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Abstract Nonlinear vibration and dynamic response

of functionally graded moderately thick toroidal shell

segments resting on Pasternak type elastic foundation

are investigated in this paper. Functionally graded

materials are made from ceramic and metal, and the

volume fraction of constituents are assumed to vary

through the thickness direction according to a power

law function. Reddy’s third order shear deformation,

von Karman nonlinearity, Airy stress function method

and analytical solutions are used to derive the

governing equations. Galerkin method is used to

convert the governing equation into nonlinear differ-

ential equation, then the explicit expressions of natural

frequencies and nonlinear frequency–amplitude

relations are obtained. Using Runge–Kutta method,

the nonlinear differential equation of motion is solved,

and then nonlinear vibration and dynamic response of

shells are analyzed. The effects of temperature,

material and geometrical properties, and foundation

parameters on nonlinear vibration and dynamic char-

acteristics are investigated and discussed in detail.

Keywords Nonlinear vibration � FGM toroidal shell

segment � Reddy’s third order shear deformation shell

theory

1 Introduction

Functionally graded material (FGM) is a modern

composite material usually created from metal and

ceramic constituents. The FGM is both highly heat-

resistant like the ceramic and good resilience just like

metal. Today, FGMs have been used in several of

industries such as aviation, space and nuclear power.

The knowledge of the buckling, post-buckling and

vibration of FGM structures plays an important role in

the design of these structures.

The vibration and dynamic response of shell

structures is the important problem that obtained

considerable intention of researchers. Alijani et al.

(2011) based on Donnell’s nonlinear shallow shell

theory, Galerkin method and multiple scales method
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studied the nonlinear forced vibration of simply

supported FGM doubly curved shallow shell. The

characteristics of resonance of shells are investigated

in cases of excitation frequency near the fundamental

frequency and near two times the fundamental

frequency. Using Hamiltonian dynamic formulation

and Donnell’s shell theory, Du and Li (2014) inves-

tigated the effects of material property and tempera-

ture environment on resonance condition and

bifurcation behavior of functionally graded cylindrical

shell. The free vibration behavior of simply supported

FGM cylindrical shell subjected to non-uniform

internal pressure is studied by Golpayegani and

Ghorbani (2016) making use of Rayleigh–Ritz method

based on Sander’s thin shells theory. Hadi et al. (2017)

using Donnell’s shell theory in conjunctions with

Galerkin method and Runge–Kutta method investi-

gated the nonlinear dynamic responses of FGM

cylindrical shell resting on nonlinear elastic founda-

tion subjected to axial compressive and lateral loads.

Using acoustic wave equation, wave propagation

method and based on Flügge shell theory, Han et al.

(2018) presented an analytical investigation on free

vibration and elastic buckling of FGM cylindrical

shell loaded by internal pressure fluid. Also, based on

Flügge classical thin shell theory and wave propaga-

tion approach, the free vibration of circular cylindrical

shell has been investigated by Li (2008). Using

Donnell’s shell theory, Ng et al. (2001) investigated

dynamic stability of simply supported FGM cylindri-

cal shell subjected to combined static and periodic

axial compressive loads. Authors used Bolotin’s

method to find out the regions of unstable solutions,

and the analyze the effects of material properties on

that instability regions. Duc et al. (2017) making use of

classical shell theory, Airy stress function, Galerkin

method and Runge–Kutta method studied the vibra-

tion and nonlinear dynamic responses of FGM ellip-

tical cylindrical shells resting on elastic foundation in

thermal environment. The dynamic responses of

simply supported FGM cylindrical shell under axial

compressive and external pressure loads is studied by

Bich and Nguyen (2012) making use of improved

Donnell’s shell theory. In this work, the shallowness of

shell is ignored. Dung and Thiem (2016) presented an

analytical approach to investigate the free vibration of

rotating FGM truncated conical shells based on

Donnell’s shell theory. The shells are reinforced by

FGM stringers and rings. Leckhnisky smeared

stiffeners technique is used to investigate the effects

of stringers and rings. Based on Donnell’s shell theory

in conjunctions with Galerkin method, Sofiyev and

Schnack (2012) studied vibration characteristics of

simply supported FGM truncated conical shells resting

on Pasternak type elastic foundation.

Higher-order shear deformation theory, though

complex, was used by researchers for investigating

static and dynamic behavior of thicker structures.

Kitipornchai et al. (2004) presented a semi-analytical

approach to investigate the nonlinear vibration behav-

iors of imperfect laminated FGM plates using Reddy’s

third-order shear deformation plate theory in conjunc-

tion with differential quadrature method and Galerkin

method. An analytical solution for investigating

effects of embedded magnetostrictive layers on vibra-

tion suppression of simply supported FGM shell are

presented by Pradhan (2005) using the first-order shear

deformation shell theory. Bhimaraddi (1984) using

higher-order displacement model and Flügge theory

studied the free undamped vibration of isotropic

circular cylindrical shell. The effects of nine different

boundary conditions on the free vibration character-

istics for a multi-layered cylindrical shell has been

studied by Lam and Loy (1995) using Ritz procedure

and Love’s first approximation theory. Tornabene

(2009) using the first-order shear deformation theory

and generalized differential quadrature method inves-

tigated free vibration characteristics of moderately

thick FGM conical, cylindrical shells and plates.

Using Sander’s first order shear deformation theory

and the element-free kp-Ritz method, Zhao et al.

(2009) studied the static and free vibration responses

of FGM cylindrical shell under thermal and mechan-

ical loadings. Shen (2012), Shen and Wang (2014)

making use of higher-order shear deformation theory

and two-step perturbation technique investigated the

large amplitude vibration of FGM cylindrical shell,

and FGM cylindrical panel supported by Pasternak

elastic foundation exported to thermal environment,

respectively. In works reported by Shen (2012) and

Shen and Wang (2014), authors considered Voigt

model and Mori–Tanaka model of micromechanics

and they show that two models have the same

reliability for predicting the vibration characteristics

of shells and panels. Based on the first-order shear

deformation theory in conjunctions with modified

Fourier-Ritz method, Jin et al. (2015) analyzed

vibration characteristics of laminate functionally
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graded shallow shell. The authors considered four

types of sandwich shell and used spring model to

describe the general boundary condition. Punera and

Kant (2017) studied free vibration of FGM open

cylindrical shells using a set of higher-order shear

deformation theories and Navier method. In this work

authors used the extended thickness criterion

h=Rð Þ2� 1 for moderately thick shell. Based on shear

deformation theory considering von Karman nonlin-

earity in conjunctions with Galerkin method and

homotopic perturbation method, Sofiyev (2016) inves-

tigated nonlinear free vibration of orthotropic func-

tionally graded cylindrical shells. Based on first-order

shear deformation, Quan et al. (2015) investigated the

nonlinear dynamic and vibration of imperfect stiff-

ened functionally grade cylindrical panels under

mechanical loading. The dynamic response and non-

linear vibration of imperfect functionally graded thick

double-curved shallow resting on elastic foundations

are investigated by Quan and Duc (2016) making use

of Reddy’s third-order shear deformation shell theory.

A unified approach to studied vibration characteristics

of FGM moderately thick doubly curved shells, FG

sandwich doubly curved shells and panels of revolu-

tion with general boundary condition are presented by

Wang et al. (2017a, b) making used of the first-order

shear deformation theory, modified Fourier series

expression and Ritz-variational energy method. Using

modified couple stress theory and Navier procedure

and based on the first-order shear deformation theory,

Beni et al. (2015) examined free vibration behavior of

simply supported FGM cylindrical nanoshells. An

investigation on nonlinear dynamic behavior of

clamped FGM cylindrical shell subjected to external

pressure in thermal environment is performed by

Zhang et al. (2012) using the first-order shear defor-

mation theory, Hamilton’s principle and Galerkin

method. Asanjarani et al. (2014) studied free vibration

of FGM truncated conical shell resting on two-

parameters elastic foundation using the first-order

shear deformation theory and differential quadrature

method. Su et al. (2014) presented an investigation on

three-dimensional vibration of thick FGM conical,

cylindrical shell and plate with elastic boundary

condition. Using modified Fourier series and varia-

tional principle, authors have obtained the exact

solution.

Toroidal shell segment has found applications in

satellite support structures, rocket fuel tanks and

fusion reactor vessels. Basing on classical shell theory,

the nonlinear vibration and dynamic buckling behav-

ior of thin FGM toroidal shell segments have been

investigated by Bich et al. (2016) and Ninh and Bich

(2016). To the best of the author’s knowledge,

investigations on FGM toroidal shell segments are

limited in number and most of them are based on

classical shell theory only suitable for thin shells. For

thicker shells, higher-order shear deformation shell

theory should be used to analyze static and dynamic

behavior of them for better results. There is no

investigation on nonlinear dynamic response of mod-

erately thick toroidal shell segment based on higher-

order shear deformation shell theory.

This paper extends previous work reported by

Vuong and Duc (2018) and works reported by Bich

et al. (2016) and Ninh and Bich (2016). To investigate

the nonlinear vibration and dynamic response of

moderately thick toroidal shell segments resting on

elastic foundations, subjected to axial compressive

and external pressure, and exposed to thermal envi-

ronment. The governing equations are established

within the framework of Reddy’s third-order shear

deformation shell theory. Galerkin method is used to

convert the governing equation into nonlinear differ-

ential equation, then the explicit expression of natural

frequencies and nonlinear frequency–amplitude rela-

tions are obtained. Numerical method using second-

order Runge–Kutta are used to solve nonlinear differ-

ential equation of motion, and then nonlinear vibration

and dynamic response of shells are analyzed.

2 Governing equations

Consider a toroidal shell segment with radius of

equator R, longitudinal curvature radius a thickness h

and length L surrounded by Pasternak type elastic

foundation as shown in Fig. 1. The shell is defined in a

coordinate system (x; y; z) whose origin is located at

the end on the middle surface of shell, x and y are in the

axial and circumferential directions, respectively, z is

perpendicular to surface and pointed inwards.

The shell is made from functionally graded material

which composed of ceramics and metals with effective

material properties are assumed to be graded in the

thickness direction according to a simple power law
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distribution in term of the volume fractions of the

constituents. The Young modulus E, mass density q
and thermal expansion coefficient a can be expressed

in the form (Bich et al. 2016; Vuong and Duc 2018)

E zð Þ ¼ Em þ Ec � Emð Þ 2zþ h

2h

� �k

;

q zð Þ ¼ qm þ qc � qmð Þ 2zþ h

2h

� �k

;

a zð Þ ¼ am þ ac � amð Þ 2zþ h

2h

� �k

;

8>>>>>>>><
>>>>>>>>:

ð1Þ

where Em; qm; amð Þ and Ec; qc; acð Þ are properties of

metal and ceramic constituent, respectively, k is

nonnegative number, referred to as the volume

fraction index that defines the material distribution.

The Poisson’s ratio m is assumed to be constant. It is

clear from Eq. (1) that, the outer surface of the shell

(z ¼ � h
2
) is metal-rich and the inner surface (z ¼ h

2
) is

ceramic-rich.

In this study, the governing equations are derived

within the framework of Reddy’s third-order shear

deformation shell theory (Reddy and Liu 1985)

considering von Kármán nonlinearity. The strain

components across the shell thickness at a distance z

from the middle surface are

ex
ey
cxy

0
@

1
A ¼

e0
x

e0
y

c0
xy

0
@

1
Aþ z

k 1ð Þ
x

k 1ð Þ
y

k 1ð Þ
xy

0
B@

1
CA

þ z3

k 3ð Þ
x

k 3ð Þ
y

k 3ð Þ
xy

0
B@

1
CA;

cxz
cyz

� �

¼ c0
xz

c0
yz

� �
þ z2 k 2ð Þ

xz

k 2ð Þ
yz

 !
; ð2Þ

where

R

a
z

x
L/2

L/2

R

a
z

x

L/2

L/2

a b

c

Fig. 1 Geometry and coordinate system of an FGM toroidal shell segment
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e0
x

e0
y

c0
xy

0
B@

1
CA ¼

u;x �
w

a
þ w2

;x=2

v;y �
w

R
þ w2

;y=2

u;y þ v;x þ w;xw;y

0
BBB@

1
CCCA;

k 1ð Þ
x

k 1ð Þ
y

k 1ð Þ
xy

0
B@

1
CA

¼
/x;x

/y;y

/x;y þ /y;x

0
B@

1
CA;

k 2ð Þ
xz

k 2ð Þ
yz

 !
¼ �3c

/x þ w;x

/y þ w;y

 !
;

k 3ð Þ
x

k 3ð Þ
y

k 3ð Þ
xy

0
B@

1
CA ¼ �c

/x;x þ w;xx

/y;y þ w;yy

/x;y þ /y;x þ 2w;xy

0
B@

1
CA;

c0
xz

c0
yz

 !
¼

/x þ w;x

/y þ w;y

 !
; c ¼ 4

3h2
;

ð3Þ

in which ex; ey are normal trains, cxy is the in-plane

shear train, and cxz; cyz are the transverse shear trains.

Also, u; v are displacement components along x; y

directions, respectively, w is the deflection of shell,

and /x;/y are the slop rotations of normal to the

middle surface of shell with respect to y and x axes.

The geometrical compatibility equation for a

toroidal shell segment is obtained from Eq. (3) as

e0
x;yy þ e0

y;xx � c0
xy;xy ¼ � 1

R
w;xx �

1

a
w;yy

þ w;xy

� �2�w;xxw;yy: ð4Þ

Using Hooke’s law for shear deformable shell

exposed to thermal environment, the constitutive

stress–strain equations are given

rx
ry

� �
¼ E zð Þ

1 � m2

ex þ mey � 1 þ mð Þa zð ÞDT
ey þ mex � 1 þ mð Þa zð ÞDT

� �
;

rxy
rxz
ryz

0
B@

1
CA ¼ E zð Þ

2 1 þ mð Þ

cxy
cxz
cyz

0
B@

1
CA;

ð5Þ

where DT is temperature rise from stress free initial

state. In this study DT is assumed to be independent of

coordinates x; y and z. The components of force and

moment resultants are defined as follows

Ni;Mi;Pið Þ ¼
Zh=2

�h=2

ri 1; z; z3
� �

dz; i

¼ x; y; xy ; Qj;Rj

� �
¼

Zh=2

�h=2

riz 1; z2
� �

dz; i

¼ x; y:

ð6Þ

By virtue of Eqs. (2) and (5), the force and moment

resultants are expressed as

Nx

Mx

Px

0
B@

1
CA ¼

e0
x þ me0

y

1 � m2

E1

E2

E4

0
B@

1
CAþ

k1
x þ mk1

y

1 � m2

E2

E3

E5

0
B@

1
CA

þ
k3
x þ mk3

y

1 � m2

E4

E5

E7

0
B@

1
CA� 1

1 � m

U1

U2

U3

0
B@

1
CA;

Ny

My

Py

0
B@

1
CA ¼

e0
y þ me0

x

1 � m2

E1

E2

E4

0
B@

1
CAþ

k1
y þ mk1

x

1 � m2

E2

E3

E5

0
B@

1
CA

þ
k3
y þ mk3

x

1 � m2

E4

E5

E7

0
B@

1
CA� 1

1 � m

U1

U2

U3

0
B@

1
CA;

Nxy

Mxy

Pxy

0
B@

1
CA ¼

c0
xy

2 1 þ mð Þ

E1

E2

E4

0
B@

1
CAþ

k1
xy

2 1 þ mð Þ

E2

E3

E5

0
B@

1
CA

þ
k3
xy

2 1 þ mð Þ

E4

E5

E7

0
B@

1
CA;

Qi

Ri

� �
¼

c0
iz

2 1 þ mð Þ
E1

E3

� �

þ
k2
iz

2 1 þ mð Þ
E3

E5

� �
; i ¼ x; y;

ð7Þ

where

E1;E2;E3;E4;E5;E7ð Þ ¼
Zh=2

�h=2

1; z; z2; z3; z4; z6
� �

E zð Þdz;
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U1;U2;U4ð Þ ¼
Zh=2

�h=2

1; z; z3
� �

E zð Þa zð ÞDT zð Þdz: ð8Þ

In the present study, Reddy’s third-order shear

deformation theory is used to establish governing

equations for a toroidal shell segment exposed to

thermal environment, surrounded by Pasternak type

elastic foundation and subjected to uniformly dis-

tributed external pressure of intensity q N/m2
� �

. The

nonlinear motion equations are given (Reddy and Liu

1985)

Nx;x þ Nxy;y ¼ I1
o2u

ot2
þ I2

o2/x

ot2
� I3

o3w

oxot2
; ð9Þ

Nxy;x þ Ny;y ¼ I�1
o2v

ot2
þ I�2

o2/y

ot2
� I�3

o3w

oyot2
; ð10Þ

Qx;x þ Qy;y � 3c Rx;x þ Ry;y

� �
þ 1

R
Ny þ

1

a
Nx

þ c Px;xx þ 2Pxy;xy þ Py;yy

� �
þ Nxw;xx þ 2Nxyw;xy þ Nyw;yy þ q� K1w

þ K2 w;xx þ w;yy

� �
¼ I1

o2w

ot2
þ 2eI1

ow

ot

þ I3
o3u

ot2ox
þ I5

o3/x

ot2ox
þ I�3

o3v

ot2oy

þ I�5
o3/y

ot2oy
� c2I7

o4w

ot2ox2
þ o4w

ot2oy2

� �
;

ð11Þ

Mx;x þMxy;y � Qx þ 3cRx � c Px;x þ Pxy;y

� �
¼ I2

o2u

ot2
þ I4

o2/x

ot2
� I5

o3w

ot2ox
; ð12Þ

My;y þMxy;x � Qy þ 3cRy � c Py;y þ Pxy;x

� �
¼ I�2

o2v

ot2
þ I�4

o2/y

ot2
� I�5

o3w

ot2oy
; ð13Þ

where K1 N/m3
� �

is stiffness of Winkler foundation,

K2 N/mð Þ is the shear modulus of Pasternak model, e is

damping coefficient, and

Ii ¼
Zh=2

�h=2

q zð Þzi�1dz; i ¼ 1 � 5; 7ð Þ;

I1 ¼ I1 þ
2I2

R
; I�1 ¼ I1 þ

2I2

a
;

I2 ¼ I2 þ
I3

R
� cI4 �

cI5

R
; I�2 ¼ I2 þ

I3

a
� cI4 �

cI5

a
;

I3 ¼ cI4 þ
cI5

R
; I�3 ¼ cI4 þ

cI5

a
;

I4 ¼ I�4 ¼ I3 � 2cI5 þ c2I7; I5 ¼ I�5 ¼ cI5 � c2I7:

ð14Þ

With the introduction of stress function F x; y; tð Þ
defined as

Nx ¼ F;yy; Ny ¼ F;xx; Nxy ¼ �F;xy; ð15Þ

Equations (9) and (10) are rewritten as

o2u

ot2
¼ � I2

I1

o2/x

ot2
þ I3

I1

o3w

oxot2
;

o2v

ot2
¼ � I�2

I�1

o2/y

ot2
þ I�3
I�1

o3w

oyot2
:

ð16Þ

By virtue of Eqs. (7) and (15) one can write

e0
x ; e

0
y

� �
¼ 1

E1

F;yy;F;xx

� �
� m F;xx;F;yy

� ��

�E2 k1
x ; k

1
y

� �
� E4 k3

x ; k
3
y

� �
þ U1 1; 1ð Þ

i
;

c0
xy ¼

�2 1 þ mð Þ
E1

F;xy �
E2

E1

k1
xy �

E4

E1

k3
xy:

ð17Þ

Substituting Eq. (17) into Eq. (7), and then substi-

tuting the results and Eq. (3) into Eqs. (11)–(13) with

the aid of Eq. (16) yields

L11 wð Þ þ L12 /xð Þ þ L13 /y

� �
þ S w;Fð Þ þ q

¼ I1
o2w

ot2
þ 2eI1

ow

ot
þ I5

o3/x

ot2ox
þ I�5

o3/y

ot2oy

þ I7
o4w

ot2ox2
þ I�7

o4w

ot2oy2
;

: ð18Þ

L21 wð Þ þ L22 /xð Þ þ L23 /y

� �
¼ I3

o2/x

ot2
� I5

o3w

ot2ox
;

ð19Þ

L31 wð Þ þ L32 /xð Þ þ L33 /y

� �
¼ I�3

o2/y

ot2
� I�5

o3w

ot2oy
;

ð20Þ
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where

L11 wð Þ ¼ �K1wþ A7 � 3cA8 þ K2ð Þ w;xx þ w;yy

� �
þ cA6 w;xxxx þ 2w;xxyy þ w;yyyy

� �
;

L12 wð Þ ¼ A7 � 3cA8ð Þ/x;x þ cA5 /x;xxx þ /x;xyy

� �
;

L13 wð Þ ¼ A7 � 3cA8ð Þ/y;y þ cA5 /y;yyy þ /y;yxx

� �
;

S w;Fð Þ ¼ 1

R
F;xx þ

1

a
F;yy þ F;yyw;xx � 2F;xyw;xy þ F;xxw;yy;

L21 wð Þ ¼ 3cA8 � A7ð Þw;x þ A3 � cA6ð Þ w;xxx þ w;xyy

� �
;

L22 /xð Þ ¼ 3cA8 � A7ð Þ/x

þ A2 � cA5ð Þ /x;xx þ
1 � m

2
/x;yy

� �
;

L23 /y

� �
¼ A2 � cA5ð Þ 1 þ m

2
/y;xy;

L31 wð Þ ¼ 3cA8 � A7ð Þw;y þ A3 � cA6ð Þ w;yyy þ w;yxx

� �
:

L32 /xð Þ ¼ A2 � cA5ð Þ 1 þ m
2

/x;xy;

L33 /y

� �
¼ 3cA8 � A7ð Þ/y

þ A2 � cA5ð Þ /y;yy þ
1 � m

2
/y;xx

� �
;

ð21Þ

in which

A1 ¼ E2

E1

; A2 ¼ E1E3 � E2
2 þ c E2E4 � E1E5ð Þ
E1 1 � m2ð Þ ;

A3 ¼ c E2E4 � E1E5ð Þ
E1 1 � m2ð Þ ;

A4 ¼ E4

E1

; A5 ¼
E1E5 � E2E4 þ c E2

4 � E1E7

� �
E1 1 � m2ð Þ ;

A6 ¼
c E2

4 � E1E7

� �
E1 1 � m2ð Þ ;

A7 ¼ E1 � 3cE3

2 1 þ mð Þ ; A8 ¼ E3 � 3cE5

2 1 þ mð Þ ;

I3 ¼ I4 � I2
� �2

=I1; I�3 ¼ I�4 � I�2
� �2

=I�1 ;

I5 ¼ I5 � I2I3=I1; I�5 ¼ I�5 � I�2I
�
3=I

�
1 ;

I7 ¼ I3
� �2

=I1 � k2I7; I�7 ¼ I�3
� �2

=I�1 � k2I7:

ð22Þ

we assumed that the inertial forces caused by /x and

/y are small and they can be ignored. The Eqs. (18)–

(20) are rewritten as

L11 wð Þ þ L12 /xð Þ þ L13 /y

� �
þ S w;Fð Þ þ q

¼ I1
o2w

ot2
þ 2eI1

ow

ot
þ I7

o4w

ot2ox2
þ I�7

o4w

ot2oy2
; ð23Þ

L21 wð Þ þ L22 /xð Þ þ L23 /y

� �
¼ �I5

o3w

ot2ox
; ð24Þ

L31 wð Þ þ L32 /xð Þ þ L33 /y

� �
¼ �I�5

o3w

ot2oy
: ð25Þ

Substitution of Eqs. (17) into the compatibility

Eq. (4) leads to

DDF
A1

¼ w;xy

� �2�w;xxw;yy �
1

R
w;xx �

1

a
w;yy: ð26Þ

Equations (23)–(26) are governing equations in

term of four variables w x; y; tð Þ, F x; y; tð Þ, /x x; y; tð Þ
and /y x; y; tð Þ used to analyze the nonlinear vibration

behavior of moderately thick toroidal shell segments

subjected to mechanical loading, surrounded by

Pasternak type elastic foundations in thermal

environment.

3 Solution of governing equations

In this study, the shell is assumed to be simply

supported and subjected to uniformly distributed

pressure of intensity q and pre-axial compressive load

of intensity P. Thus, the boundary conditions are

w ¼ /y ¼ 0;Nx ¼ �Ph;Nxy ¼ 0;Mx ¼ 0;Px ¼ 0 at

x ¼ 0; x ¼ L:

ð27Þ

The approximate solution of governing equations,

satisfying the simply supported boundary conditions

in average sense may be assumed as

w ¼ f tð Þ sinMx sinNy; ð28Þ

F ¼ F1 sinMx sinNyþ F2 cos 2Mxþ F3 cos 2Ny

þ 1

2
N0yx

2 � 1

2
Phy2;

ð29Þ

/x ¼ C1 cosMx sinNy;/y ¼ C2 sinMx cosNy; ð30Þ

where M ¼ mp
L
;N ¼ n

R
; f is the time dependent ampli-

tude and m; n are the numbers of half waves in the x; y

directions, respectively. Coefficients F1;F2;F3 are

determined by putting Eq. (28) into Eq. (26) as
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F1 ¼ F11f ; F2 ¼ F21f
2; F3 ¼ F31f

2; ð31Þ

where

F11 ¼ E1

M2 þ N2ð Þ2

M2

R
þ N2

a

� �
;F21 ¼ E1N

2

32M2
;

F31 ¼ E1M
2

32N2
:

Next, substituting Eqs. (28)–(29) into Eqs. (24)–

(25), coefficients C1;C2 are determined as

C1 ¼ C11f þ C12
_f ; C2 ¼ C21f þ C22

_f ; ð32Þ

where

C11 ¼ v13v22 � v12v23

v11v22 � v12v21

;C12 ¼ v14v22 � v12v24

v11v22 � v12v21

;

C21 ¼ v11v23 � v21v13

v11v22 � v12v21

; C22 ¼ v11v24 � v21v14

v11v22 � v12v21

;

ð33Þ

in whichv11 ¼ 3cA8 � A7ð Þ � A2 � cA5ð Þ M2 � 1�m
2

�
N2Þ; v12 ¼ � 1þm

2
A2 � cA5ð ÞMN,v13 ¼ A3ð �cA6Þ M3ð

þMN2Þ þ A7 � 3cA8ð Þ M; v14 ¼ �I5M,v21 ¼ � 1þm
2

A2 � cA5ð ÞMN; v22 ¼ 3cA8 � A7ð Þ � A2 � cA5ð Þ N2ð
� 1�m

2
M2Þ,

v23 ¼ A3 � cA6ð Þ N3 þ NM2
� �

þ A7 � 3cA8ð ÞN;

v24 ¼ �I�5N: ð34Þ

Substituting Eqs. (28)–(30) into Eq. (23) and

applying Galerkin method for resulting equation, after

some calculations, we have

B1
€f þ B2

_f þ B3f þ B4f
2 þ B5f

3

þ 4dmdn
MNLpR

�qþ U1

R
þ m

R
þ 1

a

� �
Ph

	 


¼ 0; ð35Þ

where

B1 ¼ I1 � A3 � A2 M2 þ N2
� �� �

C12M þ C22Nð Þ
� A6 M2 þ N2

� �
;B2 ¼ 2eI1;

B3 ¼ � A3 � A2 M2 þ N2
� �� �

� C11M þ C21Nð Þ � A3 M2 þ N2
� �

þ A5 M2 þ N2
� �2þF11

M2

R
þ N2

a

� �
þ k1

þ k2 M2 þ N2
� �

� N2U1 � M2 þ mN2
� �

Ph;

B4 ¼ �16dmdn
3MNLpR

M2F21

R
þ N2F31

a
þM2N2F11

� �

� E1Ndmdn
2MLpR2

;

B5 ¼ 2M2N2 F21 þ F31ð Þ þ 0:125E1N
4;

ð36Þ

in which

dm ¼ �1ð Þm�1; dn ¼ �1ð Þn�1:

3.1 Natural frequency

From Eq. (35), the natural frequency of the toroidal

shell segment is determined as

xmn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
B3=B1

p
: ð37Þ

From Eq. (36), the coefficient B3 may be rewritten

as

B3 ¼ B�
3 þ K1 þ K2 M2 þ N2

� �
� N2U1

� M2 þ mN2
� �

Ph; ð38Þ

where

B�
3 ¼ A2 M2 þ N2

� �
� A3

� �
C11M þ C21Nð Þ

� A3 M2 þ N2
� �

þ A5 M2 þ N2
� �2þF11

M2

R
þ N2

a

� �
:

In this study, the toroidal shell segments are

assumed to be exposed to uniformly raised thermal

environment, and the temperature change DT is

independent of coordinate variables x; y; zð Þ. In this

case, from Eq. (8), the thermal parameter U1 are

expressed as

U1 ¼ U10DT ; ð39Þ

where U10 ¼ hDT
1�m Emam þ EmacmþEcmam

kþ1
þ Ecmacm

2kþ1

� �
.
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Introduction of Eqs. (38) and (39) into Eq. (37)

yields

xmn ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B�

3 þ K1 þ K2 M2 þ N2ð Þ � N2U10DT � M2 þ mN2ð ÞPh
B1

s
:

ð40Þ

Equation (40) is used to investigate the natural

frequencies of simply supported toroidal shell seg-

ments resting on Pasternak type elastic foundation,

exposed to thermal environments, and subjected to

axial compressive load.

3.2 Nonlinear forced vibration

Consider an FGM toroidal shell segment subjected to

external pressure of intensity q ¼ Q sinXt and pre-

compressive load of intensity P, in which Q;P are time

independent constants. In this case, Eq. (35) may be

rewritten in the form

B1
€f þ B2

_f þ B3f þ B4f
2 þ B5f

3

þ 4dmdn
MNLpR

�Q sinXt þ U1

R
þ m

R
þ 1

a

� �
Ph

	 

¼ 0:

ð41Þ

Equation (41) is used to study characteristics of

nonlinear forced vibration of shells.

3.3 Nonlinear frequency–amplitude relation

To establish the frequency–amplitude relation of

toroidal shell segment, first, we introduce f ¼
A sinXt into Eq. (41) and then integrating the result

equation over a quarter of vibration period. As the

result, the nonlinear frequency–amplitude relation is

obtained as follows

c2 � c1c ¼ 1 þ c2Aþ c3A
2

þ �c4Qþ c5Pþ c6U1ð Þ 1

A
ð42Þ

where c is frequency ratio defined as c ¼ X
xmn

, and

c1 ¼ 2B2

p
ffiffiffiffiffiffiffiffiffiffi
B1B3

p ; c2 ¼ 8B4

3pB3

; c3 ¼ 3B5

4B3

; c4

¼ 4dmdn
B3MNLpR

; c5 ¼ 16dmdnh
B3MNLp2R

m
R
þ 1

a

� �
; c6

¼ 16dmdn
B3MNLp2R2

:

ð43Þ

Equations (40), (41) and (42) are used to study

characteristics of nonlinear vibration of simple sup-

ported FGM toroidal shell segments exposed to

thermal environment, surrounded by Pasternak type

elastic foundation within the framework of Reddy’s

third-order shear deformation shell theory.

4 Numerical results and discussions

4.1 Validation of the present study

To validate the accuracy of formulations and the

reliability of proposed approach, in the present study,

this section will give two numerical examples. Since

as longitudinal curvature radius a ! 1, toroidal shell

becomes cylindrical shell, in the first comparison, a

simply supported isotropic cylindrical shell is consid-

ered. The material, geometrical properties are given

as: E ¼ 210 GPa, m ¼ 0:3, q ¼ 7850 kg/m3, h ¼
0:06 m, R ¼ 100h, L ¼ 0:5R. The effects of elastic

foundation and temperature are ignored. The natural

frequencies are calculated by using Eq. (40) with a !
1 and listed in Table 1 in comparison with the results

reported by Bhimaraddi (1984) using Hamilton’s

principle based on higher-order displacement model,

and by Shen (2012) utilizing a two-step perturbation

technique based on higher-order shear deformation

theory, and by Li (2008) using a wave propagation

approach and exact solution based on Flugge classical

thin shell theory. It is evident that, a good agreement is

obtained in this comparison, especially the results in

the present study and the results reported by Li (2008)

using exact solution are almost the same.

In the second numerical example for verification,

FGM toroidal shell segments with various a=R ratios

are considered. The shells are made by a mixture of

ceramic and metal constituents with material proper-

ties as: Ec ¼ 380 GPa, Em ¼ 70 GPa, qm ¼ 2702

kg/m3, qc ¼ 3800 kg/m3, mm ¼ mc ¼ 0:3, k ¼ 1. The

geometrical properties of toroidal shell segments such

as thickness h, equator radius R and length L are given

as: h ¼ 0:06 m, R=100 h, L ¼ 0:5R. The natural

frequencies x rad/sð Þ are calculated by using Eq. (40)

in case of without elastic foundation, without temper-

ature effect, without compressive load and compared

with results obtained by Bich et al. (2016) as show in

Table 2. Again, a good agreement is shown in this

123

Nonlinear vibration of FGM moderately thick toroidal shell segment within the framework… 253



comparison for both concave shells i.e. a\0, cylin-

drical shell i.e. a ! 1 and convex shells i.e. a[ 0.

Furthermore, the values of natural frequency obtained

in the present study based on Reddy’s third-order

shear deformation theory and analytical approach are

always smaller than values that obtained in work (Bich

et al. 2016) based on classical shell theory and the

similar approach.

4.2 The natural frequencies

This section will investigate the effects of thermal

environment, compressive load, elastic foundation,

contribution of material constituents and geometry

on natural frequencies of simply supported moderately

thick FGM toroidal shell segments under compressive

load. The material properties of metal and ceramic

constituents are given as (Bich et al. 2016):

Em ¼ 70 GPa, Ec ¼ 380 GPa, qm ¼ 2702 kg/m3,

qc ¼ 3800 kg/m3, am ¼ 23 � 10�6 1=K, ac ¼ 5:4�
10�6 1=K, mm ¼ mc ¼ 0:3. Table 3 represents compar-

ison of natural frequencies with various of temperature

changes, compressive loads in cases of with and

without elastic foundations. It can be observed that,

the natural frequency is decreased as compressive load

increases and/or environment temperature increases.

In contrast, natural frequency is increased due to the

presence of elastic foundations. This characteristic of

Table 1 Comparison of dimensionless frequencies - ¼ x h=pð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 1 þ mð Þq=E

p
for an isotropic cylindrical shell

(h ¼ 0:06;R ¼ 100h; L ¼ 0:5R; E ¼ 210 GPa; m ¼ 0:3; q ¼ 7850 kg/m3)

(m, n) Bhimaraddi (1984) Shen (2012) Li (2008) Present

(1, 1) 0.03692 0.03712 0.03739 0.03729

(1, 2) 0.03612 0.03648 0.03666 0.03666

(1, 3) 0.03566 0.03620 0.03634 0.03640

(1, 4) 0.03632 0.03700 0.03723 0.03723

Table 2 Comparison of natural frequencies x rad/sð Þ for FGM toroidal shell segments: h ¼ 0:06 m, R ¼ 100h, L ¼ 0:5R,

Em ¼ 70 GPa, Ec ¼ 380 GPa, qm ¼ 2702 kg/m3, qc ¼ 3800 kg/m3, am ¼ 23 � 10�6 1=K, ac ¼ 5:4 � 10�6 1=K, k ¼ 1, m ¼ 0:3,

m; nð Þ ¼ 1; 1ð Þ

a=R Bich et al. (2016) Present Errors (%)

- 5 1320.67 1294.51 1.98

- 10 1325.11 1297.52 2.08

1 1338.47 1300.53 2.83

10 1360.57 1303.53 4.18

5 1390.68 1306.54 6.05

Table 3 Linear free frequency x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
B3=B1

p
of FGM toroidal shell segments (h ¼ 0:06 m,R ¼ 100h;L ¼ 0:5R; a ¼ 5R; k ¼

1; m ¼ 1; n ¼ 1)

Temperature change With elastic foundation K1 ¼ 2:5 � 108 N/m3; K2 ¼ 5 � 105 N/m Without elastic foundation

P ¼ 0:2 MPa P ¼ 0:4 MPa P ¼ 0:2 MPa P ¼ 0:4 MPa

DT ¼ 0 K 1280.26 1253.44 1228.02 1200.03

DT ¼ 100 K 1279.55 1252.71 1227.28 1199.27

DT ¼ 200 K 1278.83 1251.98 1226.53 1198.5

DT ¼ 300 K 1278.12 1251.25 1225.79 1197.74
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natural frequency also found by analyzing the

Eq. (40). The effects of equator radius to thickness

ratio R=h, length to equator radius L=R and volume

fraction index k that defined the contribution of

material constituents in FGM on natural frequency

of simply supported FGM toroidal shell segments

resting on elastic foundations in case of without

temperature effect and without compressive load are

shown in Table 4. It can be seen, the natural frequency

decreases as the volume fraction index and/or the

length to equator radius ratio L=R and/or the equator

radius to thickness ratio R=h increases. It means that,

the richer ceramic shells and/or shorter shells and/or

thicker shells have higher natural frequencies. Table 2

shows the effects of the longitudinal curvature radius

to equator radius ratio a=R on natural frequency. It can

be observed that, convex shells i.e. a[ 0 have higher

natural frequencies in comparison with cylindrical

shell a ! 1ð Þ and concave shells a\0ð Þ. Further-

more, the more convex the shell is, the higher natural

frequency it is, in contrast, the more concave the shell

is, the lower natural frequency it is.

4.3 The frequency–amplitude relation

Consider simply supported moderately thick toroidal

shell segments made of FGM composed of ceramic

and metal constituents with the material properties are

given as (Bich et al. 2016): Em ¼ 70 GPa, Ec ¼
380 GPa, qm ¼ 2702 kg/m3, qc ¼ 3800 kg/m3, am ¼
23� 10�6 1=K, ac ¼ 5:4 � 10�6 1=K, mm ¼ mc ¼ 0:3.

Using Eq. (42) in case of without temperature and

without compressive load, the frequency–amplitude

curves are plotted in Figs. 2, 3, 4, 5, 6, and 7 in case of

undamped free vibrations and in Figs. 8, 9 and 10

in case of undamped forced vibration. Information

in Figs. 2, 3 and 4 shows the effects of elastic

foundation on frequency–amplitude curves with

modes m ¼ 1; n ¼ 3ð Þ, m ¼ 1; n ¼ 5ð Þ and

m ¼ 1; n ¼ 7ð Þ, respectively. It can see that with the

same amplitude, the nonlinear free frequencies of the

shells resting on elastic foundation are higher than that

of the shells not to be rested on elastic foundation.

Figures 5, 6 and 7 analyzes the effects of longitudinal

curvature radius to equator radius ratio a=R on

frequency–amplitude relation of convex toroidal shell

segments. In the region of small amplitude, when a=R

ratio decrease, the free frequencies of toroidal shell

segment increase. It means that the free frequencies of

the more convex shells are greater than that of the less

convex ones. Figure 8, 9 and 10 illustrates the effects

of exciting force amplitude on frequency–amplitude

curves. As expected, the amplitude of nonlinear forced

vibration increases as the exciting force amplitude

increases. Furthermore, in the region of larger ampli-

tude, frequency–amplitude curves come close

together. It means that, in the larger amplitude,

exciting force has negligible effect on frequency–

amplitude relation.

4.4 Nonlinear vibration of moderately thick

toroidal shell segment

In this section, the effects of temperature field,

compressive load, external pressure, material and

geometrical parameters, and elastic foundation on

nonlinear vibration response of simply supported

moderately thick FGM toroidal shell segments are

presented and discussed. The elastic modulus,

mass density, thermal expansion coefficient and

Poisson’s ratio of material constituents are given as:

Em ¼ 70 GPa, Ec ¼ 380 GPa, qm ¼ 2702 kg/m3,

Table 4 Linear free frequency x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
B3=B1

p
of FGM toroidal shell segments DT ¼ 0K; P ¼ 0 MPa; K1 ¼ 2:5 � 107N/m3; K2

¼ 5 � 105N/m, h ¼ 0:06 m, a ¼ 5R; m ¼ 1; n ¼ 1

Volume fraction index kð Þ R=h ¼ 50 R=h ¼ 80

L=R ¼ 0:5 L=R ¼ 1 L=R ¼ 1:5 L=R ¼ 0:5 L=R ¼ 1 L=R ¼ 1:5

0 3384.74 3113.74 2859.76 2094.05 1960.31 1805.19

1 2576.15 2392.20 2200.50 1615.34 1519.58 1403.04

10 1218.12 1152.54 1069.49 817.89 780.66 733.08

1 409.94 397.41 395.04 399.52 394.54 393.61
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qc ¼ 3800 kg/m3, am ¼ 23 � 10�6 1=K, ac ¼ 5:4�
10�6 1=K, mm ¼ mc ¼ 0:3.

4.4.1 Effect of environment temperature

The effects of environment temperature on nonlinear

vibration response of toroidal shell segments resting

on elastic foundations and under external pressure

are shown in Figs. 11, 12, and 13 with modes

m ¼ 1; n ¼ 1ð Þ, m ¼ 1; n ¼ 3ð Þ and m ¼ 3; n ¼ 3ð Þ,
respectively. It can be observed that the amplitude of

nonlinear vibration increases as temperature increases.

Environment temperature has deteriorated effects on

load bearing capacity shells. Furthermore, it can be

seen from Figs. 11, 12 and 13 that temperature have

Fig. 2 Effect of elastic foundation on frequency–amplitude

curves of undamped free vibrations m ¼ 1; n ¼ 3ð Þ

Fig. 3 Effect of elastic foundation on frequency–amplitude

curves of undamped free vibrations m ¼ 1; n ¼ 5ð Þ

Fig. 4 Effect of elastic foundation on frequency–amplitude

curves of undamped free vibrations m ¼ 1; n ¼ 7ð Þ

Fig. 5 Effect of a=R ratio on frequency–amplitude curves of

undamped free vibrations m ¼ 1; n ¼ 3ð Þ

Fig. 6 Effect of a=R ratio on frequency–amplitude curves of

undamped free vibrations m ¼ 1; n ¼ 5ð Þ
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caused negative deflection for shells before it is

affected by external pressure. The amplitude of

nonlinear vibration of shells corresponding to mode

m ¼ 1; n ¼ 1ð Þ in Fig. 11 is greater than that corre-

sponding to modes m ¼ 1; n ¼ 3ð Þ and m ¼ 3; n ¼ 3ð Þ
in Figs. 12 and 13.

4.4.2 Effect of mechanical loads

Figures 14, 15, 16 and 17 indicate the effects of

external pressure on nonlinear vibration response of

shell with the modes m ¼ 1; n ¼ 1ð Þ, m ¼ 1; n ¼ 3ð Þ,
m ¼ 1; n ¼ 5ð Þ and m ¼ 3; n ¼ 3ð Þ, respectively. As

expected, the amplitude of vibration increases as

exciting force amplitude increases. The effects of

compressive loads are analyzed in Figs. 18, 19 and 20.

As can be seen, when increasing compressive load, the

amplitudes of nonlinear vibration of shell go down.

The presence of compressive load reduces the load

bearing capacity of shells. Furthermore, the curve

corresponding to the case of without compressive load

P ¼ 0 Pað Þ is higher than ones in case of presence of

compressive load. It means that compressive load

makes the shell to be deflected outward.

4.4.3 Effect of material constituent contribution

It can be observed from Eq. (1) that when the volume

fraction index k decrease, volume fraction of ceramic

constituent increases and effective elastic modulus of

FGM increases, the material will be stiffer. This

material characteristic is also indicated in Figs. 21, 22

Fig. 7 Effect of a=R ratio on frequency–amplitude curves of

undamped free vibrations m ¼ 1; n ¼ 7ð Þ

Fig. 8 Effect of external pressure on frequency–amplitude

curves of forced vibration m ¼ 1; n ¼ 1ð Þ

Fig. 9 Effect of external pressure on frequency–amplitude

curves of forced vibration m ¼ 1; n ¼ 3ð Þ

Fig. 10 Effect of external pressure on frequency–amplitude

curves of forced vibration m ¼ 1; n ¼ 7ð Þ
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and 23, because the amplitude of nonlinear vibration

of shell decreases as the volume fraction index

decreases.

4.4.4 Effect of R=h ratio

Effects of equator radius to thickness ratio R=h on

nonlinear vibration response of simply supported

FGM toroidal shell segments resting on Pasternak

type elastic foundation and subjected to harmonic

external pressure are illustrated in Figs. 24, 25 and 26

with modes m ¼ 1; n ¼ 1ð Þ, m ¼ 1; n ¼ 3ð Þ and

m ¼ 3; n ¼ 3ð Þ, respectively. As can be observed,

the amplitude of nonlinear vibration of shells increases

as R=h ratio increases. It is expected, because the

thinner the shell is, the softer it is.

4.4.5 Effect of L=R ratio

Figures 27, 28 and 29 show the effects of length to

equator radius ratio L=R on nonlinear vibration

responses of shell with modes m ¼ 1; n ¼ 1ð Þ,
m ¼ 1; n ¼ 3ð Þ and m ¼ 3; n ¼ 3ð Þ, respectively. As

can be seen, when L=R ratio decreases, the amplitudes

of nonlinear vibration of shells also go down. It means

that, the shorter the shell is, the stiffer it is.

Fig. 11 Effect of temperature on nonlinear vibration response

of FGM shell m ¼ 1; n ¼ 1ð Þ

Fig. 12 Effect of temperature on nonlinear vibration response

of FGM shell m ¼ 1; n ¼ 3ð Þ

Fig. 13 Effect of temperature on nonlinear vibration response

of FGM shell m ¼ 3; n ¼ 3ð Þ

Fig. 14 Effect of external pressure on nonlinear vibration

response of FGM shell m ¼ 1; n ¼ 1ð Þ
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4.4.6 Effect of a=R ratio

Effects of longitudinal curvature radius to equator

radius ratio a=R on nonlinear vibration responses of

FGM toroidal shell segments are analyzed in Figs. 30,

31, 32 and 33. When modifying a=R ratio, the

amplitudes of nonlinear vibration of both convex and

concave shell slightly change. Moreover, information

in Fig. 30 indicates that, the amplitude of nonlinear

vibration of convex shell decreases as a=R ratio

increases. It means that, the amplitudes of less convex

shells are smaller than that of more convex ones.

4.4.7 Effect of elastic foundations

Figures 34 and 35 illustrates the beneficial influence

of elastic foundations on nonlinear forced vibration of

shell. The amplitude of shell resting on two-parame-

ters elastic foundation is the smallest, whereas, the

amplitude of shell which free of interaction of elastic

foundation is the highest.

Fig. 15 Effect of external pressure on nonlinear vibration

response of FGM shell m ¼ 1; n ¼ 3ð Þ

Fig. 16 Effect of external pressure on nonlinear vibration

response of FGM shell m ¼ 1; n ¼ 5ð Þ

Fig. 17 Effect of external pressure on nonlinear vibration

response of FGM shell m ¼ 3; n ¼ 3ð Þ

Fig. 18 Effect of compressive load on nonlinear vibration

response of FGM shell m ¼ 1; n ¼ 1ð Þ
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Fig. 19 Effect of compressive load on nonlinear vibration

response of FGM shell m ¼ 1; n ¼ 3ð Þ

Fig. 20 Effect of compressive load on nonlinear vibration

response of FGM shell m ¼ 3; n ¼ 3ð Þ

Fig. 21 Effect of material properties on nonlinear vibration

response of FGM shell m ¼ 1; n ¼ 1ð Þ

Fig. 22 Effect of material properties on nonlinear vibration

response of FGM shell m ¼ 1; n ¼ 3ð Þ

Fig. 23 Effect of material properties on nonlinear vibration

response of FGM shell m ¼ 3; n ¼ 3ð Þ

Fig. 24 Effect of R=h ratio on nonlinear vibration response of

FGM shell m ¼ 1; n ¼ 1ð Þ
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5 Conclusions

An analytical solution for investigating the nonlinear

vibration and dynamic response of simply supported

FGM toroidal shell segments in thermal environment

resting on Pasternak type elastic foundation subjected

to external pressure and compressive load is presented

in this study. The governing equations are established

within framework of Reddy’s third order shear shell

theory taking von Karman nonlinearity into consider-

ation. Galerkin method and Runge–Kutta method are

applied to obtain the expressions of natural frequen-

cies, nonlinear relations of frequency–amplitude, and

nonlinear dynamic response. The accuracy of

Fig. 25 Effect of R=h ratio on nonlinear vibration response of

FGM shell m ¼ 1; n ¼ 3ð Þ

Fig. 26 Effect of R=h ratio on nonlinear vibration response of

FGM shell m ¼ 3; n ¼ 3ð Þ

Fig. 27 Effect of L=R ratio on nonlinear vibration response of

FGM shell m ¼ 1; n ¼ 1ð Þ

Fig. 28 Effect of L=R ratio on nonlinear vibration response of

FGM shell m ¼ 1; n ¼ 3ð Þ

Fig. 29 Effect of L=R ratio on nonlinear vibration response of

FGM shell m ¼ 3; n ¼ 3ð Þ
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formulas is validated by comparisons with works

reported in literature. The effects of material and

geometrical properties, mechanical and thermal load-

ings, elastic foundations on natural frequencies, fre-

quency–amplitude curves, and nonlinear forced

vibration and dynamic response of moderately thick

simply supported are investigated and discussed in

detail. This study shows that:

• Environment temperature has deteriorated effects

on load bearing capacity and causes the reduction

of values of natural frequencies of shells.

• The presence of compressive load makes the

convex shell to be deflected outward and causes

the reduction of values of natural frequencies of

shells.

• Elastic foundation causes the enhancement of both

natural frequency and nonlinear free frequency,

and reduction of amplitude of nonlinear forced

vibration.

• The richer-ceramic and/or thicker and/or shorter

the shell is, the higher natural frequency and better

dynamic carrying capacity it is.

Fig. 30 Effect of a=R ratio on nonlinear vibration response of

convex shell m ¼ 1; n ¼ 1ð Þ

Fig. 31 Effect of a=R ratio on nonlinear vibration response of

convex shell m ¼ 1; n ¼ 3ð Þ

Fig. 32 Effect of a=R ratio on nonlinear vibration response of

concave shell m ¼ 1; n ¼ 1ð Þ

Fig. 33 Effect of a=R ratio on nonlinear vibration response of

concave shell m ¼ 1; n ¼ 3ð Þ
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• With the same equator radius, convex shell has

higher natural frequency and better dynamic

carrying capacity than those of cylindrical shell

and concave shell.
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