
A non-local fractional stress–strain gradient theory

Zaher Rahimi . Ghader Rezazadeh . Wojciech Sumelka

Received: 6 March 2019 / Accepted: 10 July 2019 / Published online: 18 July 2019

� Springer Nature B.V. 2019

Abstract A generalized non-local stress–strain gra-

dient theory is presented using fractional calculus. The

proposed theory includes as a special case: the

classical theory; the non-local strain gradient theory;

the Eringen non-local theory; the strain gradient

theory; the general Eringen non-local theory; and the

general strain gradient theory. This new formulation is

therefore more comprehensive and more complete to

model physical phenomena. Its application has been

shown in free vibration, buckling and bending of

simply supported (S–S) nano-beams. The non-linear

governing equations have been solved by the Galerkin

method. Furthermore the effects of different (addi-

tional) model parameters like: the length scale

parameter; the non-local parameter; and different

orders (integer and non-integer) of strain and stress

gradients have been shown.

Keywords Non-local stress–strain gradient theory �
Conformable derivative � Vibration � Bending �
Buckling

1 Introduction

Many experimental results (Wong et al. 1997; Jing

et al. 2006; Agrawal et al. 2008; Li et al. 2003;

Sadeghian et al. 2009) and atomistic simulations (Zhu

et al. 2006; Diao et al. 2006; Cao and Chen 2007;

Olsson et al. 2007) have shown significant small-scale

effects in nano-structures such as nano-rods, nano-

beams and nano-plates. Forasmuch, as the theoretical

continuum models are more cost effective than

experimental and atomistic methods, therefore several

non-classical continuum theories involving additional

material length scale parameters have been developed.

Among these theories [the non-local elasticity

theory (Eringen 1972, 1983), the strain gradient theory

(Mindlin 1964, 1965; Lazopoulos 2009; Rahimi et al.

2018a), the non-local strain gradient theory (Lim et al.

2015), the consistent couple stress theory (Hadjesfan-

diari and Dargush 2015), the modified strain gradient

theories (Liebold and Müller 2015)] the non-local

strain gradient one, combines both of the classical

non-local elasticity and the strain gradient theories and

results in a higher-order non-local strain gradient

theory. The non-local elasticity and the strain gradient

theories are devoted to different aspects of materials
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and structures at small scale. The non-local elasticity

theory does not include the non-locality of higher-

order stresses while the strain gradient theory consid-

ers local higher-order strain gradients without non-

local effects. Note that in the aforementioned theories,

the integer gradients of stresses and strains exist, and

therefore herein the important question is raised ‘‘what

effect will result if the non-integer gradients are

considered?’’. This states the central point of this

paper, namely to present that the non-integer gradients

of stresses and strains make the modeling more

flexible to mimic experimentally observed physical

phenomena.

Fractional calculus is a branch of mathematical

analysis, related to real or complex numbers, dealing

with differential and integral operators of non-integer

orders. Fractional derivatives have played a significant

role in engineering in recent years (Ray et al. 2014; da

Graça Marcos et al. 2008; Sapora et al. 2017; Faraji

Oskouie et al. 2018; Yang 2012; Hilfer 2000). In many

theoretical investigations, it has been extended to solid

mechanics and has been shown that many physical

systems can be represented more accurately using

fractional operators. Challamel et al. (2013) intro-

duced a general form of the Eringen non-local

elasticity theory by using the Caputo fractional

definition and also presented an optimized fractional

derivative model. Moreover, they concluded that the

model showed a perfect matching with the dispersive

wave properties of the Born–Kármán model of lattice

dynamics and was better than the Eringen non-local

elasticity theory. Tarasov and Aifantis (2014) studied

some fractional gradient elasticity models using the

Caputo and the Riesz fractional derivatives defini-

tions. Moreover, they proposed a new extended

elasticity model which can describe elasticity of

materials with fractional non-locality, memory and

fractality (Tarasov and Aifantis 2015). Malara and

Spanos (2017) discussed an approximated method to

determine the non-linear response of a plate based on

the fractional calculus and the results has been

assessed versus Monte Carlo data. Sumelka et al.

(2015) presented the space-fractional non-local Euler–

Bernoulli beam theory. They showed that the theory

provides better approximation for the experimental

Young’s modulus values. Rahimi et al. (2017a)

presented a non-integer non-local model using con-

formable derivative definition and investigated its

application to static instability of nano-beams under

electrostatic force. As in previously mentioned papers

they showed that the non-integer model is in a better

agreement to the experimental data than the classical

Eringen non-local theory and classical (local) theory.

Failla et al. (2013) presented a two-dimensional

foundation model using a mechanically based non-

local elasticity theory in form of fractional calculus.

Carpinteri et al. (2014) investigated a spatial fractional

model for materials whose non-local stress is defined

as fractional integral of the strain field. D’Elia and

Gunzburger (2013) analyzed a non-local diffusion

operator having as special cases the fractional Lapla-

cian and fractional differential operators that arise in

several applications. More recently, Evgrafov and

Bellido studied the case when the Eringen non-local

theory is in general ill-posed in the case of smooth

kernels; moreover, they have also considered the case

of singular, non-smooth kernels.

In this paper, a non-local fractional stress–strain

gradient theory has been investigated, using con-

formable derivative. This formulation includes two

new free parameters, namely the fractional parameters

which control the stresses and the strains gradients

orders in the constitutive relation, respectively. As an

illustrative example, free vibration, bending and buck-

ling of S–S nano-beam have been studied and the

meaning of the fractional parameters beside the non-

local and the length scale parameters has been shown.

Note that the values of the fractional parameters

considered were 1\a B 2. It should be pointed out

that the presented conformal non-local model includes

the classical theory, the non-local strain gradient theory

(Lim et al. 2015), the Eringen non-local theory (Eringen

1972, 1983), the strain gradient theory (Mindlin

1964, 1965; Lazopoulos 2009; Rahimi et al. 2018a),

the general Eringen non-local theory (Rahimi et al.

2017a) and the general strain gradient theory therefore it

combines the flexibility and power of the previous ones.

2 Mathematical construction of the non-local

fractional stress–strain gradient theory

According to the stress and strain gradient theories the

constitutive equation for the beam is (Wong et al.

1997):

1 � ðe0aÞ2r2
h i

txx ¼ E 1 � l2r2
� �

exx ð1Þ
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where txx is the stress field that contains not only the

non-local elastic stress field, but also the strain

gradient field, exx is the strain, e0a denote the non-

local parameter (where e0a is a material constant, and a

is the internal characteristic lengths (e.g. lattice

parameter, granular size)), E is the Young’s modulus

and l is the material length scale parameter.

Now, let us consider the general form of Eq. (1)

using the non-integer order calculus as bellow:

1 � ðe0aÞa1ra1½ �txx ¼ Eð1 � la2ra2Þexx

rai ¼ oai

oxai
i ¼ 1; 2

ð2Þ

where a1 and a2 are the fractional parameters and they

control the gradient orders in the constitutive relation

and can take integer or non-integer values. In should

be emphasized that in the case of a1 = 2 Eq. (2)

reduces to the classical strain gradient theory, and in

the case of l ¼ 0 it takes the form of the general

Eringen theory (Jing et al. 2006; Agrawal et al. 2008):

1 � ðe0aÞa1ra1½ �txx ¼ Eexx ð3Þ

Note that as it is shown in Fig. 1, the general

Eringen theory (Eq. 3) is a subset of non-local

fractional stress–strain gradient theory (Eq. 2).

All the relations between the developed fractional

stress–strain gradient theory and other theories have

been shown in Fig. 1. As it can be seen, six theories

(the classical theory, the Eringen non-local theory, the

strain gradient theory, the non-local strain gradient

theory, the general Eringen non-local theory, and the

general strain gradient theory) can be obtained from

the proposed formulation, which is the property that

makes the overall formulation to be a powerful

phenomenological model of physical phenomena.

3 Mathematical modeling

In this section the application of the developed theory

in the nano-scale is presented.

3.1 Conformable derivative definition

Let f, g: [0, ?) ? R and x, y[ 0 then the

conformable derivative definition is (Rahimi et al.

2017a):

Fig. 1 The summary of

relations between the

developed non-local

fractional stress–strain

gradient theory and other

theories
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f ax x; yð Þ ¼ daf x; yð Þ
dxa

¼ lim
e!0

f ad e�1 xþ ex ad e�a; y
� �

� f ad e�1 x; yð Þ
e

f ay x; yð Þ ¼ daf x; yð Þ
dya

¼ lim
e!0

f ad e�1 x; yþ ey ad e�a
� �

� f ad e�1 x; yð Þ
e

ð4aÞ

where a [ (n, n ? 1], f is (n ? 1)-differentiable at

x[ 0 and ad e is the smallest integer greater than or

equal to a. In the case of a = n it reduces to classic

form:

f nx x; yð Þ ¼ dnf x; yð Þ
dxa

¼ lim
e!0

f n�1 xþ e; yð Þ � f n�1 x; yð Þ
e

f ny x; yð Þ ¼ dnf x; yð Þ
dya

¼ lim
e!0

f n�1 x; yþ eð Þ � f n�1 x; yð Þ
e

ð4bÞ

This definition makes the modeling more flexible than

classical derivative as one can use both integer and

non-integer derivatives order. Herein, it gives us the

possibility of studding the effects of non-integer strain

and stress derivatives in the constitutive relation.

3.2 Mathematical modeling of motion of a nano-

beam

We assume that the displacement fields of S–S nano-

beam (of Euler–Bernoulli type) (cf. Figure 2) obtain

the form as bellow:

u1ðx; z; tÞ ¼ � z
owðx; tÞ

ox

u2ðx; z; tÞ ¼ 0

u3ðx; z; tÞ ¼ wðx; tÞ;

ð5Þ

where u1, u2 and u3 are displacement in x, y and z

directions respectively, u and w are axial and trans-

verse displacements of middle axis. Therefore the only

non-zero linear strain is

exx ¼ �z
o2wðx; tÞ

ox2
: ð6Þ

The Hamilton’s principle for the analyzed system is

Zt2

t1

dK � dU þ dWð Þ ¼ 0; ð7Þ

where the virtual strain energy is defined as

dU ¼
Z

V

ðrxxdexx þ ryxxrdexxÞdV ¼
Z

V

ðrxx �rryxxdexxÞdV

0
@

1
A

þ
Z

A

ðryxxdexxÞdA L
0 ¼

Z

V

ðtxxdexxÞdV

0
@

1
Aþ

Z

A

ðryxxdexxÞdA L
0

��
������

ð8Þ

where

rxx ¼
ZL

0

Eb2ðx; x0; e2aÞe0xx;xðx0Þdx0;

ryxx ¼ l2
ZL

0

Eb1ðx; x0; e1aÞe0xx;xðx0Þdx0; e2a ¼ e1a ¼ e0a

ð9Þ

and b1ðx; x0; e1aÞ and b2ðx; x0; e2aÞ are functions for

the classical stress tensor and the strain gradient stress

tensor, respectively. The virtual kinetic energy has the

form

dK ¼
ZL

0

qA
ow

ot
d

ow

ot

� �
dx; ð10Þ

and the virtual potential energy of external loads is

expressed as

dW ¼ �
ZL

0

qdwdx: ð11Þ

Next, by substituting Eqs. (8), (10) and (11) in

Eq. (7) and considering the bending moment M and

the axial force N defined as

M ¼
Z

A

ztxxdA; N ¼
Z

A

txxdA; ð12Þ

where A is the section area of the nano-beam, we have

o2M

ox2
� N

o2w

ox2
þ qI

o4w

ox2ot2
� qA

o2w

ot2
¼ q: ð13Þ

Fig. 2 A schematic view of a S–S nano beam
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Taking now Eq. (2) and multiplying it by zdA and

applying integration through the beam length from 0 to

L leads to

1 � ðe0aÞa1ra1½ �M ¼ �EIð1 � la2ra2Þ o
2w

ox2
: ð14Þ

Finally, by using the conformable derivative def-

inition and considering 1\ a1, a2 B 2, Eq. (14) will

be:

M � ðe0aÞa1x2�a1
o2M

ox2
¼ EI

o2w

ox2
� la2x2�a2

o4w

ox4

� �
:

ð15Þ

In the last step, to obtain the general form of Euler–

Bernoulli beam equation of motion one takes the

second derivative of Eq. (15), the second derivative of

M from Eq. (13), and put it to Eq. (15), hence

EI
o4w

ox4

� �
� EIla2 ð2 � a2Þð1 � a2Þx�a2x�a2

o4w

ox4

�

þ2ð2 � a2Þx1�a2
o5w

ox5
þ x2�a2

o6w

ox6

�

þ N
o2w

ox2

� �
� Nðe0aÞa1 ð2 � a1Þð1 � a1Þx�a1

o2w

ox2

	

þ2ð2 � a1Þx1�a o
3w

ox3
þx2�a1

o4w

ox4




þ qI
o4w

ox2ot2
� qA

o2w

ot2

� �
� ðe0aÞa1

ð2 � a1Þð1 � a1Þx�a1 qI
o4w

ox2ot2
� qA

o2w

ot2

� ��

þ 2ð2 � a1Þx1�a1 qI
o5w

ox3ot2
� qA

o3w

ot2ox

� �
þ x2�a1

qI
o6w

ox4ot2
� qA

o4w

ot2ox2

� ��

¼ 1 þ ðe0aÞa1ð2 � a1Þð1 � a1Þx�a1½ �q

þ e0aÞa1 2ð2 � a1ð Þx1�a1
dq

dx
þ ðe0aÞa1x2�a1

d2q

dx2
:

ð16Þ

For convenience, the following non-dimensional

parameters are used:

ŵ ¼ w

L
; x̂ ¼ x

L
; t̂ ¼ t

t�
; t� ¼

ffiffiffiffiffiffiffiffiffiffiffi
qAL4

EI

r
;

s ¼ e0a

L
; f ¼ l

L
;

ð17Þ

therefore, the non-dimensional form of Eq. (16) is

o4ŵ

ox̂4

� ��
� fa2 ð2 � a2Þð1 � a2Þx̂�a o

4ŵ

ox̂4

	

þ 2ð2 � a2Þx̂1�a2
o5ŵ

ox̂5
þx̂2�a2

o6ŵ

ox̂6


�

þ j1

o2ŵ

ox̂2

� ��
� sa1 ð2 � a1Þð1 � a1Þx̂�a1

o2ŵ

ox̂2

	

þ 2ð2 � a1Þx̂1�a1
o3ŵ

ox̂3
þx̂2�a1

o4ŵ

ox̂4


�

þ j2

I

L

o4ŵ

ox̂2ot̂2
� AL

o2ŵ

ot̂2

	 
�

� sa1 ð2 � a1Þð1 � a1Þx̂�a AL
o2ŵ

ot̂2
� I

L

o4ŵ

ox̂2ot̂2

� �	

þ 2ð2 � a1Þx̂1�a1 AL
o3ŵ

ot̂2ox̂
� I

L

o5ŵ

ox̂3ot̂2

� �

þ x̂2�a1 AL
o4ŵ

ot̂2ox̂2
� I

L

o6ŵ

ox̂4ot̂2

� �
�

¼ j3qþ j4 ð2 � a1Þð1 � a1Þx̂�a1q½

þ 2ð2 � a1Þx̂1�a1
dq

dx̂
þ x̂2�a1

d2q

dx̂2

�
;

ð18Þ

where

j1 ¼ NL2

EI
; j2 ¼ qL3

ðt�Þ2EI
; j3 ¼ L3

EI
; j4 ¼ saL3

EI
:

4 Numerical solution

In this section the numerical solution of bending, free

vibration and buckling of nano-beams structures have

been shown.

4.1 Galerkin residual method

The presented numerical solution for different config-

urations of Eq. (18) which include the conformal

derivatives is less difficult compared to the application

of fractional derivatives which have integral form like

the Caputo, the Riemann–Liouville or the Grunwald–

Letnikov. For the latter, many advanced numerical

methods have been elaborated to present approximate

solutions (Shah et al. 2017; Al-Smadi et al. 2017;

Bhrawy and Alofi 2013; Secer et al. 2013; Rahimkhani

et al. 2017). Herein, due to the final form, the
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governing conformal equations have been solved

applying the classical Galerkin residual method

(Rashidi et al. 2018; Rahimi et al. 2018b).

4.2 Free vibration

Based on the Galerkin method the approximate

solution for dynamic system is

wðx̂; t̂Þ �
Xn
i¼1

ui (x̂) . qiðt̂Þ; ð19Þ

where ui(x) and qi(t) are the mode shapes and a time

dependent functions to be determined, respectively.

Herein u(x) is selected as the i-th undamped linear

mode shape of the straight nano-beam. Substituting

Eq. (19) into Eq. (18), multiplying the outcome by

uj ðx̂Þ, using the orthogonality property of mode

shapes, and integrating the outcome from 0 to 1 leads

to

€q þ g1q ¼ 0; ð20Þ

where

g1 ¼ =2

=1

=2 ¼
Z1

0

uð4Þ
i ðx̂Þ

n
� fa2 ð2 � a2Þð1 � a2Þx̂�a2uð4Þ

i ðx̂Þ
h

þ2ð2 � a2Þx̂1�a2uð5Þ
i ðx̂Þ þ x̂2�a2uð6Þ

i ðx̂Þ
io

ujðx̂Þdx̂

=1 ¼ �j2

Z1

0

I

L
u00
i ðx̂Þ � ALui ðx̂Þ

� �	

þ sa1 ð2 � a1Þð1 � a1Þx̂�a I

L
u00
i ðx̂Þ � ALui ðx̂Þ

� ��

þ2ð2 � a1Þx̂1�a I

L
u000
i ðx̂Þ � ALu0

i ðx̂Þ
� �

þx̂2�a1
I

L
uð4Þ
i ðx̂Þ � ALu00

i ðx̂Þ
� ��


ujðx̂Þdx̂:

ð21Þ

4.3 Bending

Based on the Galerkin method the approximate

solution for static system is

wðx̂Þ �
Xn
i¼1

ai:ui (x̂) : ð22Þ

The equation for statics is obtained by neglecting

the inertia terms, and axial force in Eq. (18). Next

substituting Eq. (22) into reduced Eq. (18),

multiplying result by uj (x̂) as a weight function and

then integrating the outcome from 0 to 1, leads to a set

of linear algebraic equations

Fj ¼
Xn
j¼1

kijai; i ¼ 1; 2; . . .; n; ð23Þ

where

kij ¼
Z1

0

ðuð4Þ
i ðx̂Þ � fa2 ð2 � a2Þð1 � a2Þx̂�a2uð4Þ

i ðx̂Þ
h

þ 2ð2 � a2Þx̂1�a2uð5Þ
i ðx̂Þ þ x̂2�a2uð6Þ

i ðx̂Þ
i
Þuj ðx̂Þdx̂

Fj ¼
Z1

0

j3qþ j4

�
ð2 � a1Þð1 � a1Þx̂�a1q

þ 2ð2 � a1Þx̂1�a1
dq

dx̂
þ x̂2�a1

d2q

dx̂2

�
uj ðx̂Þdx̂:

4.4 Buckling

Equations for buckling analysis are obtained by

neglecting the inertia and transverse force terms in

Eq. (18), and next by substituting Eq. (22) into it,

together with multiplying the result by uj (x̂) and then

integrating the outcome from 0 to 1 leads to

NCr ¼
P1

P2

; ð24Þ

where

P1 ¼
Z1

0

ðuð4Þ
i (x̂) � fa2 ð2 � a2Þð1 � a2Þx̂�a2ðuð4Þ

i (x̂)
n

þ2ð2 � a2Þx̂1�a2ðuð5Þ
i (x̂)þx̂2�a2ðuð6Þ

i (x̂)
oi

uj (x̂)dx̂

P2 ¼ k1

Z1

0

h
u00
i (x̂):� sa1 ð2 � a1Þð1 � a1Þx̂�au00

i (x̂)
�

þ2ð2 � a1Þx̂1�a1u000
i ðx̂Þþx̂2�a1uð4Þ

i (x̂)
oi

uj (x̂)dx̂:

5 Results

The effects of the different parameters (the fractional,

the length scale and the non-local parameters) on free
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vibration, bending and critical buckling load of nano-

beams structures have been illustrated below. Firstly,

the validation of the results has been shown in

Tables 1, 2, 3, 4, 5 and 6 are compared with Reddy

(2007), Rahimi et al. (2017b), Aydogdu (2009),

Khaniki (Khaniki et al. 2018), Lu (Lu et al. 2017)

and Li and Hu (2015) based on the Eringen non-local

theory, classical theory, strain gradient theory, non-

local strain gradient theory and the fractional non-

local theory. As it can be seen, the outcomes are in

good agreement with those published in literature.

In following discussion, let us assume for conve-

nience that the derivative orders a1 and a2 are equal a.

As mentioned above, this theory consists of four free

parameters that make it more flexible. In Tables 7, 8

and 9, the effects of different parameters are shown.

Recall, that although any interval (n\ a B n ? 1 in

which n is positive integer number) of the fractional

Table 1 A comparison of the obtained non-dimensional natural frequencies based on the Eringen non-local theory where s = 0 and

a = 2. (L = 10 nm, E = 30 9 106 Pa, # = 0.3, L/h = 100)

Non-local parameter (e0a)2 [nm]2 Rahimi et al. (2017b) Reddy (2007) Aydogdu (2009) Present

0 9.8696 9.8696 9.8696 9.8696

0.5 9.6347 9.6347 – 9.6347

1 9.4159 9.4159 9.4124 9.4159

1.5 9.2113 9.2113 – 9.2113

2 9.0195 9.0195 9.0133 9.0195

Table 2 A comparison of the obtained non-dimensional natural frequencies based on the non-local gradient theory (L = 10 nm,

# = 0.3, L/h = 10)

Non-local parameter (e0a)2 [nm]2 Length scale parameter (‘/L) Lu (Lu et al. 2017) Present

0 0 9.8293 9.8293

0.5 9.9498 9.9498

1 10.3029 10.3029

0.5 0 9.7102 9.7102

0.5 9.8293 9.8293

1 10.1781 10.1781

1 0 9.3774 9.3774

0.5 9.4924 9.4924

1 9.8293 9.8293

Table 3 A comparison of the obtained non-dimensional natural frequencies based on the fractional non-local theory where s = 0

(L = 10 nm, E = 30 9106 Pa, # = 0.3, L/h = 100)

Non-local parameter (e0a)2 [nm2] Rahimi et al. (2017b) Present

a1 = 1.2 a1 = 1.6 a1 = 1.2 a1 = 1.6

0 9.8696 9.8696 9.8696 9.8696

0.5 8.8227 9.3206 8.8227 9.3206

1 8.3984 8.9681 8.3984 8.9681

1.5 8.0964 8.6828 8.0964 8.6828

2 7.8579 8.4394 7.8579 8.4394
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order can be assumed, herein it is considered 1\ a
B 2. The values of the non-local parameter and the

length scale parameter are considered based on those

existing in the literature (Rahimi et al. 2017b; Li and

Hu 2015; Reddy 2007; Li et al. 2016).

As it can be seen in Table 7, decreasing of the

fractional parameter causes decrease in the non-

dimensional natural frequency, and as the value of

the length scale parameter increases it causes the

opposite effect. On the other hand, for a constant beam

length and constant fractional parameter, the increase

of e0a causes decrease in the non-dimensional natural

frequency. The variation of the non-dimensional

natural frequency versus the fractional parameter

and the length scale parameter has been illustrated in

more details in Fig. 3. The non-local parameter is

chosen e0a = 1 nm.

In Table 8 different values of the non-dimensional

static maximum center deflection are presented when

the fractional, the length scale and the non-local

parameters have different values. It is visible in

Table 8 (and also in Fig. 4) that decrease of the

fractional parameter decreases the beam stiffness. On

the other hand, keeping the fractional and the length

scale parameters constant, growth of the non-local

parameter rises down the stiffness. Moreover, increase

of the length scale at first decrease and then increase

Table 4 A comparison of the obtained (static) non-dimensional center deflection where s = 0 and a = 2 (L = 10 nm,

E = 30 9106 Pa, # = 0.3, L/h = 100 and ŵ ¼ wEI=qL4)

Non-local parameter (e0a)2 [nm2] Reddy (2007) Aydogdu (2009) Present

0 0.0131 0.0131 0.0130

0.5 0.0138 – 0.0137

1 0.0145 0.0144 0.0144

1.5 0.0152 – 0.0151

2 0.0158 0.0158 0.0157

Table 5 A comparison of obtained non-dimensional buckling load where s = 0 and a = 2 (L = 10 nm, E = 30 9106 Pa, # = 0.3, L/
h = 100)

Non-local parameter (e0a)2 [nm2] Reddy (2007) Aydogdu (2009) Present

0 9.8696 9.8696 9.8696

0.5 9.4055 – 9.4055

1 8.9830 8.9830 8.9830

1.5 8.5969 – 8.5969

2 8.2426 8.2426 8.2426

Table 6 A comparison of obtained non-dimensional buckling load where s = 0 and a = 2 (L = 10 nm, # = 0.3, L/h = 100)

Non-local parameter e0a/L Length scale parameter ‘/L Khaniki (Khaniki et al. 2018) Li (Li and Hu 2015) (10 nodes) Present

0 0 9.8696 9.8696 9.8696

0.25 15.9577 15.9577 15.9577

0.5 34.2219 34.2219 34.2219

0.5 0 2.8464 2.8464 2.8464

0.25 4.6022 4.6022 4.6022

0.5 9.8696 9.8696 9.8696
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the stiffness slightly when both the length and the non-

local parameters are constant.

In Table 9 the non-dimensional critical buckling

load of S–S nano-beam is presented. It is clear that

when the length scale and the non-local parameters are

constant smaller values of the fractional parameters

leads to smaller values of non-dimensional critical

buckling load. Moreover, when the fractional param-

eter is constant, growth of the length scale and the non-

local parameters causes the increase and decrease of

the non-dimensional critical buckling load, respec-

tively. These effects are shown in Fig. 5 also.

6 Conclusion

In this paper, the non-local fractional stress–strain

gradient theory was investigated using fractional

calculus. This new formulation has two additional

free parameters versus the classical gradient theory

which are called fractional parameters. Theses

Table 7 A non-dimensional natural frequencies of S–S nano-beam (E = 169 9109 Pa, # = 0.3, L/h = 10)

L (nm) Non-local parameter (e0a) nm Length scale parameter (‘) nm Fractional parameter (a)

1.2 1.4 1.6 1.8 2

100 1 0.1 9.7283 9.7818 9.8071 9.8190 9.8245

0.2 9.7371 9.7850 9.8083 9.8194 9.8246

0.3 9.7470 9.7890 9.8099 9.8200 9.8249

0.4 9.7575 9.7935 9.8118 9.8208 9.8252

0.5 9.7685 9.7986 9.8141 9.8218 9.8256

3 0.1 9.4501 9.6071 9.7004 9.7547 9.7859

0.2 9.4587 9.6103 9.7015 9.7551 9.7861

0.3 9.4683 9.6142 9.7031 9.7557 9.7863

0.4 9.4785 9.6187 9.7050 9.7565 9.7867

0.5 9.4892 9.6236 9.7072 9.7575 9.7871

5 0.1 9.1567 9.3887 9.5438 9.6450 9.7102

0.2 9.1651 9.3918 9.5449 9.6454 9.7104

0.3 9.1743 9.3956 9.5464 9.6461 9.7106

0.4 9.1842 9.4000 9.5483 9.6468 9.7110

0.5 9.1946 9.4048 9.5505 9.6478 9.7114

50 1 0.1 9.6021 9.7055 9.7627 9.7936 9.8101

0.2 9.6222 9.7140 9.7662 9.7950 9.8107

0.3 9.6444 9.7244 9.7709 9.7972 9.8117

0.4 9.6681 9.7363 9.7768 9.8000 9.8130

0.5 9.6930 9.7494 9.7835 9.8034 9.8148

3 0.1 9.0192 9.2738 9.4535 9.5766 9.6594

0.2 9.0380 9.2819 9.4569 9.5780 9.6599

0.3 9.0589 9.2919 9.4615 9.5801 9.6609

0.4 9.0811 9.3032 9.4672 9.5828 9.6622

0.5 9.1045 9.3158 9.4737 9.5862 9.6639

5 0.1 8.4621 8.7798 9.0331 9.2291 9.3776

0.2 8.4798 8.7875 9.0364 9.2305 9.3781

0.3 8.4994 8.7969 9.0408 9.2325 9.3791

0.4 8.5202 8.8077 9.0462 9.2351 9.3804

0.5 8.5422 8.8195 9.0524 9.2384 9.3820
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parameters control the strain and stress gradient orders

in the constitutive relation and can be integer or non-

integer. The proposed theory includes the classical

theory, the non-local strain gradient theory, the

Eringen non-local theory, the strain gradient theory,

the general Eringen non-local theory and the general

strain gradient theory.

The proposed theory is illustrated by the analysis of

free vibration, bending and buckling of S–S nano-

beam structures. The influence of all free parameters

(the fractional parameters, the length scale parameter

and the non-local parameters) was discussed in details.

The specific solutions were obtained by the Galerkin

residual method and the following results were

achieved:

• Decreasing of the fractional parameter decreases

the non-dimensional natural frequency (for higher

values of the length scale parameter such effect is

less pronounced).

• When the beam length and fractional parameter are

constant, increase of the non-local parameter

Table 8 A non-dimensional maximum center deflection of S–S nano-beams (E = 169 9109 Pa, # = 0.3, L/h = 10)

L (nm) Non-local parameter (e0a) nm Length scale parameter (‘) nm Fractional parameter (a)

1.2 1.4 1.6 1.8 2

100 1 0.1 1.3097 1.3033 1.3015 1.3013 1.3021

0.2 1.3074 1.3025 1.3012 1.3012 1.3021

0.3 1.3048 1.3015 1.3008 1.3010 1.3020

0.4 1.3021 1.3003 1.3003 1.3008 1.3020

0.5 1.2992 1.2990 1.2997 1.3005 1.3018

3 0.1 1.3354 1.3100 1.2995 1.2968 1.3032

0.2 1.3331 1.3092 1.2992 1.2967 1.3032

0.3 1.3305 1.3081 1.2988 1.2965 1.3031

0.4 1.3277 1.3069 1.2983 1.2963 1.3030

0.5 1.3248 1.3056 1.2977 1.2960 1.3029

5 0.1 1.3652 1.3189 1.2965 1.2889 1.3053

0.2 1.3628 1.3180 1.2962 1.2888 1.3052

0.3 1.3601 1.3170 1.2958 1.2887 1.3052

0.4 1.3572 1.3158 1.2953 1.2884 1.3051

0.5 1.3543 1.3144 1.2947 1.2882 1.3050

50 1 0.1 1.4468 1.3464 1.2852 1.2564 1.3150

0.2 1.4409 1.3441 1.2843 1.2560 1.3148

0.3 1.4345 1.3412 1.2830 1.2554 1.3146

0.4 1.4276 1.3380 1.2815 1.2546 1.3142

0.5 1.4205 1.3344 1.2797 1.2537 1.3138

3 0.1 1.3786 1.3230 1.2944 1.2837 1.3067

0.2 1.3730 1.3208 1.2934 1.2834 1.3065

0.3 1.3669 1.3180 1.2922 1.2828 1.3063

0.4 1.3604 1.3149 1.2907 1.2820 1.3059

0.5 1.3536 1.3114 1.2889 1.2811 1.3055

5 0.1 1.3195 1.3055 1.3003 1.2994 1.3025

0.2 1.3142 1.3033 1.2994 1.2990 1.3023

0.3 1.3084 1.3006 1.2982 1.2984 1.3021

0.4 1.3022 1.2975 1.2967 1.2977 1.3018

0.5 1.2958 1.2941 1.2950 1.2968 1.3013
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causes decrease in the non-dimensional natural

frequency.

• Decrease of the fractional parameter decreases the

beam stiffness.

• When the fractional and the length scale parame-

ters are constant, growth of the non-local param-

eter rises down the stiffness.

• When the fractional and non-local parameters are

constant, growth of the length scale parameter rises

down and then rises up the stiffness with a slight

slope.

• When the length scale and the non-local parame-

ters are constant smaller values of the fractional

parameters leads to smaller values of non-dimen-

sional critical buckling load.

• When the fractional parameter is constant, growth

of the length scale and the non-local parameters

cause increase and decrease of the non-dimen-

sional critical buckling load, respectively.

Table 9 The non-dimensional critical buckling load of S–S nano-beam (E = 169 9109 Pa, # = 0.3, L/h = 10)

L (nm) Non-local parameter (e0a) nm Length scale parameter (‘) nm Fractional parameter (a)

1.2 1.4 1.6 1.8 2

100 1 0.1 9.6678 9.7745 9.8252 9.8490 9.8600

0.2 9.6854 9.7810 9.8276 9.8498 9.8603

0.3 9.7050 9.7889 9.8307 9.8510 9.8607

0.4 9.7259 9.7980 9.8346 9.8527 9.8614

0.5 9.7480 9.8081 9.8391 9.8546 9.8623

3 0.1 9.1229 9.4285 9.6125 9.7203 9.7828

0.2 9.1395 9.4348 9.6147 9.7211 9.7831

0.3 9.1580 9.4425 9.6178 9.7224 9.7836

0.4 9.1777 9.4512 9.6216 9.7240 9.7843

0.5 9.1985 9.4610 9.6260 9.7259 9.7851

5 0.1 8.5652 9.0046 9.3046 9.5031 9.6320

0.2 8.5808 9.0106 9.3068 9.5039 9.6323

0.3 8.5982 9.0179 9.3098 9.5051 9.6328

0.4 8.6167 9.0263 9.3135 9.5067 9.6335

0.5 8.6362 9.0356 9.3177 9.5086 9.6343

50 1 0.1 7.3150 7.8746 8.3356 8.7012 8.9834

0.2 7.3456 7.8884 8.3415 8.7037 8.9844

0.3 7.3795 7.9053 8.3497 8.7075 8.9862

0.4 7.4159 7.9246 8.3596 8.7126 8.9887

0.5 7.4541 7.9460 8.3712 8.7187 8.9919

3 0.1 8.3098 8.7857 9.1294 9.3686 9.5313

0.2 8.3445 8.8010 9.1360 9.3714 9.5325

0.3 8.3831 8.8199 9.1449 9.3755 9.5344

0.4 8.4244 8.8415 9.1558 9.3809 9.5370

0.5 8.4678 8.8654 9.1685 9.3875 9.5404

5 0.1 7.3150 7.8746 8.3356 8.7012 8.9834

0.2 7.3456 7.8884 8.3415 8.7037 8.9844

0.3 7.3795 7.9053 8.3497 8.7075 8.9862

0.4 7.4159 7.9246 8.3596 8.7126 8.9887

0.5 7.4541 7.9460 8.3712 8.7187 8.9919
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Fig. 3 The influence of the

length scale and the

fractional parameters on the

non-dimensional

fundamental natural

frequency when e0a = 1 nm

Fig. 4 The influence of the

length scale and the

fractional parameters on the

non-dimensional center

deflection when e0a = 1 nm
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