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Abstract Aiming at analyzing the safety of the

dynamic structure involving both input random vari-

ables and the interval ones, a new dynamic reliability

analysis model is presented by constructing a second

level limit state function. Two steps are involved in the

construction of the dynamic reliability model. In the

first step, the non-probabilistic reliability index is

firstly extended to the dynamic structure, in which the

uncertainties of interval inputs can be analyzed by

fixing random inputs and time parameter. In the

second step, the second level limit state function is

constructed by considering the fact that the non-

probabilistic reliability index larger than one corre-

sponds to the safe state, in which the uncertainties of

random inputs are taken into account. Generally, the

actual reliability of dynamic structure with both

random and interval inputs is an interval variable,

and theoretic analysis illustrates that the proposed

reliability is equivalent to the lower bound of the

actual reliability, which can provide an efficient way

for measuring the safety of dynamic structure. For

estimating the proposed reliability, a double-loop

optimization algorithm combined with Monte Carlo

Simulation as well as the active learning Kriging

method is established. Several examples involving a

cylindrical pressure vessel, an automobile front axle

and a planar 10-bar structure are introduced to

illustrate the validity and significance of the estab-

lished reliability model and the efficiency and accu-

racy of the proposed solving procedure.

Keywords Dynamic reliability analysis � Hybrid
input variables � Non-probabilistic reliability index �
Kriging surrogate

1 Introduction

In the engineering application, the uncertainties of

structure have crucial effects on the proper functioning

of the structure. With the development of technique,

more and more attention and discussion are focused on

the research of how the uncertainty impacts the

mechanical behaviors of structure (Lemaire 2009).

Over the past few decades, the reliability analysis

based on the classical probabilistic theory has been

widely studied and applied by researchers to measure

the safety level of the structure (Abdelal et al. 2013;

Antonio and Hoffbauer 2010). Many methods have

been proposed to analyze the reliability of static (Pang

et al. 2016; Abdelal et al. 2008) and dynamic (Jiang

et al. 2017; Hu and Du 2013; Shi et al. 2017) structure

with random input variables. For applying the prob-

ability method, lots of information or experimental
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data are required to construct precise probability

distributions of the random inputs. Unfortunately, in

many engineering applications, the experimental data

is limited.

In this case, the boundaries of the uncertainty inputs

may be easy to be determined and the uncertainty

inputs are suitable to be described as non-probabilistic

interval variables. For the reliability problem with

interval input variables, available non-probabilistic

approaches can be employed to measure the reliabil-

ity. Ben-Haim (1994, 1995) firstly proposed the

concept of non-probabilistic reliability in which the

interval model was also employed into the calculation

of reliability, and the reliability is measured by the

maximum extent permissible. Elishakoff (1995) also

did some researches on the non-probabilistic reliabil-

ity. Guo et al. (2001, 2002) proposed a new non-

probabilistic reliability index for the structure only

with interval input variables, the new non-probabilis-

tic reliability index is defined as the distance measured

by the infinite norm from the origin of coordinates to

the failure surface of the structure in the expansion

space by normalized interval variables. In recent

years, researchers (Liu et al. 2016; Balu and Rao 2017;

Jiang et al. 2013; Stampouloglou and Theotokoglou

2006) have proposed many non-probabilistic reliabil-

ity methods based on the non-probabilistic convex

model. For the dynamic reliability problem with non-

probabilistic input variables, Qiu et al. (2004, 2009)

proposed the dynamic non-probabilistic reliability

analysis technique based on the convex model and

interval analysis. Geng et al. (2016) developed the

dynamic non-probabilistic reliability assessment for

function generation mechanisms. However, all the

non-probabilistic reliability approaches discussed

above are suitable for the static or dynamic structure

only with single-source uncertainty of the input

variables.

In engineering, there may be multi-source uncer-

tainties present in a structural system simultaneously.

Therefore, it is necessary to develop efficient

approaches for addressing the problems with hybrid

uncertainties. At present, how to construct the relia-

bility analysis for structure with both randomness and

non-probabilistic but bounded uncertainties has

become a significant issue in the field of structural

safety (Antonio and Hoffbauer 2010). Du et al. (2005)

proposed a hybrid reliability model for the structure

with both random input variables and interval ones, in

which the reliability is considered under the condition

of the worst case combination of interval variables and

applied it to reliability-based design optimization.

Jiang et al. (2012) developed a new reliability analysis

method through transformed optimization model for

hybrid uncertainties, and only through computing the

equivalent model the original hybrid reliability can be

evaluated. Based on the interval analysis of non-

probabilistic theory, Guo and Lu (2002) established

the hybrid probabilistic and non-probabilistic reliabil-

ity analysis approach for the structure with both

random variables and interval variables. Wu et al.

(2015) proposed an uncertain analysis method named

polynomial-chaos–chebyshev-interval (PCCI) for

vehicle dynamics involving hybrid uncertainty param-

eters, and this method does not require the amendment

of original solver for different dynamics problems thus

has high applicability. Huang et al. (2017) established

a hybrid reliability design optimization model and

corresponding decoupling strategy for structure with

random and interval uncertainties, in which the

incremental shifting vector algorithm is employed to

convert the nested optimization process to a sequential

iterative process of deterministic optimization and

hybrid reliability analysis. Zheng et al. (2018) pre-

sented a robust topology optimization method for

cellular composites with random input variables and

interval ones, and a new uncertain propagation method

named hybrid univariate dimension reduction is

proposed to estimate the interval mean and variance.

Other researches for calculating the reliability with

mixed uncertainties can be found in Refs. (Carneiro

and Antonio 2017; Jiang et al. 2018; Chen et al. 2016).

These methods are proposed to estimate the reliability

of static structure with hybrid uncertainties, however,

the dynamic structure may also has hybrid

uncertainties.

Up to now, the research about the reliability

analysis for the dynamic structure with hybrid uncer-

tainties has been rarely considered, and only a few of

scholars have done some researches (Guo et al. 2015;

Zou et al. 2015). Therefore, it is particularly necessary

to develop effective and validated hybrid reliability

analysis techniques for the dynamic structure. Aiming

at addressing this issue, this paper focuses on devel-

oping a new reliability analysis model for the dynamic

structure with hybrid uncertainties, including random

variables and interval variables. The proposed

dynamic reliability analysis model is constructed by
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a second level limit state function, where the non-

probabilistic reliability index for dynamic structure is

firstly established to analyze the uncertainties of the

interval input variables, and the second level limit

state function is then constructed to analyze the

uncertainties of the random input variables. Moreover,

a double-loop optimization algorithm combined with

Monte Carlo Simulation as well as the active learning

Kriging method (Jiang et al. 2012; Echars et al. 2011)

is employed to solve the new hybrid dynamic

reliability.

This paper is organized as follows: The general

dynamic reliability model with hybrid uncertainties is

showed in Sect. 2. The proposed dynamic reliability

analysis model for structure with hybrid uncertainties

is established in Sect. 3. The computational methods

for the proposed dynamic reliability model are con-

structed in Sect. 4. Several examples are introduced in

Sect. 5. Conclusions are given in Sect. 6.

2 Definition of general dynamic reliability model

with hybrid uncertainties

For dynamic structure with random input variables and

interval ones, the limit state function can be expressed as

G ¼ gðX;Y,tÞ, where X ¼ ðX1;X2; . . .;XnÞ indicates

the n-dimensional vector of the random variables with

the probability density function fXi
ðxiÞði ¼ 1; 2; . . .; nÞ

for Xiði ¼ 1; 2; . . .; nÞ. Y ¼ ðY1; Y2; . . .; YmÞ denotes

them-dimensional vector of the interval variables, and

the corresponding interval is Yi 2 ½Yi; �Yi�ði ¼ 1; 2;

. . .;mÞ. t 2 ½0; T� is the time parameter. Obviously,

the interval variables Y ¼ ðY1; Y2; . . .; YmÞ can be

expressed as Yi ¼ YC
i þ diYR

i ði ¼ 1; 2; . . .;mÞ, where
YC
i ¼ ðYi þ �YiÞ=2 and YR

i ¼ ð�Yi � YiÞ=2, and d ¼
ðd1; d2; . . .; dmÞ indicates the normalized interval

variable vector, on which the dynamic limit state

function can be rewritten as G ¼ gðTÞðX; d,tÞ. It can
been seen that the output G ¼ gðTÞðX; d,tÞ is interval
and varies with the random variables X and time t.

Then the safe domainXS and failure domainXF for the

output G ¼ gðTÞðX; d,tÞ can be given as follows:

XS ¼ fðX,d) : G ¼ gðTÞðX; d,tÞ[ 0; 8t 2 ½0; T �g
ð1Þ

XF ¼fðX,d) :G¼ gðTÞðX;d,tÞ�0; 9t2 ½0;T �g ð2Þ

Therefore, when the input variables locate in the

failure domain, the structure is failure; else, it is safe.

The actual reliability Pr and failure probability Pf are

interval variables because of the existing of the

interval input vector d in the limit state function. Pr

and Pf are defined by

Pr ¼ PfG ¼ gðTÞðX; d,tÞ[ 0; 8t 2 ½0; T �g ¼ PrðdÞ
ð3Þ

Pf ¼ PfG ¼ gðTÞðX; d,tÞ� 0; 9t 2 ½0; T �g ¼ Pf ðdÞ
ð4Þ

where Pf�g means the probability of the events occur-

rence. Pr 2 ½Pl
r;P

u
r � and Pf 2 ½Pl

f ;P
u
f �, in which Pl

r and

Pu
r are the lower bound and the upper bound of the

reliability Pr respectively, Pl
f and Pu

f are the lower

bound and the upper bound of the failure probability

Pf respectively.

The lower bound Pl
r and upper bound Pu

r of the

actual reliability Pr can be estimated by

Pl
r ¼ Pfmin

t2½0;T �
g
ðTÞ
L ðX; d,tÞ[ 0g

¼ PfgðTÞminLðX; dÞ[ 0g ð5Þ

Pu
r ¼ Pf min

t2½0;T �
g
ðTÞ
U ðX; d,tÞ[ 0g

¼ PfgðTÞminUðX; dÞ[ 0g ð6Þ

in which g
ðTÞ
minLðX; dÞ ¼ min

t2½0;T �
g
ðTÞ
L ðX; d,tÞ is the mini-

mum output lower bound value with respect to the

time parameter, and g
ðTÞ
minUðX; dÞ ¼ min

t2½0;T �
g
ðTÞ
U ðX; d,tÞ is

the minimum output upper bound value with respect to

the time parameter.

Generally, a complex nesting estimating process

will be involved when estimating the lower bound Pl
r

and upper bound Pu
r of the actual reliability Pr, which

will lead to extremely low efficiency or instable con-

vergence performance. In the next section, a new

dynamic reliability analysis model with hybrid uncer-

tainties is proposed to measure the safety of dynamic

structure. Furthermore, theoretic analysis illustrates

that the proposed reliability is equivalent to the lower

bound Pl
r of the actual reliability Pr, which demon-

strates the effectiveness of the proposed reliability

model for measuring the safety of dynamic structure.

One advantage of the proposed dynamic reliability
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analysis model is that it can be efficiently solved by

our estimated methods.

3 The proposed dynamic reliability model

with hybrid uncertainties

When the random variables X at time t are fixed at the

realization x, the failure domain as showed in Eq. (2)

is only the function of the interval variables. The

further the distance of the interval variables is away

the failure domain, the more robust the structure is to

the interval variables, and the safer the structure is.

Therefore, the distance between the interval variables

and the failure domain has the monopoly on the state

of the structure (safe or failure). Refer to the static non-

probabilistic reliability index (Guo and Lu 2002), the

non-probabilistic reliability index gðx; tÞ with the

fixed random input x and the time t can be defined

as the shortest distance measured by the infinite norm

jjdjj1 from the coordinate origin to the failure domain

in the expansion space of the normalized interval

variables, i.e.,

gðx; tÞ ¼ minfjjdjj1g ð7Þ

where jjdjj1 ¼ maxfjd1j; jd2j; . . .; jdmjg. The stan-

dardized interval variables belong to the convex

region Xd ¼ fd : jdij � 1; i ¼ 1; 2; . . .;mg, and the

expansion space indicates the extended infinite spatial

domain X1
d ¼ fd : di 2 ð�1;þ1Þ; i ¼ 1; 2;

. . .;mg. Take two-dimensional interval variables for

example which is showed in Fig. 1, where

g
ðTÞ
1 ðx; d,tÞ ¼ 0 and g

ðTÞ
2 ðx; d,tÞ ¼ 0 represent two

limit state surfaces of two performance function

g
ðTÞ
1 ðX; d,tÞ and g

ðTÞ
2 ðX; d,tÞ respectively, and g1ðx; tÞ

and g2ðx; tÞ are the corresponding non-probabilistic

reliability indexes of these two performance functions

respectively.

For this two-dimensional interval variables case,

the non-probabilistic reliability index is estimated by

gðx; tÞ ¼ minfjjdjj1g ¼ jd1j ¼ jd2j. Geometrically,

When gðx; tÞ\1, the structural failure domain inter-

sects with the convex region Xd, then the structure is

unreliable, such as g2ðx; tÞ showed in Fig. 1; else if

gðx; tÞ[ 1, the structure is safe, such as g1ðx; tÞ
showed in Fig. 1. Thus when gðx; tÞ ¼ 1, the structure

locates the critical state between the reliable one and

the unreliable one. It is easy to understand that when

gðx; tÞ[ 1, the bigger gðx; tÞ is, the safer the structure
is. Therefore, it is reasonable to employ the non-

probabilistic reliability index gðx; tÞ to measure the

reliability of the structure with the interval variable.

Above analysis is based on that the random variables

X are fixed at the realization x, thus when the

uncertainties of the random variables are considered,

the non-probabilistic reliability index becomes the

function of random variables X and time parameter t

and it can be rewritten as gðX; tÞ.
In order to further analyze the effect of the

uncertainties of the random variables X in non-

probabilistic reliability index gðX; tÞ on the structural

safety, we propose to employ the following second

level limit state function to measure the safety of

dynamic structure with both random input variables

and interval ones based on the critical state of the non-

probabilistic reliability index gðX; tÞ.

FðX; tÞ ¼ gðX; tÞ � 1 ð8Þ

Based on above analysis of the non-probabilistic

reliability index, it is easy to understand that the

structure is safe when FðX; tÞ[ 0 and failure when

FðX; tÞ� 0. By Eq. (8), the dynamic reliability model

involving both the random variables and the interval

1

2

0-1 1

-1

1

(T)
1 ( , , ) 0g tx δ

1( , )tx

(T)
2 ( , , ) 0g tx

2 ( , )tx

δ δ
δ

δ

δ

η

η

Fig. 1 The non-probabilistic reliability index of dynamic

structure
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variables is transformed as the dynamic reliability

model only involving the random variables. Hence, we

define a new reliability P
ðgÞ
r for measuring the safety

degree of the dynamic model as follows:

PðgÞ
r ¼ PfgðX; tÞ[ 1;
8t 2 ½0; T�g ¼ PfFðX; tÞ[ 0; 8t 2 ½0; T �g ð9Þ

It should be noted that the reliability P
ðgÞ
r in Eq. (9)

is the result based on the non-probabilistic reliability

index. The general dynamic reliability model in

Sect. 2 shows that the actual reliability Pr of the

dynamic model G ¼ gðX;Y,tÞ is interval variable

Pr 2 ½Pl
r;P

u
r �. Actually, the proposed reliability P

ðgÞ
r is

equivalent to the lower bound Pl
r of the actual

reliability Pr. The proof process is showed below.

By extending characteristic of the non-probabilistic

reliability index of static structure (Guo and Lu 2002),

the non-probabilistic reliability index gðX; tÞ of linear
dynamic structure can be written by

gðX; tÞ¼ g
ðTÞ
L ðX; d;tÞþg

ðTÞ
U ðX; d;tÞ

g
ðTÞ
U ðX; d,tÞ � g

ðTÞ
L ðX; d,tÞ

ð10Þ

where g
ðTÞ
L ðX; d,tÞ and gðTÞU ðX; d,tÞ are the lower bound

and upper bound of the output interval gðTÞðX; d,tÞ.
The proposed reliability P

ðgÞ
r is defined as the proba-

bility of FðX; tÞ[ 0 for all the time t 2 ½0; T�.
Combining the extreme value theory for estimating

the dynamic reliability, the definition of P
ðgÞ
r corre-

sponds to the probability of that the minimum value of

FðX; tÞ with respect to the time t is larger than zero.

Therefore, the reliability P
ðgÞ
r can be rewritten as

follows:

PðgÞ
r ¼ P min

t2½0;T �
FðX; tÞ[ 0

� �

¼ P min
t2½0;T �

gðX; tÞ[ 1

� �
¼ P gminðXÞ[ 1f g

ð11Þ

By combining Eq. (8) with Eq. (9), the proposed

reliability P
ðgÞ
r can be estimated by

PðgÞ
r ¼ P min

t2½0;T �

g
ðTÞ
L ðX; d;tÞþg

ðTÞ
U ðX; d;tÞ

g
ðTÞ
U ðX; d,tÞ � g

ðTÞ
L ðX; d,tÞ

[ 1

( )

¼ P min
t2½0;T �

g
ðTÞ
L ðX; d;tÞþg

ðTÞ
U ðX; d;tÞ

g
ðTÞ
U ðX; d,tÞ � g

ðTÞ
L ðX; d,tÞ

[ 1

( )

¼ P min
t2½0;T �

g
ðTÞ
L ðX; d,tÞ[ 0

� �

¼ P g
ðTÞ
minLðX; dÞ[ 0

n o

ð12Þ

in which g
ðTÞ
minLðX; dÞ ¼ min

t2½0;T �
g
ðTÞ
L ðX; d,tÞ. Generally,

the lower bound Pl
r of the actual reliability Pr

corresponding to the probability of that minimum

output lower bound is larger than zero, i.e.,

Pl
r ¼ PfgðTÞminLðX; dÞ[ 0g. Therefore, for the linear

dynamic structure we have P
ðgÞ
r ¼ Pl

r. This conclusion

can be extended to the non-linear dynamic structure

because that the structure will be absolutely safe when

gminðXÞ[ 1 as showed in Fig. 1, which illustrates that

the output interval will be always larger than zero.

Thus, the minimum output lower bound larger than

zero is equivalent to gminðXÞ[ 1 which means

PfgminðXÞ[ 1g ¼ PfgðTÞminLðX; dÞ[ 0g, then

P
ðgÞ
r ¼ Pl

r.

Therefore, the proposed reliability is significant in

measuring the safety of dynamic structure with both

random and interval variables. Also, it is reasonable to

concern the conservative solution in engineering

application, i.e., the lower bound of the reliability.

Accordingly, the failure probability P
ðgÞ
f can be

estimated as follows:

P
ðgÞ
f ¼ P gðX; tÞ� 1; 9t 2 ½0; T�f g

¼ P FðX; tÞ� 0; 9t 2 ½0; T �f g ð13Þ

Based on the discussion above, the failure proba-

bility P
ðgÞ
f corresponds to the upper bound of the actual

failure probability solution Pu
f with the probabilistic

reliability theory.

In the engineering application, lots of information

or experimental data are always lacking. In this case

where the inputs involve the interval variables,

providing the bound of the reliability or the failure

probability is more reasonable than giving a value. For

the dynamic model G ¼ gðX;Y,tÞ, this section estab-

lishes a reliability analysis model to estimate the
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reliability P
ðgÞ
r (the lower bound Pl

r of the actual

reliability Pr) or the failure probability P
ðgÞ
f (the upper

bound Pu
f of the actual failure probability Pf ). In the

next section, the computational issues are established.

4 Estimate procedure

To estimate the reliability P
ðgÞ
r for the dynamic model

G ¼ gðX;Y,tÞ, we need to firstly calculate the non-

probabilistic reliability index gðX; tÞ. In the Sect. 4.1,

the one-dimensional optimization algorithm (Jiang

et al. 2007) is extended to estimate the non-proba-

bilistic reliability index gðX; tÞ. Then theMCSmethod

and the Kriging surrogate method for the reliability

P
ðgÞ
r are proposed in Sects. 4.2 and 4.3 respectively.

4.1 The non-probabilistic reliability index gðX; tÞ

When the random variables X and time t are fixed at

the realization x and t� respectively, the non-proba-

bility reliability index gðx; t�Þ is defined as gðx; t�Þ ¼
minfjjdjj1g ¼ min fmaxfjd1j; jd2j; . . .; jdmjgg. If we
define the 2m peaks of the symmetric convex domain

Xd ¼ fd : jdij � 1; i ¼ 1; 2; . . .;mg as Pj
d ¼ fd : jdij ¼

1; i ¼ 1; 2; . . .;mgðj ¼ 1; 2; . . .; 2mÞ, then there must

be 2m�1 super rays from the coordinate origin to

P
j
dðj ¼ 1; 2; . . .; 2mÞ in the extended infinite spatial

domain X1
d ¼ fd : di 2 ð�1;þ1Þ; i ¼ 1; 2; . . .;

mg. If there exist one or more intersections among

these 2m�1 super rays and the failure surface

gðTÞðx; d,t�Þ ¼ 0, then the intersections must satisfy

the following equation.

gðTÞðx; d1,d2,. . .,dm,t�Þ ¼ 0

jd1j ¼ jd2j ¼ � � � ¼ jdmj

�
ð14Þ

For the static structure with only interval variables,

Jiang et al. (2007) proved that the non-probabilistic

reliability index must exists in the intersections among

the super ray and the failure surface. The conclusion

can be easily extended to the dynamic model

G ¼ gðTÞðx; d,tÞ. Suppose there are l intersections

denoted as dk ¼ ðdk1; d
k
2; . . .; d

k
mÞ ðk ¼ 1; 2; . . .; lÞ. The

absolute value of the component for these intersec-

tions is equivalent, i.e., dk1
�� �� ¼ dk2

�� �� ¼ � � � ¼ dkm
�� �� ¼ Ck

ðk ¼ 1; 2; . . .; lÞ. Then jjdkjj1 ¼ maxfjdk1j; jd
k
2j; . . .;

jdkmjg ¼ Ckðk ¼ 1; 2; . . .; lÞ. Considering the phys-

ical significance of gðx; tÞ is the shortest distance

measured by the infinite norm jjdjj1 from the coor-

dinate origin to the failure domain in the expansion

space of the normalized interval variables. Therefore,

the non-probabilistic dynamic reliability index gðx; t�Þ
can be estimated as follows:

gðx; t�Þ ¼ minfC1;C2; . . .;Clg ð15Þ

in which Ck ¼ jdk1j ¼ jdk2j ¼ � � � ¼ jdkmj ðk ¼ 1; 2; . . .;

lÞ. Above Eq. (15) indicates that the non-probabilistic
reliability index gðx; t�Þ at time t� equals to the

minimum absolute value of the components in these l

intersections between the super rays and the failure

surface.

The steps for estimating gðx; t�Þ can be summarized

as follows:

Step 1 Give the random variables X and the time t a

realization x and t� respectively. Construct the limit

state failure surface gðTÞðx; d,t�Þ ¼ 0.

Step 2 Considering the 2m�1 super rays from the

coordinate origin to P
j
dðj ¼ 1; 2; . . .; 2mÞ in the

extended infinite spatial domain X1
d ¼ fd : di 2

ð�1;þ1Þ; i ¼ 1; 2; . . .;mg, and they satisfy

d1 ¼ �d2 ¼ � � � ¼ �dm.
Step 3 Take d1 ¼ �d2 ¼ � � � ¼ �dm into equation

gðTÞðx; d,t�Þ ¼ 0 respectively, then we can get 2m�1

dollar algebraic equations. Solve these equations and

obtain all the roots.

Step 4 Wipe off the complex roots, then the rest of

the roots can be expressed as dk ¼ ðdk1; d
k
2; . . .; d

k
mÞ

ðk ¼ 1; 2; . . .; lÞ. Estimate the Ckðk ¼ 1; 2; . . .; lÞ, and
the non-probabilistic reliability index gðx; t�Þ can be

obtained by Eq. (15).

By above method, the estimation of the non-

probabilistic reliability is transformed by the calcula-

tion of 2m�1 dollar algebraic equations. For the simple

equations, e.g., first-order or second-order equation,

the analytic method can be used to obtain the roots. For

the complex equations, e.g., high-order equation, the

numerical method such as the FSOLVE toolbox in

MATLAB can be employed.

4.2 MCS for solving the reliability P
ðgÞ
r

From Eq. (11), one can see that the estimation of the

reliability P
ðgÞ
r can be transformed to the estimation of
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the probability that the minimum of the non-proba-

bilistic reliability index gminðXÞ bigger than 1. When

the random vector X is fixed at the realization x, the

non-probability reliability index gðx; tÞ can be

obtained by solving the multiple monadic equations

and it is the function of time t. The minimum value

gminðxÞ of gðx; tÞ can be obtained by the optimization

algorithm. In this paper, we use the following double-

loop optimization to estimate the gminðxÞ:

find : gminðxÞ
minimize : gðx; tÞ
subject to : t 2 ½0; T �

find : gðx; tÞ
subject to : gTðx; d,tÞ ¼ 0

�

8>>>><
>>>>:

ð16Þ

For the inner-loop optimization, the proposed

method in Sect. 4.1 can be used to estimate the

gðx; tÞ. As to the outer-loop optimization, the FMIN-

CON toolbox in MATLAB is employed to obtain the

gminðxÞ. Compared with the method that disperses the

time t to obtain the gminðxÞ, the double-loop optimiza-

tion method just need to search a few time instant to

obtain the gminðxÞ. Therefore, the proposed double-

loop optimization method can decrease the computa-

tional cost so as to get the gminðxÞ efficiently. When all

the gminðxÞ for the random variables are available, the

reliability P
ðgÞ
r can be obtained by Eq. (11).

We briefly summarize the MCS procedure as

follows:

Step 1 Generate a sample matrix A of dimension

N � n by Sobol’ low-discrepancy sequence (Sobol’

1998), each column of which contains N-size uniform

sample between 0 and 1. Employ the sample matrix A

to obtain a sample matrix Bwhich forms the sample of

the input random vector X by the inverse cumulative

distribution transformation.

Step 2 Use Yi ¼ YC
i þ diYR

i ði ¼ 1; 2; . . .;mÞ to

express the interval variables Y ¼ ðY1; Y2; . . .; YmÞ.
Substitute it into the original limit state function G ¼
gðX;Y,tÞ to obtain the form of G ¼ gðTÞðX; d,tÞ, and
let k ¼ 1.

Step 3 Substitute the k-th row of the sample matrix

B into G ¼ gðTÞðX; d,tÞ to obtain the

G ¼ gðTÞðxðkÞ; d,tÞ, then use the Eq. (16) to estimate

the gminðxðkÞÞ.
Step 4 If k\N, then k ¼ k þ 1 and go to step 3;

else, go to step 5.

Step 5 Denote the number of the sample points that

satisfy gminðxðkÞÞ[ 1ðk ¼ 1; 2; . . .;NÞ as NR, then the

reliability P
ðgÞ
r can be estimated as follows:

PðgÞ
r ¼ NR

N
ð17Þ

The above MCS process for estimating the relia-

bility P
ðgÞ
r is commonly computationally expensive,

although the double-loop optimization method and the

Sobol’ sequence are employed to improve the effi-

ciency. For each sample point of the input random

vector X, there always needs some computational cost

to obtain gminðxÞ. In the next Sect. 4.3, the Kriging

surrogate model method is provided to improve the

efficiency.

4.3 The Kriging surrogate for solving

the reliability P
ðgÞ
r

By several training data, the Kriging surrogate method

(Lophaven and Nielsen 2002; Echars et al. 2011) can

provide a surrogate model for the original structure. In

this paper, we use the Kriging method to construct

surrogate model for gminðxÞ. Generally, the Kriging

method can not only provide the predictions, but also

the probabilistic errors. For the objective function

ZðXÞ, the Kriging surrogate model ẐðXÞ is expressed
as follows:

ẐðXÞ ¼ f ðXÞ þ eðXÞ ð18Þ

in which f ðXÞ contains polynomial terms with

unknown coefficients and eðXÞ is the error term. Here

we focus on the application of the Kriging surrogate

method, and details of the Kriging model can be found

in Ref. (Lophaven and Nielsen 2002). To improve the

accuracy of the surrogate model for gminðxÞ, here we

employ an active learning Kriging procedure. The

following is the procedure and the flowchart of this

procedure is plotted in Fig. 2:

Step 1 Set the acceptable mean square error e0.
Generate a sample matrix C with the dimensionality

NK � n for the input random vector X, where NK is a

large number such as 104. Select N0-size sample from

the sample matrix C randomly to construct a sample

matrix D, in which N0 is a small number such as 10.

Step 2 For the sample matrix D, employ Eq. (16)

and the method in Sect. 3 to obtain the gminðxðkÞÞðk ¼
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1; 2; . . .;N0Þ (where xðkÞ is the k-th row vector of the

matrix D).

Step 3 Construct the Kriging surrogate model with

the sample matrix D and the corresponding minimum

value of non-probabilistic reliability index

gminðxðkÞÞðk ¼ 1; 2; . . .;N0Þ.
Stepx 3 Apply the constructed Kriging surrogate

model to obtain the Kriging predictions ĝminðxðjÞÞ ðj ¼
1; 2; . . .;NKÞ and the corresponding mean square error

eĝminðxðjÞÞðj ¼ 1; 2; . . .;NKÞ for each sample in matrixC.

Find the maximummean square error emax from theNK

mean square errors. If emax\e0, stop the training

process and go to step 6; else, add the sample which

has the maximum mean square error emax into the last

row of sample matrix D and let N0 ¼ N0 þ 1.

Step 5 For the last row of sample matrix D, use

Eq. (16) and the method in Sect. 4.1 to obtain the

gminðxðN0ÞÞ. Then go to step 3.

Step 6 Denote the number of the sample points that

satisfy ĝminðxðjÞÞ[ 1ðj ¼ 1; 2; . . .;NKÞ as NKR, then

the reliability P
ðgÞ
r can be estimated as follows:

PðgÞ
r ¼ NKR

NK

ð19Þ

With above active learning procedure, the Kriging

surrogate model between the minimum non-proba-

bilistic reliability index gminðxÞ and the random vector

sample x can be well constructed. Then the reliability

probability P
ðgÞ
r can be obtained accurately. Compar-

ing with the direct MCS method, the computational

cost of this method mainly results from the construc-

tion of the surrogate model, which is commonly small.

Therefore, the proposed Kriging surrogate procedure

for estimating the reliability P
ðgÞ
r is efficient and

accurate.

5 Examples

5.1 Cylindrical pressure vessel

Considering a cylindrical pressure vessel (Guo and Lu

2002), the inner diameter D 2 ½1470; 1530�mm and

the wall thickness d 2 ½4:4; 5:6�mm. The cross section

of this vessel is shown in Fig. 3. The work stress

inside the vessel is P ¼ P0 sin t
15
þ 1

2

� �
MPa (radian),

where P0 is normal random variable P0 	N

Fig. 2 Flow chart for

constructing Kriging

surrogate model of gminðxÞ
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ð5:88; 1:182ÞMPa, and t is the time parameter

t 2 ½0; T �. The upper bound of the time interval T is

considered as varying in ½0; 20�, so we can obtain the

curve of the reliability P
ðgÞ
r varying with the upper

bound of the time interval T . The fracture toughness

KIC of the material is a normal random variable, i.e.,

KIC 	Nð124; 18:62ÞMPa
ffiffiffiffi
m

p
. A surface crack in the

axial was found by nondestructive inspection, and the

crack depth a 2 ½2:5; 3:5�mm. Based on the fracture

failure criterion, the dynamic limit state function can

be described as G ¼ KIC � 0:975PD
d

ffiffiffi
a
Q

q
, where a con-

stant Q ¼ 1:55.

In this example, the acceptable mean square error

for Kriging surrogate method is set to be e0 ¼ 10�3.

When the time interval upper bound T varies in ½0; 20�,
Fig. 4 shows the minimum value gminðlÞ of the non-

probabilistic reliability index varying with the time

interval upper bound T when input random variablesX

are fixed at the mean value l. The solutions of the

reliability P
ðgÞ
r estimated by the MCS method and the

Kriging method are plotted in Fig. 5. The number of

the sample of the MCS method for each T is

N ¼ 5000. The Kriging surrogate model is con-

structed at each T respectively, and the number

denoted by Ncall of the sample of the Kriging method

for different T is listed in Table 1.

The Fig. 4 shows that the gminðlÞ decreases with

the time interval upper bound T increase, which is in

accordance with the engineering qualitative analysis.

It can be seen in Fig. 5 that the reliability P
ðgÞ
r

estimated by the Kriging surrogate method can match

well with the solution by the MCS method, which

illustrates the accuracy of the proposed Kriging

method. The Fig. 5 also shows that the reliability

P
ðgÞ
r decreases with the time interval upper bound T

increase. The descent velocity of the reliability P
ðgÞ
r is

variant with the interval upper bound T . When the T is

set to be a small or big value, i.e., T 2 ½0; 6� or

T 2 ½16; 20�, the descent velocity is small which

illustrates that the reliability P
ðgÞ
r has a good robust

on the time interval upper bound T . But the descent

velocity is big when T 2 ½6; 16�, which can be

explained as that the reliability P
ðgÞ
r has a bad

robustness within T 2 ½6; 16�.
Compared with the MCS method, the proposed

Kriging method has high efficiency. The Table 1

D

d

Fig. 3 The cross section of the vessel

 min ( )

min ( )

T
0 2 4 6 8 10 12 14 16 18 20

0

0.5

1

1.5
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3.5
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4.5

5η μ

η μ

Fig. 4 gminðlÞ solution for

Example 4.1
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shows that the Kriging method just needs dozens of

sample for each T to construct the surrogate model.

When the surrogate model is constructed well, then it

will cost no additional evaluation of gðTÞðx; d; tÞ to

obtain the reliability P
ðgÞ
r . The number of the sample

for the MCS method for each T is N ¼ 5000 which is

much more than the sample size of the Kriging

method, and the MCS method needs more computa-

tional cost such as the cost for the optimization

procedure to obtain the reliability P
ðgÞ
r . Therefore, the

proposed Kriging method is an accurate and efficient

method for the estimation of the reliability P
ðgÞ
r .

For comparing the solution based on the non-

probabilistic reliability theory and the complete prob-

abilistic reliability theory respectively, here we sup-

pose all the interval variables are normal random

variables where their mean value is regarded as the

mid-value of the interval and their standard deviation

r can be determined by regarding the bounds of the

interval variables as 3r. Then the reliability PR based

on the complete probabilistic theory can be obtained.

From Fig. 6, one can see that the PR is bigger than the

P
ðgÞ
r for different time interval upper bound T . As

discussed in Sect. 2, the P
ðgÞ
r is the lower bound of the

actual reliability, and it is possible that the actual

reliability reaches to this value P
ðgÞ
r . Therefore,

employing the P
ðgÞ
r as the reliability measurement is

conservative. The solution PR with the complete

probabilistic reliability theory is slightly higher. It

may cause some risk when using the PR to guide the

design and the optimization of the structure. There-

fore, for the dynamic model with both the random

variables and the interval variables, the P
ðgÞ
r is more

reasonable.

5.2 Automobile front axle

The automobile front axle is an important component

in the automobile (Shi et al. 2017). Nowadays, the I-

beam structure is popular in the design of the front axle

due to its high bend strength and light weight. The

structure is shown in Fig. 7, the dangerous cross-

section is in the I-beam part. The maximum normal

stress and shear stress are r ¼ M
Wx

and s ¼ T
Wq

0 2 4 6 8 10 12 14 16 18 20
0.4

0.5

0.6

0.7

0.8

0.9

1

Kriging

MCS

T

( )
rP

η
Fig. 5 The reliability PðgÞ

r

solution for Example 4.1

Table 1 The computational cost of the Kriging method for Example 4.1

T 0 1.43 2.86 4.29 5.71 7.14 8.57 10.00

Ncall 14 15 16 15 14 33 52 85

T 11.43 12.86 14.29 15.71 17.14 18.57 20.00

Ncall 55 57 95 67 61 67 30
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respectively, whereM and T are bending moment and

torque, and they are time-variant, i.e.,

M ¼ M0ð15 cos tþ8
30

þ 6
5
Þ2, T ¼ T0ðsin tþ8

20
Þ2, in which

M0 and T0 are basic bending moment and torque, t is

the time parameter and t 2 ½0; T� (radian), and T is

considered as in ½0; 1�. Wx and Wq are section factor

and polar section factor which are be given respec-

tively as follows:

Wx ¼
aðh� 2cÞ3

6h
þ b

6h
½h3 � ðh� 2cÞ3� ð20Þ

Wq ¼ 0:8bc2 þ 0:4a3ðh� 2cÞ
c

ð21Þ

To check the strength of the front axle, the dynamic

limit state function can be represented as:

g ¼ rS �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ 3s2

p
ð22Þ

where rS is limit stress of yielding and rS ¼ 350Mpa.

The loads M0 and T0 are independent normal vari-

ables, and M0 	Nð8� 106; ð5� 104Þ2ÞNmm, T0 	
Nð7� 106; ð2� 104Þ2ÞNmm. The geometry variables

of I-beam a, b, c and h are independent interval

variables with the distribution parameters listed in

Table 2.

Fig. 7 Diagram of an

automobile front axle.

a Diagram of front axle,

b Cross section of front axle
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T
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η

Fig. 6 The comparison of

the PðgÞ
r and PR for Example

4.1

Table 2 Distribution parameters of the input interval variables

for Example 4.2

Variable (unit) Lower bound Upper bound

a (mm) 11 13

b (mm) 63 67

c (mm) 13 15

h (mm) 82 88
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To guarantee the accuracy of the results, here the

number of the sample for MCS method at each T is set

to be N = 10,000, and the acceptable mean square

error for Kriging surrogate method is e0 ¼ 10�5.

When the time interval upper bound T varies in ½0; 1�,
the minimum value of the non-probabilistic reliability

index gminðlÞwhen the random vectorX is fixed at the

mean value l is shown in Fig. 8. The reliability P
ðgÞ
r

estimated by the MCS method and the Kriging

surrogate procedure is exhibited in Fig. 9, and the

corresponding number of the sample for the Kriging

surrogate procedure at each T is listed in Table 3.

Figure 10 shows the comparison of the P
ðgÞ
r and the PR

which is estimated based on the complete probabilistic

reliability theory.

From Fig. 8, we can see that when the random

vector is fixed at the mean value, the gminðlÞ is similar

linear function of the T , which illustrates that the

decreased rate of the gminðlÞ with T is constant.

Figure 9 shows that the reliability P
ðgÞ
r estimated by

the Kriging surrogate method can match well with that

by the MCSmethod, which demonstrates the accuracy

of the proposed active learning Kriging surrogate

procedure. It can be seen that the reliability P
ðgÞ
r

decreases with the time interval upper bound T

increase, and the P
ðgÞ
r has a sharp decrease at the

min ( )

min ( )

T
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.7

0.75

0.8

0.85
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1.2
η μ

μη

Fig. 8 gminðlÞ solution for

Example 4.2
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interval T 2 ½0:2; 0:5�. This indicates that the reliabil-
ity P

ðgÞ
r has a bad robustness on the interval

T 2 ½0:2; 0:5�. The number of the sample of the

Kriging surrogate method for each T showed in

Table 3 indicates that there just need a dozen samples

to obtain the reliability P
ðgÞ
r . But the number of the

sample for the MCS method is N = 10,000 and the

computational cost is more than this number. There-

fore, the proposed Kriging surrogate procedure is an

efficient method to estimate of the reliability P
ðgÞ
r .

We suppose all the interval variables are normal

random variables where their mean value is regarded

as the mid-value of the interval and their standard

deviation r can be determined by regarding the bounds

of the interval variables as 3r. Then the reliability PR

based on the complete probabilistic reliability theory

can be obtained. It can be found from Fig. 10 that the

reliability PR is always equal to one, which is

completely different from the reliability P
ðgÞ
r . How-

ever, the actual reliability of the structure can reach to

the reliability P
ðgÞ
r . In the engineering application, the

conservative estimation of the reliability is more

reasonable to guidance the design and the optimization

instead of the reliability PR when the interval inputs

are involved.

5.3 A planar 10-bar structure

A planar 10-bar structure which is shown in Fig. 11 is

introduced to illustrate the engineering significance of

the proposed dynamic reliability analysis model. The

length of the horizontal and vertical bars is L. The

section area and elastic modulus of each bar are Aiði ¼
1; 2; . . .; 10Þ and E respectively. Piði ¼ 1; 2; 3Þ are the
point loads. P2 is time varying and P2 ¼ P0ð15 sin 1

3
t

þ 12
5
Þ, in which t is time parameter and t 2 ½0; T�

(radian), and T is considered as in ½0; 3�. P1 and P2 are

interval variables, i.e., P1 2 ½79; 81� kN, P3 2 ½9; 11�

Table 3 The computational cost of the Kriging method for

Example 4.2

T 0 0.07 0.14 0.21 0.28 0.36 0.43 0.50

Ncall 11 11 12 11 14 12 13 12

T 0.57 0.64 0.71 0.79 0.86 0.93 1.00

Ncall 13 15 13 12 14 13 15

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

 

RP

T

( )
rP
η

Fig. 10 The comparison of

the PðgÞ
r and PR for Example

4.2
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Fig. 11 Planar 10-bar structure
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kN. L, Aiði ¼ 1; 2; . . .; 10Þ, E and P0 are normally

distributed, and their distribution parameters are listed

in Table 4. The dynamic limit state function can be

expressed as G ¼ 0:0042� D, where D is the dis-

placement of node 3 in vertical direction.

The finite element model of this planar 10-bar

structure is built in Analysis 15.0 and it is shown in

Fig. 12. In this example, the number of the sample for

the MCS method at T is set to be N = 10,000, and the

acceptable mean square error for Kriging surrogate

method is e0 ¼ 10�3. The minimum value of the non-

probabilistic reliability index gminðlÞ with the random
vectorX fixed at the mean value l is shown in Fig. 13.

The reliability P
ðgÞ
r estimated by the MCS method and

the Kriging surrogate method is exhibited in Fig. 14,

and the corresponding number of the sample for the

Kriging surrogate method at each T is listed in

Table 5. Figure 15 shows the comparison of the P
ðgÞ
r

Table 4 Distribution parameters of the input random variables

for Example 4.3

Variable (unit) L (m) Ai (m
2) E (GPa) P0 (kN)

Mean 1 0.001 100 10

Coefficient of variance 0.01 0.01 0.05 0.05

Fig. 12 The finite element

model of the 10-bar

structure
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Fig. 13 gminðlÞ solution for
Example 4.3
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and the PR which is estimated based on the complete

probabilistic reliability theory.

The Fig. 13 shows that the gminðlÞ decreases with
the time interval upper bound T increase, which is in

accordance with the engineering qualitative analysis.

From Fig. 14, one can see that the reliability P
ðgÞ
r

estimated by the Kriging method can match well with

that the MCS method solution, which illustrates the

accuracy of the Kriging method. Figure 14 also shows

that the reliability P
ðgÞ
r decreases with the time interval

upper bound T increase, and the reliability P
ðgÞ
r has a

stable robustness on the time interval upper bound.

Table 5 shows that the proposed Kriging method is

more efficient than the MCS method. Therefore, the

proposed Kriging technique is an accurate and

efficient method on estimating the reliability P
ðgÞ
r .

Similar to the Examples 4.1 and 4.2, Fig. 15 shows

that the reliability PR always bigger than the reliability
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Fig. 14 The reliability PðgÞ

r

solution for Example 4.3

Table 5 The computational cost of the Kriging method for

Example 4.3

T 0 0.21 0.43 0.64 0.86 1.07 1.29 1.50

Ncall 62 53 52 17 129 198 189 204

T 1.71 1.93 2.14 2.36 2.57 2.79 3.00

Ncall 210 215 224 195 72 62 66
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Fig. 15 The comparison of

the PðgÞ
r and PR for Example

4.3
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P
ðgÞ
r . But the actual reliability of the structure may

reach to the reliability P
ðgÞ
r . In the engineering

application, the conservative estimation of the relia-

bility is more reasonable to guidance the design and

the optimization instead of the reliability PR when the

interval inputs are involved.

6 Conclusions

A dynamic reliability analysis model and its solution

are proposed in this paper for the structure with both

the random variables and the interval variables. Before

establishing the reliability analysis model, the non-

probabilistic reliability index gðX; tÞ is defined as the

shortest distance measured by the infinite norm jjdjj1
from the coordinate origin to the failure domain in the

expansion space of the normalized interval variables.

Then the structure can be regarded as safe when

gðX; tÞ[ 1 and failure when gðX; tÞ� 1. Finally, the

second level limit state function is constructed and the

reliability can be obtained by analyzing the general

dynamic model with only the random variables.

Furthermore, it is easy to understand that the reliability

is the actual reliability interval lower bound based on

the probabilistic theory.

For efficiently estimating the dynamic reliability,

the one-dimensional optimization algorithm for the

static structure is firstly extended to calculate the non-

probabilistic reliability index. After a double-loop

optimization process is proposed to estimate the

minimum value of the non-probabilistic reliability

index, the MCS process is proposed to estimate the

dynamic reliability. In order to further improve the

efficiency, the active learning Kriging surrogate

method is established. This method constructs the

surrogate model between the minimum value of the

non-probabilistic reliability index and the random

variables. When the surrogate model is constructed,

the reliability can be obtained by calling the surrogate

model instead of the actual model.

Three examples involving a cylindrical pressure

vessel, an automobile front axle and a planar 10-bar

structure are employed to illustrate the validity of the

established reliability analysis model for the structure

with both the random variables and the interval

variables. By comparing with the solution estimated

with complete probabilistic reliability theory, the

rationality of the proposed method is demonstrated.

At the same time, the efficiency of the proposed active

learning Kriging method is also illustrated.
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