðhrÞ � sin hrV0ðh0Þ ¼ 0, in complex

unknown hr.
There may not be any standard method for solving a

complex irrational equation for its one or all roots.

Moreover, getting a real root (hr) of the complex

equation, sin h0VrðhrÞ � sin hrV0ðh0Þ ¼ 0, may not be

less than a magic. Then, for complex values of hr and

VrðhrÞ from (26), the corresponding wave is repre-

sented by a complex slowness vector (p ¼ N̂=V;

complex N̂ such that N̂ � N̂ ¼ 1). Consequently, each

reflected wave should propagate as an inhomogeneous

wave, having different directions for propagation and

attenuation vectors. Then, the figure 1, in Deswal et al.

(2019), cannot be a correct exhibition of the reflection

phenomenon in the considered anisotropic dissipative

medium.

4 Consequences

With incorrect directions as well as velocities of all the

reflected waves, the whole reflection process in

Deswal et al. (2019) goes off-track. The incorrect

coefficients (bij and Yi) in (34) yield incorrect ampli-

tude ratios (Zj) as well as energy partition (Ei). Each of

the complex Zj is resolved to define amplitude ratio

(jZjj) and phase shift (arg Zj) for the corresponding

reflected wave. Thus, the plots in figures 1 to 7 are

exhibiting the incorrect and incomplete attributes of

reflected waves. Further, these complex Zi yield the

complex energy ratios (32)–(35) for different reflected

waves. In fact, the energy partition at a boundary is

represented through the real energy fluxes in the

direction normal to the plane boundary (Achenbach

1973). That means, the plots of jEij; ði ¼ 1; 2; 3Þ in

figure 8 show an incorrect partition of incident energy

among the reflected waves at the boundary.

The phase velocities of all the reflected waves vary

with the direction of incident wave as well. Hence, the

various plots in figures 9 and 10 do not carry any

meaning unless the incident direction is specified.

Moreover, through the incorrect interpretation of

Snell’s law, the complex velocities Vj; ðj ¼ 1; 2; 3Þ,
cannot be accurate. Further, for any reflected wave in

dissipative medium, magnitude of complex velocity

keeps no physical significance. Rather, a complex V is

used to define the phase velocity [1=RðV�)] and

attenuation coefficient [�IðVÞ=RðVÞ].

5 Remarks

The way-out lies in solving the equations of motion in

terms of vertical slowness for known horizontal

slowness. This starts with writing the wave-field

expression (22) in complex slowness vector, say

p ¼ ðp1; p2; qÞ, instead of wave velocity V. The

resulting Christoffel system yields a homogeneous

system of three equations in components of slowness

vector. This system is solved into an algebraic

equation of degree six in vertical slowness (q), while

coeffcients being the functions of horizontal slowness

ðp1; p2Þ.
An incident (homogeneous) wave is considered

with known (chosen) direction of propagation towards

the boundary. This direction enables to calculate the

velocity of incident wave from (26) and hence to

define the horizontal slowness ðp1; p2Þ. This horizontal

slowness, identical for all the waves at a boundary (cf.,

Snell’s law), is used to calculate the coefficients of the

sixth-degree algebraic equation in q. The six roots of

this equation define six values for vertical slowness

(q). Out of these six values, only three corresponds to

the waves traveling away from the boundary, i.e., three

reflected waves. Now, each vertical slowness value

combines, in turn, with the common horizontal

slowness to define the slowness vectors for three

reflected waves. For a reflected wave, the correspond-

ing slowness vector, p ¼ ðp1; p2; qÞ, is resolved as p ¼
P þ ıA to define the propagation vector ðPÞ, attenu-

ation vector (A) and hence inhomogeneity (deviation

of A from P). A relation p � p ¼ 1
V2 gets the complex

velocity for this reflected wave, resulting from the

considered homogeneous incident wave.

For inhomogeneous (general case) incident wave,

there is different procedure to calculate the slowness

vector of incident wave, which provides the common

horizontal slowness to define Snell’s law. The relevant

procedures may be found in Cerveny and Psencik

(2005) or Sharma (2008). A more recent study

(Sharma 2015) on solving Snell’s law at the bound-

aries of various elastic media can also be helpful.
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